1887

Chapter 1 : Environmental Pollution and Restoration: A Role for Bioremediation

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Environmental Pollution and Restoration: A Role for Bioremediation, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817596/9781555812393_Chap01-1.gif /docserver/preview/fulltext/10.1128/9781555817596/9781555812393_Chap01-2.gif

Abstract:

With greater understanding of microbial diversity and the development of bioengineering, bioremediation is taking its place as a cost-effective technique in integrated environmental restoration efforts. The major reasons for the control of water and soil pollution and the consideration of bioremediation are first and foremost, public health concerns; second, environmental conservation; and finally, the cost of decontamination. A major aim of bioremediation, or any other remediation technology, must be the reduction of toxicity associated with the environmental contaminant, that is, the abatement of environmental impact. Bioremediation solutions can be used to reduce the impacts of environmental persistence of contaminants and thus to alleviate problems associated with chronic toxicity. The broadest classification of environmental pollutants is into two categories: organic and inorganic. Quantitatively, the organic pollutants of most concern are the hydrocarbons in their various forms. The most common are petroleum hydrocarbons, chlorinated solvents, surfactants, biocides, and a host of other compounds specific to particular industries, e.g., nitroaromatics from munitions. Fortunately, many of these pollutants are biodegradable by microorganisms in soils and waters. The biodegradability of environmental pollutants, and hence the degree of persistence of contaminants in natural environments, is influenced by various factors, most important of which are the chemical structure of the contaminant, the presence of a viable microbial population able to degrade the contaminant(s), and environmental conditions suitable for microbial biodegradative activities.

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1

Key Concept Ranking

Organic Chemicals
0.67992616
Chemicals
0.50886
Natural Environment
0.43850565
Polycyclic Aromatic Hydrocarbons
0.43403783
0.67992616
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1.1
FIGURE 1.1

Cumulative dose-response curve in a lethality test. The typical curve is sigmoidal, and several important parameters can be derived from it. Probably the most widely used is the EC50.

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1.2
FIGURE 1.2

Fate of hydrophobic pollutants in soil, and the use of surfactants to try to improve desorption and bioavailability. With time, the pollutant becomes increasingly bound to the organic fraction of soil and is consequently more difficult to desorb; thus, it becomes less bioavailable and more difficult to biodegrade. Surfactants, including biosurfactants, may improve desorption and solubilization. There is strong evidence to suggest that biodegradation of such pollutants occurs in the aqueous phase.

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1.3
FIGURE 1.3

The oxygen sag curve showing decrease in oxygen concentration due to biodegradation of a pollutant in a waterway. As soon as a pollutant enters a river, it starts to deoxygenate water as a result of the biological oxygen demand it possesses. The two competing phenomena at play are the deoxygenation and the reaeration across the air-water interface. At some critical point downstream, the DO level reaches a minimum, after which the rate of reaeration exceeds the rate of deoxygenation, the DO starts to rise again, and the river recovers.

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1.4
FIGURE 1.4

Chemical studies of various representative hydrocarbons found in crude oil.

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1.5
FIGURE 1.5

Model for alkane metabolism in . (Top)Proposed location of various enzymes within the bacterial cell, along with the intermediates of -alkane metabolism. (Bottom)Corresponding genes and operon arrangement. TCA, tricarboxylic acid; CoA, coenzyme A.

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1.6
FIGURE 1.6

Structures of the BTEX group of compounds. The carbon atoms of the benzene molecule are numbered as an aid to the explanation of the nomenclature of aromatic compounds. For example, -xylene is 1,2-dimethyl benzene.

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1.7
FIGURE 1.7

Structures of some representative PAHs.

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1.8
FIGURE 1.8

Initial steps in naphthalene metabolism in spp. Enzymes (underlined) and genes (italic) are indicated.

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1.9
FIGURE 1.9

Structure of the fuel oxygenateMTBE.

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1.10
FIGURE 1.10

Structure of TCE.

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1.11
FIGURE 1.11

Biodegradation pathways for TCE. Adapted from the University of Minnesota website (http:// umbbd.ahc.umn.edu/tce/tce–image–map.html).

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1.12
FIGURE 1.12

Structures of two examples of chlorophenols: PCP and trichorophenol.

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1.13
FIGURE 1.13

Structures of some chloroaromatic biocides which vary greatly in their biodegradability.

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1.14
FIGURE 1.14

Structure of a triazole fungicide. Triazole fungicides exhibit their antifungal activity by inhibiting fungal ergosterol biosynthesis and are economically important agrochemicals since they have been widely used on crops such as wheat, barley, and orchard fruits.

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1.15
FIGURE 1.15

Structure of PCBs. The basic unit is shown to explain the nomenclature of PCBs.

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1.16
FIGURE 1.16

Structure of TNT. Many military testing grounds are contaminated with TNT. Human exposure leads to a range of clinical conditions: anemia and abnormal liver, spleen enlargement, other harmful effects on the immune system, and skin irritation. There is evidence that TNT adversely affects male fertility, and TNTis listed as a possible human carcinogen.

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1.17
FIGURE 1.17

Structure of TCDD, one of the most toxic compounds known. In January 2001, its status as a suspected human carcinogen was changed to that of a known human carcinogen, based on sufficient evidence from a combination of epidemiological and mechanistic studies that indicated a causal relationship between exposure to TCDD and human cancer.

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1.18
FIGURE 1.18

Branched pathway of PCDD microbial dechlorination. Dechlorination caused by activity of nonmethanogenic, non-spore-forming microbes (broad arrows) and intermediates found in trace concentrations ( ) (braces)are indicated.

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1.19
FIGURE 1.19

Metabolic pathway for the aerobic biodegradation of DD ( ).

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1.20
FIGURE 1.20

Metabolic pathway for the aerobic biodegradation of 1-CDD ( ). A and B, sites of attack by the initial dioxygenase.

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1.21
FIGURE 1.21

Gene organization for dioxin metabolism in sp. strain RW1. Six fragments of the RW1 genome which are probably involved in dibenzofuran and dioxin degradation are shown. Genes coding for the initial dioxin dioxygenase (boxed) are indicated.

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1.22
FIGURE 1.22

Chemical structures of ABSs. The potential of these chemicals as surfactants can be seen from the possession of both charged hydrophilic groups and long-chain lipophilic groups.

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1.23
FIGURE 1.23

Chemical structures of some common OPs. OPs are extremely toxic to humans, and some have had very widespread usage as pesticides.

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1.24
FIGURE 1.24

Flow of mercury through the ecosystem at Minamata ( ).

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1.25
FIGURE 1.25

Bacterial metabolism of hydrocarbons to central metabolites. The remarkable economy of bacteria is illustrated: a vast number of hydrocarbons are converted to just two key intermediates, catechol and protocatechuate. From this point, ring fission occurs, and by a relatively few short steps the ring fission products are converted to central metabolites. TCA, tricarboxylic acid; CoA, coenzyme A.

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1.26
FIGURE 1.26

Replica plates of 25 strains of copper-resistant bacteria. From right to left, the plates contain increasing concentrations of copper nitrate (0.0001, 1.0, and 5.0 mM). As the concentration increases, some more sensitive strains are inhibited. Colonies resistant to these high levels of copper were green-blue in the presence of copper but cream colored in the absence of copper.

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817596.chap1
1. Adriaens, P.,, and D. Grbic-Galic. 1994. Reductive dechlorination of PCDD/F by anaerobic cultures and sediments. Chemosphere 29: 2253 2259.
2. Adriaens, P.,, Q. Fu,, and D. Grbic-Galic. 1995. Bioavailability and transformation of highly chlorinated dibenzo- p-dioxins and dibenzofurans in anaerobic soils and sediments. Environ. Sci. Technol. 29: 2252 2260.
3. Adriaens, P.,, P. R.-L. Chang,, and A. L. Barkovskii. 1996. Dechlorination of chlorinated PCDD/F by organic and inorganic electron transfer molecules in reduced environments. Chemosphere 32: 433 441.
4. Alexander, M. 1965. Biodegradation: problems of molecular recalcitrance and microbial fallibility. Adv. Appl. Microbiol. 7: 35 80.
5. Alexander, M. 2001. Biodegradation and Bioremediation, 2nd ed. Academic Press, San Diego, Calif.
6. Armengaud, J.,, B. Happe,, and K. N. Timmis. 1998. Genetic analysis of dioxin dioxygenase of Sphingomonas sp. strain RW1: catabolic genes dispersed on the genome. J. Bacteriol. 180: 3954 3966.
7. Arthur, M. F.,, and J. I. Frea. 1987. Microbial activity in soils containing 2,3,7,8-tetrachlorodibenzo- p-dioxin. Environ. Toxicol. Chem. 7: 5 13.
8. Atagana, H. I.,, R. J. Haynes,, and F. M. Wallis. 2003. Optimization of soil physical and chemical conditions for the bioremediation of creosote-contaminated soil. Biodegradation 14: 297 307.
9. Atlas, R. M.,, and R. Bartha. 1997. Microbial Ecology: Fundamentals and Applications. Benjamin/ Cummings Science Publishing, Menlo Park, Calif.
10. Badr, T.,, K. Hanna,, and C. de Brauer. 2004. Enhanced solubilization and removal of naphthalene and phenanthrene by cyclodextrins from two contaminated soils. J. Hazard. Mater. 112: 215 223.
11. Bagley, D. M.,, and J. M. Gossett. 1990. Tetrachloroethene transformation to trichloroethene and cis-1,2-dichloroethene by sulfate-reducing enrichment cultures. Appl. Environ. Microbiol. 56: 2511 2516.
12. Barac, T.,, S. Taghavi,, B. Borremans,, A. Provoost,, L. Oeyen,, J. V. Colpaert,, J. Vangronsveld,, and D. van der Lelie. 2004. Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat. Biotechnol. 22: 583 588.
13. Barbaro, J. R.,, J. F. Barker,, L. A. Lemon,, and C. I. Mayfield. 1992. Biotransformation of BTEX under anaerobic, denitrifying conditions: field and laboratory observations. J. Contam. Hydrol. 11: 245 272.
14. Bardi, L.,, A. Mattei,, S. Steffan,, and M. Marzano. 2000. Hydrocarbon degradation by a soil microbial population with β-cyclodextrin as surfactant to enhance bioavailability. Enz. Microb. Technol. 27: 709 713.
15. Barkovskii, A. L.,, and P. Adriaens. 1996. Microbial dechlorination of historically present and freshly spiked chlorinated dioxins and diversity of dioxin-dechlorinating populations. Appl. Environ. Microbiol. 62: 4556 4562.
16. Bartels, I.,, H.-J. Knackmuss,, and W. Reinecke. 1984. Suicide inactivation of catechol 2,3- dioxygenase from Pseudomonas MT-2 by 3-halocatechols. Appl. Environ. Microbiol. 47: 500 505.
17. Beeman, R. E.,, and C. A. Bleckmann. 2002. Sequential anaerobic-aerobic treatment of an aquifer contaminated by halogenated organics: field results. J. Contam. Hydrol. 57: 147 159.
18. Bej, A. K.,, D. Saul,, and J. Aislabie. 2000. Cold-tolerant alkane-degrading Rhodococcus species from Antarctica. Polar Biol. 23: 100 105.
19. Beller, H. R.,, A. M. Spormann,, P. K. Sharma,, J. R. Cole,, and M. Reinhard. 1996. Isolation and characterization of a novel toluenedegrading sulfate-reducing bacterium. Appl. Environ. Microbiol. 62: 1188 1196.
20. Berthe-Corti, L.,, and S. Fetzner. 2002. Bac terial metabolism of n-alkanes and ammonia under oxic, suboxic and anoxic conditions. Acta Biotechnol. 22: 299 336.
21. Björklund, T., Nilsson,, S. Bøward,, K. Pilorz,, L. Mathiasson,, and S. B. Hawthorne. 2000. Introducing selective supercritical fluid extraction as a new tool for determining sorption/ desorption behavior and bioavailability of persistent organic pollutants in sediment. J. Biochem. Biophys. Methods 43: 295 311.
22. Bogan, B. W.,, B. Schoenike,, R. T. Lamar,, and D. Cullen. 1996. Expression of lip genes during growth in soil and oxidation of anthracene by Phanerochaete chrysosporium. Appl. Environ. Microbiol. 62: 3697 3703.
23. Bollens, W. B.,, and L. A. Norris. 1979. Influence of 2,3,7,8-tetrachlorodibenzo- p-dioxin on respiration in a forest floor and soil. Bull. Environ. Contam. Toxicol. 62: 648 652.
24. Bouchez, M.,, D. Blanchet,, and J.-P. Vandecasteele. 1995. Substrate availability in phenanthrene biodegradation: transfer mechanism and influence on metabolism. Appl. Microbiol. Biotechnol. 43: 952 960.
25. Boyle, A. W.,, C. J. Silvin,, J. P. Hassett,, J. P. Nakas,, and S. W. Tanenbaum. 1992. Bacterial PCB degradation. Biodegradation 3: 285 298.
26. Brandt, K. K.,, A. Pedersen,, and J. Sorensen. 2002. Solid-phase contact assay that uses a luxmarked Nitrosomonas europaea reporter strain to estimate toxicity of bioavailable linear alkylbenzene sulfonate in soil. Appl. Environ. Microbiol. 68: 3502 3508.
27. Breedveld, G. D.,, and M. Sparrevik. 2000. Nutrient limited biodegradation of PAHs in various soil strata at a creosote contaminated site. Biodegradation 11: 391 399.
28. Budavari, S. (ed.). 1989. The Merck Index, 11th ed. Merck & Co., Inc., Rahway, N. J.
29. Cave, M.,, and J. Wragg. 2000. Measurement of heavy metals: bioavailability and distribution in contaminated soils. Earthwise 15: 32 33.
30. Cerniglia, C. E. 1984. Microbial degradation of polycyclic aromatic hydrocarbons. Adv. Appl. Microbiol. 30: 31 71.
31. Cerniglia, C. E.,, and J. B. Sutherland,. 2001. Bioremediation of polycyclic aromatic hydrocarbons, p. 136 187. In G. M. Gadd (ed.), Fungi in Bioremediation. Cambridge University Press, Cambridge, United Kingdom.
32. Chiou, C. T.,, P. E. Porter,, and D. W. Schmeddling. 1983. Partition equilibria of nonionic organic compounds between soil and organic matter and water. Environ. Sci. Technol. 17: 227 231.
33. Chung, N.,, and M. Alexander. 2002. Effect of soil properties on bioavailability and extractability of phenanthrene and atrazine sequestered in soil. Chemosphere 48: 109 115.
34. Coates, J. D.,, R. T. Anderson,, and D. R. Lovley. 1996. Oxidation of polycyclic aromatic hydrocarbons under sulfate-reducing conditions. Appl. Environ. Microbiol. 62: 1099 1101.
35. Coates, J. D.,, J. Woodward,, J. Allen,, P. Philp,, and D. R. Lovley. 1997. Anaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum-contaminated marine harbor sediments. Appl. Environ. Microbiol. 63: 3589 3593.
36. Connell, D. W.,, P. Lam,, B. Richardson,, and R. Wu. 1999>. Introduction to Ecotoxicology. Blackwell Science, Oxford, United Kingdom.
37. Cook, A. M.,, C. G. Daughton,, and M. Alexander. 1978. Phosphorus-containing pesticide breakdown products: quantitative utilization as phosphorus sources by bacteria. Appl. Environ. Microbiol. 36: 668 672.
38. Cookson, J. T., Jr. 1995. Bioremediation Engineering: Design and Application. McGraw-Hill, New York, N.Y.
39. Cronin, M. T. D.,, and J. C. Dearden. 1995. Review: QSAR in toxicology. 1. Prediction of aquatic toxicity. Quantit. Struct. Activ. Relat. 14: 1 7.
40. Cronin, M. T. D.,, and T. W. Schultz. 1997. Validation of Vibrio fischeri acute toxicity data: mechanism of action-based QSARs for nonpolar narcotics and polar narcotic phenols. Sci. Tot. Environ. 204: 75 88.
41. Cronin, M. T. D.,, and T. W. Schultz. 1998. Structure-toxicity relationships for three mechanisms of action of toxicity to Vibrio fischeri. Ecotoxicol. Environ. Safety 39: 65 69.
42. Cuypers, C.,, T. Pancras,, T. Grotenhuis,, and W. Rulkens. 2002. The estimation of PAH bioavailability in contaminated sediments using hydroxypropyl-cyclodextrin and Triton X-100 extraction techniques. Chemosphere 46: 1235 1245.
43. Davies, J. I.,, and W. C. Evans. 1964. Oxidative metabolism of naphthalene by soil pseudomonads: the ring fission mechanism. J. Biochem. 91: 251 261.
44. de Bont, J. A. M. 1998. Solvent-tolerant bacteria in biocatalysis. TIBTECH 16: 493 499.
45. Duffy, J. S.,, J. A. Del Pup,, and J. J. Kneiss. 1992. Toxicological evaluation of methyl tertiary butyl ether (MTBE): testing performed under TSCA consent agreement. J. Soil Contam. 1: 29 37.
46. Ellis, D. 1989. Environments at Risk. Case Histories of Impact Assessment. Springer-Verlag, Heidelberg, Germany.
47. Evans, B. S.,, C. A. Dudley,, and K. T. Klasson. 1996. Sequential anaerobic-aerobic biodegradation of PCBs in soil slurry microcosms. Appl. Biochem. Biotechnol. 57- 58: 885 894.
48. Eweis, J. B.,, S. J. Ergas,, D. P. Y. Chang,, and E. D. Schroeder. 1998. Bioremediation Principles. McGraw-Hill, Singapore, Singapore.
49. Fathepure, B. Z.,, and T. M. Vogel. 1991. Complete degradation of polychlorinated hydrocarbons by a two-stage biofilm reactor. Appl. Environ. Microbiol. 57: 3418 3422.
50. Ferguson, C. C.,, D. Darmendrail,, K. Freier,, B. K. Jensen,, J. Jensen,, H. Kasamas,, A. Urzelai,, and J. Vegter (ed.). 1998. Risk Assessment for Contaminated Sites in Europe, vol. 1. Scientific Basis. LQM Press, Nottingham, United Kingdom.
51. Fogel, M. M.,, A. R. Taddeo,, and S. Fogel. 1986. Biodegradation of chlorinated ethanes by a methane-utilizing mixed culture. Appl. Environ. Microbiol. 51: 720 724.
52. Galli, R.,, and P. L. McCarty. 1989. Biotransformation of 1,1,1-trichloroethane, trichloromethane, and tetrachloromethane by a Clostridium sp. Appl. Environ. Microbiol. 55: 837 844.
53. Habe, H.,, and T. Omori. 2003. Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria. Biosci. Biotechnol. Biochem. 67: 225 243.
54. Habe, H.,, J. S. Chung,, J. H. Lee,, K. Kasuga,, T. Yoshida,, H. Nojiri,, and T. Omori. 2001. Degradation of chlorinated dibenzofurans and dibenzo- p-dioxins by two types of bacteria having angular dioxygenases with different features. Appl. Environ. Microbiol. 67: 3610 3617.
55. Häggblom, M. M. 1992. Microbial breakdown of halogenated aromatic pesticides and related compounds. FEMS Microbiol. Rev. 103: 29 72.
56. Häggblom, M. M.,, and P. W. Milligan,. 2000. Anaerobic biodegradation of halogenated pesticides: influence of alternate electron acceptors, p. 1 34. In J. M. Bollag, and G. Stotzky (ed.), Soil Biochemistry. Marcel Dekker, New York, N.Y.
57. Halden, R. U.,, and D. F. Dwyer. 1997. Biodegradation of dioxins: a review. Biorem. J. 1: 11 25.
58. Heath, J. S.,, K. Kobis,, and S. L. Sayer. 1993. Review of chemical, physical and toxicological properties of components of total petroleum hydrocarbons. J. Soil Contam. 2: 221 234.
59. Hemond, H. F.,, and E. J. Fechner-Levy. 2000. Chemical Fate and Transport in the Environment. Academic Press, San Diego, Calif.
60. Hoag, G. E.,, A. Dahmani,, F. Nadim,, C. S. Dulam,, and E. Quinn. 1998. Use of coal tar contaminated soil in road paving asphalt. Land Contam. Reclam. 6: 91 103.
61. Holliger, C.,, and A. J. B. Zehnder. 1996. Anaerobic biodegradation of hydrocarbons. Curr. Opin. Biotechnol. 7: 326 330.
62. Horne, I.,, T. D. Sutherland,, R. L. Harcourt,, R. J. Russell,, and J. G. Oakeshott. 2002. Identification of an opd (organophosphate degradation)gene in an Agrobacterium isolate. Appl. Environ. Microbiol. 68: 3371 3376.
63. Hund-Rinke, K.,, and W. Kördel. 2003. Underlying issues in bioaccessibility and bioavailability: experimental methods. Ecotoxicol. Environ. Safety 56: 52 62.
64. Irwin, R. S.,, M. van Mouwerkle,, L. Stevens,, M. D. Seese,, and W. Basham. 1997. Environmental Contaminants Encyclopedia. Water Resource Division, National Park Service, Fort Collins, Colo. http://www1.nature.nps.gov.
65. Jain, D. K.,, H. Lee,, and J. T. Trevors. 1992. Effect of addition of Pseudomonas aeruginosa UG2 inocula or biosurfactants on biodegradation of selected hydrocarbons in soil. J. Ind. Microbiol. 10: 87 93.
66. Jannasch, H. W. 1967. Growth of marine bacteria at limiting concentrations of organic carbon in seawater. Limnol. Oceanogr. 12: 264 271.
67. Junker, F.,, and J. I. Ramos. 1999. Involvement of the cis/trans isomerase Cti in solvent resistance of Pseudomonas putida DOT-TIE. J. Bacteriol. 181: 5693 5700.
68. Kantachote, D.,, I. Singleton,, R. Naidu,, N. C. McClure,, and M. Mallaravapu. 2004. Sodium application enhances DDT transformation in a long-term contaminated soil. Water Air Soil Pollut. 154: 115 125.
69. Kao, C. M.,, Y. L. Chen,, S. C. Chen,, T. Y. Chen,, W. S. Yeh,, and W. S. Wu. 2003. Enhanced PCE dechlorination by biobarrier systems under different redox conditions. Water Res. 37: 4885 4894.
70. Kao, C. M.,, S. C. Chen,, J. K. Liu,, and M. J. Wu. 2001. Evaluation of TCDD biodegradability under different redox conditions. Chemosphere 44: 1447 1454.
71. Kasuga, K.,, H. Nojiri,, H. Yamane,, and T. Omori. 1997. Genes of enzymes involved in the biodegradation of carbazole, dibenzofuran, fluorene, and dibenzo- p-dioxin by bacteria. Water Sci. Technol. 36: 9 16.
72. Knackmuss, H.-J. 1992>. Potentials and limitations of microbes to degrade xenobiotics, p. 3 9. In Proceedings of the International Symposium on Soil Decontamination Using Biological Processes, 6 to 9 December, Karlsruhe, Germany.
73. Langenhoff, A. A. M.,, D. L. Brouwers- Ceiler,, J. H. L. Engelberting,, J. J. Quist,, J. G. P. N. Wolkenfelt,, A. J. B. Zehnder,, and G. Schraa. 1997. Microbial reduction of manganese coupled to toluene oxidation. FEMS Microbiol. Ecol. 22: 119 127.
74. Lanno, R.,, J. Wells,, J. Conder,, K. Bradham,, and N. Basta. 2004. The bioavailability of chemicals in soil for earthworms. Ecotoxicol. Environ. Safety 57: 39 47.
75. Lau, K. L.,, Y. Y. Tsang,, and S. W. Chiu. 2003. Use of spent mushroom compost to bioremediate PAH-contaminated samples. Chemosphere 52: 1539 1546.
76. Little, C. D.,, A. V. Palumbo,, and S. E. Herbes. 1988. Trichloroethylene biodegradation by a methane-oxidizing bacterium. Appl. Environ. Microbiol. 54: 951 956.
77. Liu, Z.,, A. M. Jacobson,, and R. G. Luthy. 1995. Biodegradation of naphthalene in aqueous nonionic surfactant systems. Appl. Environ. Microbiol. 61: 145 151.
78. Loehr, R. C.,, and M. T. Webster,. 1997. Effects of treatment on contaminant availability, mobility, and toxicity, p. 137 386. In D. G. Linz, and D. V. Nakles (ed.), Environmentally Acceptable Endpoints in Soil. American Academy of Environmental Engineers, Annapolis, Md.
79. Madsen, E. L. 2003. Report on Bioavailability of Chemical Wastes with Respect to the Potential for Soil Bioremediation. U.S. Environmental Protection Agency report EPA/600/R-03/076. U.S. Environmental Protection Agency, Washington, D.C.
80. Maier, R., 2000. Bioavailability and its importance to bioremediation, p. 59 78. In J. J. Valdes (ed.), International Society for Environmental Biotechnology: Environmental Monitoring and Biodiagnostics. Kluwer, Dordrecht, The Netherlands.
81. Manahan, S. E. 1994. Environmental Chemistry, 6th ed. Lewis Publishers, Boca Raton, Fla.
82. Margesin, R.,, and F. Schinner. 2001. Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl. Microbiol. Biotechnol. 56: 650 663.
83. Maron, D. M.,, and B. N. Ames. 1983. Revised methods for the Salmonella mutagenicity test. Mutat. Res. 113: 173 215.
84. Mason, C. F. 1991. Biology of Freshwater Pollution. Longman Scientific and Technical, Harlow, Essex, U.K.
85. Masters, G. M. 1991. Introduction to Environmental Engineering and Science. Prentice-Hall Inc., Englewood Cliffs, N. J.
86. McFarland, B. L.,, D. J. Boron,, W. Deever,, J. A. Meyer,, A. R. Johnson,, and R. M. Atlas. 1998. Biocatalytic sulfur removal from fuels: applicability for producing low sulfur gasoline. Crit. Rev. Microbiol. 24: 99 147.
87. McLoughlin, S. Y.,, C. Jackson,, J.-W. Liu,, and D. L. Ollis. 2004. Growth of Escherichia coli coexpressing phosphotriesterase and glycerophosphodiester phosphodiesterase, using paraoxon as the sole phosphorus source. Appl. Environ. Microbiol. 70: 404 412.
88. Meckenstock, R. U.,, E. Annweiler,, W. Michaelis,, H. H. Richnow,, and B. Schink. 2000. Anaerobic naphthalene degradation by a sulfate-reducing enrichment culture. Appl. Environ. Microbiol. 66: 2743 2747.
89. Mishra, V.,, R. Lal,, and R. Srinivasan. 2001. Enzymes and operons mediating xenobiotic degradation in bacteria. Crit. Rev. Microbiol. 27: 133 166.
90. Mohn, W. M.,, and J. M. Tiedje. 1992. Microbial reductive dehalogenation. Microbiol. Rev. 56: 482 507.
91. Morgan, P. 1991. Biotechnology and Oil Spills. Shell Selected Papers Series PAC/233. Shell International Petroleum Corporation, London, United Kingdom.
92.MSI. 2002. Contaminated Land Treatment UK. MSI Data Report. MSI Marketing Research for Industry Ltd., Chester, United Kingdom. http:// www.marketresearch.com.
93. Munro, S.,, S. Wallace,, P. Kirby,, and P. Walker. 1995. Meeting the environmental challenge: managing our former gasworks sites. Land Contam. Reclam. 3: 4 5.
94. Neilson, A. 1990. A review: the biodegradation of halogenated organic compounds. J. Appl. Bacteriol. 69: 445 470.
95. Nirmalakhandan, N. N.,, and R. E. Spreece. 1988. Prediction of aqueous solubility of organic compounds based on molecular structure. Environ. Sci. Technol. 22: 328 338.
96. Oberg, G. 2002. The natural chlorine cycle— fitting the scattered pieces. Appl. Microbiol. Biotechnol. 58: 565 581.
97. Organization for Economic Cooperation and Development. 1998. Biotechnology for Clean Industrial Products and Processes: Towards Industrial Sustainability. Report of Ad hoc Task Force chaired by A. T. Bull. Organization for Economic Cooperation and Development, Paris, France. http://www.oecd.org.
98. Park, J. H.,, Y. C. Feng,, P. S. Ji,, T. C. Voice,, and S. A. Boyd. 2003. Assessment of bioavailability of soil-sorbed atrazine. Appl. Environ. Microbiol. 69: 3288 3298.
99. Paton, G. I.,, G. Palmer,, M. Burton,, E. A. S. Rattray,, S. P. McGrath,, L. A. Glover,, and K. Killham. 1997. Development of an acute and chronic ecotoxicity assay using lux-marked Rhizobium leguminosarum biovar trifolii. Lett. Appl. Microbiol. 24: 296 300.
100. Paulus, W. 1993. Microbicides for the Protection of Materials. Chapman and Hall, London, United Kingdom.
101. Perkins, E. J.,, M. P. Gordon,, O. Caceres,, and P. F. Lurquin. 1990. Organization and sequence analysis of the 2,4-dichlorophenol hydroxylase and dichlorocatechol oxidative operons of plasmid pJP4. J. Bacteriol. 172: 2351 2359.
102. Philp, J. C.,, C. French,, S. Wiles,, J. M. L. Bell,, A. S. Whiteley,, and M. J. Bailey,. 2004. Wastewater toxicity assessment by whole cell biosensor, p. 165 225. In D. Barceló (ed.), Handbook of Environmental Chemistry, vol. 5. Water Pollution: Emerging Organic Pollutants in Wastewaters. Springer Verlag, Berlin, Germany.
103. Pritchard, P. H.,, J. G. Mueller,, J. C. Rogers,, F. V. Kremer,, and J. A. Glaser. 1992. Oil spill bioremediation: experiences, lessons and results from the Exxon Valdez oil spill in Alaska. Biodegradation 3: 315 335.
104. Reid, B. J.,, K. C. Jones,, and K. T. Semple. 2000. Bioavailability of persistent organic pollutants in soils and sediments—a perspective on mechanisms, consequences and assessment. Environ. Poll. 108: 103 112.
105. Reid, B. J.,, K. C. Jones,, and K. T. Semple. 2000. Non-exhaustive cyclodextrin-based extraction technique for the evaluation of PAH bioavailability. Environ. Sci. Technol. 34: 3174 3179.
106. Rensing, C.,, and R. M. Maier. 2003. Issues underlying use of biosensors to measure metal bioavailability. Ecotoxicol. Environ. Safety 56: 140 147.
107. Rockne, K. J.,, J. C. Chee-Sandford,, R. Sanford,, B. P. Hedlund,, J. T. Staley,, and S. E. Strand. 2000. Anaerobic naphthalene degradation by microbial pure cultures under nitrate reducing conditions. Appl. Environ. Microbiol. 66: 1595 1601.
108. Rockne, K. J.,, and S. E. Strand. 2001. Anaerobic biodegradation of naphthalene, phenanthrene and biphenyl as a denitrifying enrichment culture. Water Res. 35: 291 299.
109. Ruby, M. V.,, A. Davis,, R. Schoof,, S. Eberle,, and C. M. Sellstone. 1996. Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environ. Sci. Technol. 30: 422 430.
110. Safe, S. 1989. Polychlorinated biphenyls (PCBs): mutagenicity and carcinogenicity. Mutat. Res. 220: 31 47.
111. Salanitro, J. P.,, L. A. Diaz,, M. P. Williams,, and H. L. Wisniewski. 1994. Isolation of a bacterial culture that degrades methyl t-butyl ether. Appl. Environ. Microbiol. 60: 2593 2596.
112. Salkinoja-Salonen, M. S.,, R. Hakulinen,, R. Valo,, and J. Apajalahti. 1983. Biodegradation of recalcitrant organochlorine compounds in fixed film reactors. Water Sci. Technol. 15: 309 319.
113. Scheibenbogen, K.,, R. G. Zytner,, H. Lee,, and J. T. Trevors. 1994. Enhanced removal of selected hydrocarbons from soil by Pseudomonas aeruginosa UG2 biosurfactants and some chemical surfactants. J. Chem. Technol. Biotechnol. 59: 53 59.
114. Schultz, T. W.,, and M. T. D. Cronin. 1997. Quantitative structure-activity relationships for weak acid respiratory uncouplers to Vibrio fischeri. Environ. Toxicol. Chem. 16: 357 360.
115. Sikkema, J.,, J. A. de Bont,, and B. Poolman. 1995. Mechanisms of membrane toxicity of hydrocarbons. Microbiol. Rev. 59: 201 222.
116. Siron, R.,, E. Pelletier,, and H. Brochu. 1995. Environmental factors influencing the biodegradation of petroleum hydrocarbons in cold seawater. Arch. Environ. Contam. Toxicol. 28: 406 416.
117. Slater, J. H.,, A. T. Bull,, and D. J. Hardman. 1995. Microbial dehalogenation. Biodegradation 6: 181 189.
118. Snoeyink, V. L.,, and D. Jenkins. 1980. Water Chemistry. John Wiley & Sons, New York, N.Y.
119. Spain, J. C. 1995. Degradation of nitroaromatic compounds. Annu. Rev. Microbiol. 49: 523 555.
120. Spiker, J. K.,, D. L. Crawford,, and R. L. Crawford. 1992. Influence of 2,4,6-trinitrotoluene (TNT)concentration on the degradation of TNT in explosive-contaminated soils by the white rot fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol. 58: 3199 3202.
121. Szejtli, J. 1982. Cyclodextrins and their inclusion complexes, p. 95 109. In Proceedings of the First International Symposium on Cyclodextrins, 30 September to 2 October, Akademiai Kiado, Budapest. D. Reidel Publishing, Dordrecht, The Netherlands.
122. Tanabe, S.,, H. Tanake,, and R. Tatsukawa. 1984. Polychlorobiphenyls, total DDT and hexachlorohexane isomers in the western North Pacific ecosystem. Arch. Environ. Contam. Tox. 13: 731 738.
123. Tao, S.,, L. Q. Guo,, X. J. Wang,, W. X. Liu,, T. Z. Ju,, R. Dawson,, J. Cao,, F. L. Xu,, and B. G. Li. 2004. Use of sequential ASE extraction to evaluate the bioavailability of DDT and its metabolites to wheat roots in soils with various organic carbon contents. Sci. Tot. Environ. 320: 1 9.
124. Terada, H. 1990. Uncouplers of oxidative phosphorylation. Environ. Health Perspec. 87: 213 218.
125. Tessier, A.,, P. G. C. Campbell,, and M. Bisson. 1979. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 51: 844 851.
126. Thomann, R. V.,, and J. A. Mueller. 1987. Principles of Surface Water Quality Modelling and Control. Harper & Row, New York, N.Y..
127.. Tiehm, A. 1994. Degradation of polycyclic aromatic hydrocarbons in the presence of synthetic surfactants. Appl. Environ. Microbiol. 60: 258 263.
128. Tiensing, T.,, S. Preston,, N. Strachan,, and G. I. Paton. 2001. Soil solution extraction techniques for microbial ecotoxicity testing: a comparative evaluation. J. Environ. Monit. 3: 91 96.
129. Timmis, K. N.,, R. J. Steffan,, and R. Unterman. 1994. Designing microorganisms for the treatment of toxic wastes. Annu. Rev. Microbiol. 48: 525 557.
130. Tuomela, M.,, M. Lyytikainen,, P. Oivanen,, and A. Hatakka. 1999. Mineralization and conversion of pentachlorophenol (PCP)in soil inoculated with the white-rot fungus Trametes versicolor. Soil Biol. Biochem. 31: 65 74.
131. Van Beilen, J. B.,, S. Panke,, S. Lucchini,, A. G. Franchini,, M. Rothlisberger,, and B. Witholt. 2001. Analysis of Pseudomonas putida alkane degradation gene clusters and flanking insertion sequences: evolution and regulation of the alk genes. Microbiology 147: 1621 1630.
132. van Beilen, J. B.,, M. G. Wubbolts,, and B. Witholt. 1994. Genetics of alkane oxidation by Pseudomonas oleovorans. Biodegradation 5: 161 174.
133. van der Meer, J. R.,, W. M. de Vos,, S. Harayama,, and A. J. B. Zehnder. 1992. Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiol. Rev. 56: 677 694.
134. Vogel, T. M.,, and P. L. McCarty. 1985. Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions. Appl. Environ. Microbiol. 49: 1080 1083.
135. Volkering, F.,, A. M. Breure,, A. Sterkenburg,, and J. G. van Andel. 1992. Microbial degradation of polycyclic aromatic hydrocarbons: effect of substrate availability on bacterial growth kinetics. Appl. Microbiol. Biotechnol. 36: 548 552.
136. Wackett, L. P.,, and C. D. Hershberger. 2001. Biocatalysis and Biodegradation: Microbial Transformation of Organic Compounds. ASM Press, Washington, D.C.
137. Watts, R. J. 1997. Hazardous Wastes: Sources, Pathways, Receptors. John Wiley and Sons Inc., New York, N.Y.
138. Whyte, L. G.,, J. Hawari,, E. Zhou,, L. Bourbonnie` re,, W. E. Inniss,, and C. W. Greer. 1998. Biodegradation of variable-chain-length alkanes at low temperatures by a psychrotrophic Rhodococcus sp. Appl. Environ. Microbiol. 64: 2578 2584.
139. Wild, S. R.,, A. J. Beck,, and K. C. Jones. 1995. Predicting the fate of non-ionic organic chemicals entering soils following sewage sludge application. Land Contam. Reclam. 3: 181 190.
140. Wilkes, H.,, R.-M. Wittich,, K. N. Timmis,, P. Fortnagel,, and W. Franke. 1996. Degradation of dibenzofurans and dibenzo- p-dioxins by Sphingomonas sp. strain RW1. Appl. Environ. Microbiol. 62: 361 371.
141.. Williams, P. A.,, and M. J. Worsey. 1976. Ubiquity of plasmids in coding for toluene and xylene metabolism in soil bacteria: evidence for the existence of new TOL plasmids. J. Bacteriol. 125: 818 828.
142. Wittich, R.-M.,, H. Wilkes,, V. Sinnwell,, W. Franke,, and P. Fortnagel. 1992. Metabolism of dibenzo- p-dioxin by Sphingomonas sp. strain RW1. Appl. Environ. Microbiol. 58: 1005 1010.
143. Wodzinski, R. S.,, and D. Bertolini. 1972. Physical state in which naphthalene and dibenzyl are utilised by bacteria. Appl. Microbiol. 23: 1077 1081.
144. Wuertz, S.,, and M. Mergeay,. 1997. The impact of heavy metals on soil microbial communities and their activities, p. 607 642. In J. D. van Elsas,, J. T. Trevors,, and E. M. H. Wellington (ed.), Modern Soil Microbiology. Marcel Dekker Inc., New York, N.Y.
145. Yalkowsky, S. H.,, and S. C. Valvani. 1979. Solubilities and partitioning. 2. Relationships between aqueous solubilities, partition coefficients and molecular surface areas of rigid aromatic hydrocarbons. J. Chem. Eng. Data 24: 127 129.
146. Young, P. J.,, S. Pollard,, and P. Crowcroft,. 1997. Overview: context, calculating risk and using consultants, p. 1 24. In R. E. Hester, and R. M. Harrison (ed.), Contaminated Land and Its Reclamation. Thomas Telford Publishing, London, United Kingdom.
147. Zhang, X.,, E. R. Sullivan,, and L. Y. Young. 2000. Evidence for aromatic ring reduction in the biodegradation pathway of carboxylated naphthalene by a sulphate-reducing consortium. Biodegradation 11: 117 124.
148. Zhang, Y.,, and R. M. Miller. 1992. Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Appl. Environ. Microbiol. 58: 3276 3282.
149. Zhang, Y.,, and R. M. Miller. 1995. Effect of rhamnolipid (biosurfactant)structure on solubilization and biodegradation of n-alkanes. Appl. Environ. Microbiol. 61: 2247 2251.

Tables

Generic image for table
TABLE 1.1

Categories of major industrial land uses and capacity for soil contamination

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Generic image for table
TABLE 1.2

World bioremediation markets 1994–2000

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Generic image for table
TABLE 1.3

Economics of bioremediation

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Generic image for table
TABLE 1.4

Typical costs of land remediation techniques

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Generic image for table
TABLE 1.5

Some effects of pollution and those affected

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Generic image for table
TABLE 1.6

Some toxic responses to common pollutants

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Generic image for table
TABLE 1.7

Suggested values of log K, log H and influencing the fate and behavior of organic pollutants in soils

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Generic image for table
TABLE 1.8

Increasing ring number and molecular weight of the PAHs decreases water solubility and increases hydrophobicity and half-life in soil, thereby increasing persistence

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Generic image for table
TABLE 1.9

Distribution between phases of some representative chemicals

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Generic image for table
Untitled

Solubility of oxygen in water

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error