1887

Chapter 1 : Environmental Pollution and Restoration: A Role for Bioremediation

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Environmental Pollution and Restoration: A Role for Bioremediation, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817596/9781555812393_Chap01-1.gif /docserver/preview/fulltext/10.1128/9781555817596/9781555812393_Chap01-2.gif

Abstract:

With greater understanding of microbial diversity and the development of bioengineering, bioremediation is taking its place as a cost-effective technique in integrated environmental restoration efforts. The major reasons for the control of water and soil pollution and the consideration of bioremediation are first and foremost, public health concerns; second, environmental conservation; and finally, the cost of decontamination. A major aim of bioremediation, or any other remediation technology, must be the reduction of toxicity associated with the environmental contaminant, that is, the abatement of environmental impact. Bioremediation solutions can be used to reduce the impacts of environmental persistence of contaminants and thus to alleviate problems associated with chronic toxicity. The broadest classification of environmental pollutants is into two categories: organic and inorganic. Quantitatively, the organic pollutants of most concern are the hydrocarbons in their various forms. The most common are petroleum hydrocarbons, chlorinated solvents, surfactants, biocides, and a host of other compounds specific to particular industries, e.g., nitroaromatics from munitions. Fortunately, many of these pollutants are biodegradable by microorganisms in soils and waters. The biodegradability of environmental pollutants, and hence the degree of persistence of contaminants in natural environments, is influenced by various factors, most important of which are the chemical structure of the contaminant, the presence of a viable microbial population able to degrade the contaminant(s), and environmental conditions suitable for microbial biodegradative activities.

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1

Key Concept Ranking

Organic Chemicals
0.67992616
Chemicals
0.50886
Natural Environment
0.43850565
Polycyclic Aromatic Hydrocarbons
0.43403783
0.67992616
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1.1
FIGURE 1.1

Cumulative dose-response curve in a lethality test. The typical curve is sigmoidal, and several important parameters can be derived from it. Probably the most widely used is the EC50.

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1.2
FIGURE 1.2

Fate of hydrophobic pollutants in soil, and the use of surfactants to try to improve desorption and bioavailability. With time, the pollutant becomes increasingly bound to the organic fraction of soil and is consequently more difficult to desorb; thus, it becomes less bioavailable and more difficult to biodegrade. Surfactants, including biosurfactants, may improve desorption and solubilization. There is strong evidence to suggest that biodegradation of such pollutants occurs in the aqueous phase.

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1.3
FIGURE 1.3

The oxygen sag curve showing decrease in oxygen concentration due to biodegradation of a pollutant in a waterway. As soon as a pollutant enters a river, it starts to deoxygenate water as a result of the biological oxygen demand it possesses. The two competing phenomena at play are the deoxygenation and the reaeration across the air-water interface. At some critical point downstream, the DO level reaches a minimum, after which the rate of reaeration exceeds the rate of deoxygenation, the DO starts to rise again, and the river recovers.

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1.4
FIGURE 1.4

Chemical studies of various representative hydrocarbons found in crude oil.

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1.5
FIGURE 1.5

Model for alkane metabolism in . (Top)Proposed location of various enzymes within the bacterial cell, along with the intermediates of -alkane metabolism. (Bottom)Corresponding genes and operon arrangement. TCA, tricarboxylic acid; CoA, coenzyme A.

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1.6
FIGURE 1.6

Structures of the BTEX group of compounds. The carbon atoms of the benzene molecule are numbered as an aid to the explanation of the nomenclature of aromatic compounds. For example, -xylene is 1,2-dimethyl benzene.

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1.7
FIGURE 1.7

Structures of some representative PAHs.

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1.8
FIGURE 1.8

Initial steps in naphthalene metabolism in spp. Enzymes (underlined) and genes (italic) are indicated.

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1.9
FIGURE 1.9

Structure of the fuel oxygenateMTBE.

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1.10
FIGURE 1.10

Structure of TCE.

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1.11
FIGURE 1.11

Biodegradation pathways for TCE. Adapted from the University of Minnesota website (http:// umbbd.ahc.umn.edu/tce/tce–image–map.html).

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1.12
FIGURE 1.12

Structures of two examples of chlorophenols: PCP and trichorophenol.

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1.13
FIGURE 1.13

Structures of some chloroaromatic biocides which vary greatly in their biodegradability.

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1.14
FIGURE 1.14

Structure of a triazole fungicide. Triazole fungicides exhibit their antifungal activity by inhibiting fungal ergosterol biosynthesis and are economically important agrochemicals since they have been widely used on crops such as wheat, barley, and orchard fruits.

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1.15
FIGURE 1.15

Structure of PCBs. The basic unit is shown to explain the nomenclature of PCBs.

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1.16
FIGURE 1.16

Structure of TNT. Many military testing grounds are contaminated with TNT. Human exposure leads to a range of clinical conditions: anemia and abnormal liver, spleen enlargement, other harmful effects on the immune system, and skin irritation. There is evidence that TNT adversely affects male fertility, and TNTis listed as a possible human carcinogen.

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1.17
FIGURE 1.17

Structure of TCDD, one of the most toxic compounds known. In January 2001, its status as a suspected human carcinogen was changed to that of a known human carcinogen, based on sufficient evidence from a combination of epidemiological and mechanistic studies that indicated a causal relationship between exposure to TCDD and human cancer.

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1.18
FIGURE 1.18

Branched pathway of PCDD microbial dechlorination. Dechlorination caused by activity of nonmethanogenic, non-spore-forming microbes (broad arrows) and intermediates found in trace concentrations ( ) (braces)are indicated.

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1.19
FIGURE 1.19

Metabolic pathway for the aerobic biodegradation of DD ( ).

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1.20
FIGURE 1.20

Metabolic pathway for the aerobic biodegradation of 1-CDD ( ). A and B, sites of attack by the initial dioxygenase.

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1.21
FIGURE 1.21

Gene organization for dioxin metabolism in sp. strain RW1. Six fragments of the RW1 genome which are probably involved in dibenzofuran and dioxin degradation are shown. Genes coding for the initial dioxin dioxygenase (boxed) are indicated.

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1.22
FIGURE 1.22

Chemical structures of ABSs. The potential of these chemicals as surfactants can be seen from the possession of both charged hydrophilic groups and long-chain lipophilic groups.

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1.23
FIGURE 1.23

Chemical structures of some common OPs. OPs are extremely toxic to humans, and some have had very widespread usage as pesticides.

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1.24
FIGURE 1.24

Flow of mercury through the ecosystem at Minamata ( ).

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1.25
FIGURE 1.25

Bacterial metabolism of hydrocarbons to central metabolites. The remarkable economy of bacteria is illustrated: a vast number of hydrocarbons are converted to just two key intermediates, catechol and protocatechuate. From this point, ring fission occurs, and by a relatively few short steps the ring fission products are converted to central metabolites. TCA, tricarboxylic acid; CoA, coenzyme A.

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1.26
FIGURE 1.26

Replica plates of 25 strains of copper-resistant bacteria. From right to left, the plates contain increasing concentrations of copper nitrate (0.0001, 1.0, and 5.0 mM). As the concentration increases, some more sensitive strains are inhibited. Colonies resistant to these high levels of copper were green-blue in the presence of copper but cream colored in the absence of copper.

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817596.chap1
1. Adriaens, P.,, and D. Grbic-Galic. 1994. Reductive dechlorination of PCDD/F by anaerobic cultures and sediments. Chemosphere 29: 22532259.
2. Adriaens, P.,, Q. Fu,, and D. Grbic-Galic. 1995. Bioavailability and transformation of highly chlorinated dibenzo-p-dioxins and dibenzofurans in anaerobic soils and sediments. Environ. Sci. Technol. 29:22522260.
3. Adriaens, P.,, P. R.-L. Chang,, and A. L. Barkovskii. 1996. Dechlorination of chlorinated PCDD/F by organic and inorganic electron transfer molecules in reduced environments. Chemosphere 32:433441.
4. Alexander, M. 1965. Biodegradation: problems of molecular recalcitrance and microbial fallibility. Adv. Appl. Microbiol. 7:3580.
5. Alexander, M. 2001. Biodegradation and Bioremediation, 2nd ed. Academic Press, San Diego, Calif.
6. Armengaud, J.,, B. Happe,, and K. N. Timmis. 1998. Genetic analysis of dioxin dioxygenase of Sphingomonas sp. strain RW1: catabolic genes dispersed on the genome. J. Bacteriol. 180:39543966.
7. Arthur, M. F.,, and J. I. Frea. 1987. Microbial activity in soils containing 2,3,7,8-tetrachlorodibenzo- p-dioxin. Environ. Toxicol. Chem. 7:513.
8. Atagana, H. I.,, R. J. Haynes,, and F. M. Wallis. 2003. Optimization of soil physical and chemical conditions for the bioremediation of creosote-contaminated soil. Biodegradation 14: 297307.
9. Atlas, R. M.,, and R. Bartha. 1997. Microbial Ecology: Fundamentals and Applications. Benjamin/ Cummings Science Publishing, Menlo Park, Calif.
10. Badr, T.,, K. Hanna,, and C. de Brauer. 2004. Enhanced solubilization and removal of naphthalene and phenanthrene by cyclodextrins from two contaminated soils. J. Hazard. Mater. 112: 215223.
11. Bagley, D. M.,, and J. M. Gossett. 1990. Tetrachloroethene transformation to trichloroethene and cis-1,2-dichloroethene by sulfate-reducing enrichment cultures. Appl. Environ. Microbiol. 56:25112516.
12. Barac, T.,, S. Taghavi,, B. Borremans,, A. Provoost,, L. Oeyen,, J. V. Colpaert,, J. Vangronsveld,, and D. van der Lelie. 2004. Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat. Biotechnol. 22:583588.
13. Barbaro, J. R.,, J. F. Barker,, L. A. Lemon,, and C. I. Mayfield. 1992. Biotransformation of BTEX under anaerobic, denitrifying conditions: field and laboratory observations. J. Contam. Hydrol. 11:245272.
14. Bardi, L.,, A. Mattei,, S. Steffan,, and M. Marzano. 2000. Hydrocarbon degradation by a soil microbial population with β-cyclodextrin as surfactant to enhance bioavailability. Enz. Microb. Technol. 27:709713.
15. Barkovskii, A. L.,, and P. Adriaens. 1996. Microbial dechlorination of historically present and freshly spiked chlorinated dioxins and diversity of dioxin-dechlorinating populations. Appl. Environ. Microbiol. 62:45564562.
16. Bartels, I.,, H.-J. Knackmuss,, and W. Reinecke. 1984. Suicide inactivation of catechol 2,3- dioxygenase from Pseudomonas MT-2 by 3-halocatechols. Appl. Environ. Microbiol. 47:500505.
17. Beeman, R. E.,, and C. A. Bleckmann. 2002. Sequential anaerobic-aerobic treatment of an aquifer contaminated by halogenated organics: field results. J. Contam. Hydrol. 57:147159.
18. Bej, A. K.,, D. Saul,, and J. Aislabie. 2000. Cold-tolerant alkane-degrading Rhodococcus species from Antarctica. Polar Biol. 23:100105.
19. Beller, H. R.,, A. M. Spormann,, P. K. Sharma,, J. R. Cole,, and M. Reinhard. 1996. Isolation and characterization of a novel toluenedegrading sulfate-reducing bacterium. Appl. Environ. Microbiol. 62:11881196.
20. Berthe-Corti, L.,, and S. Fetzner. 2002. Bac terial metabolism of n-alkanes and ammonia under oxic, suboxic and anoxic conditions. Acta Biotechnol. 22:299336.
21. Björklund, T., Nilsson,, S. Bøward,, K. Pilorz,, L. Mathiasson,, and S. B. Hawthorne. 2000. Introducing selective supercritical fluid extraction as a new tool for determining sorption/ desorption behavior and bioavailability of persistent organic pollutants in sediment. J. Biochem. Biophys. Methods 43:295311.
22. Bogan, B. W.,, B. Schoenike,, R. T. Lamar,, and D. Cullen. 1996. Expression of lip genes during growth in soil and oxidation of anthracene by Phanerochaete chrysosporium. Appl. Environ. Microbiol. 62:36973703.
23. Bollens, W. B.,, and L. A. Norris. 1979. Influence of 2,3,7,8-tetrachlorodibenzo-p-dioxin on respiration in a forest floor and soil. Bull. Environ. Contam. Toxicol. 62:648652.
24. Bouchez, M.,, D. Blanchet,, and J.-P. Vandecasteele. 1995. Substrate availability in phenanthrene biodegradation: transfer mechanism and influence on metabolism. Appl. Microbiol. Biotechnol. 43:952960.
25. Boyle, A. W.,, C. J. Silvin,, J. P. Hassett,, J. P. Nakas,, and S. W. Tanenbaum. 1992. Bacterial PCB degradation. Biodegradation 3: 285298.
26. Brandt, K. K.,, A. Pedersen,, and J. Sorensen. 2002. Solid-phase contact assay that uses a luxmarked Nitrosomonas europaea reporter strain to estimate toxicity of bioavailable linear alkylbenzene sulfonate in soil. Appl. Environ. Microbiol. 68:35023508.
27. Breedveld, G. D.,, and M. Sparrevik. 2000. Nutrient limited biodegradation of PAHs in various soil strata at a creosote contaminated site. Biodegradation 11:391399.
28. Budavari, S. (ed.). 1989. The Merck Index, 11th ed. Merck & Co., Inc., Rahway, N. J.
29. Cave, M.,, and J. Wragg. 2000. Measurement of heavy metals: bioavailability and distribution in contaminated soils. Earthwise 15:3233.
30. Cerniglia, C. E. 1984. Microbial degradation of polycyclic aromatic hydrocarbons. Adv. Appl. Microbiol. 30:3171.
31. Cerniglia, C. E.,, and J. B. Sutherland,. 2001. Bioremediation of polycyclic aromatic hydrocarbons, p. 136187. In G. M. Gadd (ed.), Fungi in Bioremediation. Cambridge University Press, Cambridge, United Kingdom.
32. Chiou, C. T.,, P. E. Porter,, and D. W. Schmeddling. 1983. Partition equilibria of nonionic organic compounds between soil and organic matter and water. Environ. Sci. Technol. 17:227231.
33. Chung, N.,, and M. Alexander. 2002. Effect of soil properties on bioavailability and extractability of phenanthrene and atrazine sequestered in soil. Chemosphere 48:109115.
34. Coates, J. D.,, R. T. Anderson,, and D. R. Lovley. 1996. Oxidation of polycyclic aromatic hydrocarbons under sulfate-reducing conditions. Appl. Environ. Microbiol. 62:10991101.
35. Coates, J. D.,, J. Woodward,, J. Allen,, P. Philp,, and D. R. Lovley. 1997. Anaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum-contaminated marine harbor sediments. Appl. Environ. Microbiol. 63: 35893593.
36. Connell, D. W.,, P. Lam,, B. Richardson,, and R. Wu. 1999>. Introduction to Ecotoxicology. Blackwell Science, Oxford, United Kingdom.
37. Cook, A. M.,, C. G. Daughton,, and M. Alexander. 1978. Phosphorus-containing pesticide breakdown products: quantitative utilization as phosphorus sources by bacteria. Appl. Environ. Microbiol. 36:668672.
38. Cookson, J. T., Jr. 1995. Bioremediation Engineering: Design and Application. McGraw-Hill, New York, N.Y.
39. Cronin, M. T. D.,, and J. C. Dearden. 1995. Review: QSAR in toxicology. 1. Prediction of aquatic toxicity. Quantit. Struct. Activ. Relat. 14: 17.
40. Cronin, M. T. D.,, and T. W. Schultz. 1997. Validation of Vibrio fischeri acute toxicity data: mechanism of action-based QSARs for nonpolar narcotics and polar narcotic phenols. Sci. Tot. Environ. 204:7588.
41. Cronin, M. T. D.,, and T. W. Schultz. 1998. Structure-toxicity relationships for three mechanisms of action of toxicity to Vibrio fischeri. Ecotoxicol. Environ. Safety 39:6569.
42. Cuypers, C.,, T. Pancras,, T. Grotenhuis,, and W. Rulkens. 2002. The estimation of PAH bioavailability in contaminated sediments using hydroxypropyl-cyclodextrin and Triton X-100 extraction techniques. Chemosphere 46: 12351245.
43. Davies, J. I.,, and W. C. Evans. 1964. Oxidative metabolism of naphthalene by soil pseudomonads: the ring fission mechanism. J. Biochem. 91:251261.
44. de Bont, J. A. M. 1998. Solvent-tolerant bacteria in biocatalysis. TIBTECH 16:493499.
45. Duffy, J. S.,, J. A. Del Pup,, and J. J. Kneiss. 1992. Toxicological evaluation of methyl tertiary butyl ether (MTBE): testing performed under TSCA consent agreement. J. Soil Contam. 1: 2937.
46. Ellis, D. 1989. Environments at Risk. Case Histories of Impact Assessment. Springer-Verlag, Heidelberg, Germany.
47. Evans, B. S.,, C. A. Dudley,, and K. T. Klasson. 1996. Sequential anaerobic-aerobic biodegradation of PCBs in soil slurry microcosms. Appl. Biochem. Biotechnol. 57-58:885894.
48. Eweis, J. B.,, S. J. Ergas,, D. P. Y. Chang,, and E. D. Schroeder. 1998. Bioremediation Principles. McGraw-Hill, Singapore, Singapore.
49. Fathepure, B. Z.,, and T. M. Vogel. 1991. Complete degradation of polychlorinated hydrocarbons by a two-stage biofilm reactor. Appl. Environ. Microbiol. 57:34183422.
50. Ferguson, C. C.,, D. Darmendrail,, K. Freier,, B. K. Jensen,, J. Jensen,, H. Kasamas,, A. Urzelai,, and J. Vegter (ed.). 1998. Risk Assessment for Contaminated Sites in Europe, vol. 1. Scientific Basis. LQM Press, Nottingham, United Kingdom.
51. Fogel, M. M.,, A. R. Taddeo,, and S. Fogel. 1986. Biodegradation of chlorinated ethanes by a methane-utilizing mixed culture. Appl. Environ. Microbiol. 51:720724.
52. Galli, R.,, and P. L. McCarty. 1989. Biotransformation of 1,1,1-trichloroethane, trichloromethane, and tetrachloromethane by a Clostridium sp. Appl. Environ. Microbiol. 55:837844.
53. Habe, H.,, and T. Omori. 2003. Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria. Biosci. Biotechnol. Biochem. 67:225243.
54. Habe, H.,, J. S. Chung,, J. H. Lee,, K. Kasuga,, T. Yoshida,, H. Nojiri,, and T. Omori. 2001. Degradation of chlorinated dibenzofurans and dibenzo-p-dioxins by two types of bacteria having angular dioxygenases with different features. Appl. Environ. Microbiol. 67:36103617.
55. Häggblom, M. M. 1992. Microbial breakdown of halogenated aromatic pesticides and related compounds. FEMS Microbiol. Rev. 103:2972.
56. Häggblom, M. M.,, and P. W. Milligan,. 2000. Anaerobic biodegradation of halogenated pesticides: influence of alternate electron acceptors, p. 134. In J. M. Bollag, and G. Stotzky (ed.), Soil Biochemistry. Marcel Dekker, New York, N.Y.
57. Halden, R. U.,, and D. F. Dwyer. 1997. Biodegradation of dioxins: a review. Biorem. J. 1: 1125.
58. Heath, J. S.,, K. Kobis,, and S. L. Sayer. 1993. Review of chemical, physical and toxicological properties of components of total petroleum hydrocarbons. J. Soil Contam. 2:221234.
59. Hemond, H. F.,, and E. J. Fechner-Levy. 2000. Chemical Fate and Transport in the Environment. Academic Press, San Diego, Calif.
60. Hoag, G. E.,, A. Dahmani,, F. Nadim,, C. S. Dulam,, and E. Quinn. 1998. Use of coal tar contaminated soil in road paving asphalt. Land Contam. Reclam. 6:91103.
61. Holliger, C.,, and A. J. B. Zehnder. 1996. Anaerobic biodegradation of hydrocarbons. Curr. Opin. Biotechnol. 7:326330.
62. Horne, I.,, T. D. Sutherland,, R. L. Harcourt,, R. J. Russell,, and J. G. Oakeshott. 2002. Identification of an opd (organophosphate degradation)gene in an Agrobacterium isolate. Appl. Environ. Microbiol. 68:33713376.
63. Hund-Rinke, K.,, and W. Kördel. 2003. Underlying issues in bioaccessibility and bioavailability: experimental methods. Ecotoxicol. Environ. Safety 56:5262.
64. Irwin, R. S.,, M. van Mouwerkle,, L. Stevens,, M. D. Seese,, and W. Basham. 1997. Environmental Contaminants Encyclopedia. Water Resource Division, National Park Service, Fort Collins, Colo. http://www1.nature.nps.gov.
65. Jain, D. K.,, H. Lee,, and J. T. Trevors. 1992. Effect of addition of Pseudomonas aeruginosa UG2 inocula or biosurfactants on biodegradation of selected hydrocarbons in soil. J. Ind. Microbiol. 10:8793.
66. Jannasch, H. W. 1967. Growth of marine bacteria at limiting concentrations of organic carbon in seawater. Limnol. Oceanogr. 12:264271.
67. Junker, F.,, and J. I. Ramos. 1999. Involvement of the cis/trans isomerase Cti in solvent resistance of Pseudomonas putida DOT-TIE. J. Bacteriol. 181:56935700.
68. Kantachote, D.,, I. Singleton,, R. Naidu,, N. C. McClure,, and M. Mallaravapu. 2004. Sodium application enhances DDT transformation in a long-term contaminated soil. Water Air Soil Pollut. 154:115125.
69. Kao, C. M.,, Y. L. Chen,, S. C. Chen,, T. Y. Chen,, W. S. Yeh,, and W. S. Wu. 2003. Enhanced PCE dechlorination by biobarrier systems under different redox conditions. Water Res. 37:48854894.
70. Kao, C. M.,, S. C. Chen,, J. K. Liu,, and M. J. Wu. 2001. Evaluation of TCDD biodegradability under different redox conditions. Chemosphere 44:14471454.
71. Kasuga, K.,, H. Nojiri,, H. Yamane,, and T. Omori. 1997. Genes of enzymes involved in the biodegradation of carbazole, dibenzofuran, fluorene, and dibenzo-p-dioxin by bacteria. Water Sci. Technol. 36:916.
72. Knackmuss, H.-J. 1992>. Potentials and limitations of microbes to degrade xenobiotics, p. 39.In Proceedings of the International Symposium on Soil Decontamination Using Biological Processes, 6 to 9 December, Karlsruhe, Germany.
73. Langenhoff, A. A. M.,, D. L. Brouwers- Ceiler,, J. H. L. Engelberting,, J. J. Quist,, J. G. P. N. Wolkenfelt,, A. J. B. Zehnder,, and G. Schraa. 1997. Microbial reduction of manganese coupled to toluene oxidation. FEMS Microbiol. Ecol. 22:119127.
74. Lanno, R.,, J. Wells,, J. Conder,, K. Bradham,, and N. Basta. 2004. The bioavailability of chemicals in soil for earthworms. Ecotoxicol. Environ. Safety 57:3947.
75. Lau, K. L.,, Y. Y. Tsang,, and S. W. Chiu. 2003. Use of spent mushroom compost to bioremediate PAH-contaminated samples. Chemosphere 52:15391546.
76. Little, C. D.,, A. V. Palumbo,, and S. E. Herbes. 1988. Trichloroethylene biodegradation by a methane-oxidizing bacterium. Appl. Environ. Microbiol. 54:951956.
77. Liu, Z.,, A. M. Jacobson,, and R. G. Luthy. 1995. Biodegradation of naphthalene in aqueous nonionic surfactant systems. Appl. Environ. Microbiol. 61:145151.
78. Loehr, R. C.,, and M. T. Webster,. 1997. Effects of treatment on contaminant availability, mobility, and toxicity, p. 137386. In D. G. Linz, and D. V. Nakles (ed.), Environmentally Acceptable Endpoints in Soil. American Academy of Environmental Engineers, Annapolis, Md.
79. Madsen, E. L. 2003. Report on Bioavailability of Chemical Wastes with Respect to the Potential for Soil Bioremediation. U.S. Environmental Protection Agency report EPA/600/R-03/076. U.S. Environmental Protection Agency, Washington, D.C.
80. Maier, R., 2000. Bioavailability and its importance to bioremediation, p. 5978. In J. J. Valdes (ed.), International Society for Environmental Biotechnology: Environmental Monitoring and Biodiagnostics. Kluwer, Dordrecht, The Netherlands.
81. Manahan, S. E. 1994. Environmental Chemistry, 6th ed. Lewis Publishers, Boca Raton, Fla.
82. Margesin, R.,, and F. Schinner. 2001. Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl. Microbiol. Biotechnol. 56:650663.
83. Maron, D. M.,, and B. N. Ames. 1983. Revised methods for the Salmonella mutagenicity test. Mutat. Res. 113:173215.
84. Mason, C. F. 1991. Biology of Freshwater Pollution. Longman Scientific and Technical, Harlow, Essex, U.K.
85. Masters, G. M. 1991. Introduction to Environmental Engineering and Science. Prentice-Hall Inc., Englewood Cliffs, N. J.
86. McFarland, B. L.,, D. J. Boron,, W. Deever,, J. A. Meyer,, A. R. Johnson,, and R. M. Atlas. 1998. Biocatalytic sulfur removal from fuels: applicability for producing low sulfur gasoline. Crit. Rev. Microbiol. 24:99147.
87. McLoughlin, S. Y.,, C. Jackson,, J.-W. Liu,, and D. L. Ollis. 2004. Growth of Escherichia coli coexpressing phosphotriesterase and glycerophosphodiester phosphodiesterase, using paraoxon as the sole phosphorus source. Appl. Environ. Microbiol. 70:404412.
88. Meckenstock, R. U.,, E. Annweiler,, W. Michaelis,, H. H. Richnow,, and B. Schink. 2000. Anaerobic naphthalene degradation by a sulfate-reducing enrichment culture. Appl. Environ. Microbiol. 66:27432747.
89. Mishra, V.,, R. Lal,, and R. Srinivasan. 2001. Enzymes and operons mediating xenobiotic degradation in bacteria. Crit. Rev. Microbiol. 27: 133166.
90. Mohn, W. M.,, and J. M. Tiedje. 1992. Microbial reductive dehalogenation. Microbiol. Rev. 56: 482507.
91. Morgan, P. 1991. Biotechnology and Oil Spills. Shell Selected Papers Series PAC/233. Shell International Petroleum Corporation, London, United Kingdom.
92.MSI. 2002. Contaminated Land Treatment UK. MSI Data Report. MSI Marketing Research for Industry Ltd., Chester, United Kingdom. http:// www.marketresearch.com.
93. Munro, S.,, S. Wallace,, P. Kirby,, and P. Walker. 1995. Meeting the environmental challenge: managing our former gasworks sites. Land Contam. Reclam. 3:45.
94. Neilson, A. 1990. A review: the biodegradation of halogenated organic compounds. J. Appl. Bacteriol. 69:445470.
95. Nirmalakhandan, N. N.,, and R. E. Spreece. 1988. Prediction of aqueous solubility of organic compounds based on molecular structure. Environ. Sci. Technol. 22:328338.
96. Oberg, G. 2002. The natural chlorine cycle— fitting the scattered pieces. Appl. Microbiol. Biotechnol. 58:565581.
97.Organization for Economic Cooperation and Development. 1998. Biotechnology for Clean Industrial Products and Processes: Towards Industrial Sustainability. Report of Ad hoc Task Force chaired by A. T. Bull. Organization for Economic Cooperation and Development, Paris, France. http://www.oecd.org.
98. Park, J. H.,, Y. C. Feng,, P. S. Ji,, T. C. Voice,, and S. A. Boyd. 2003. Assessment of bioavailability of soil-sorbed atrazine. Appl. Environ. Microbiol. 69:32883298.
99. Paton, G. I.,, G. Palmer,, M. Burton,, E. A. S. Rattray,, S. P. McGrath,, L. A. Glover,, and K. Killham. 1997. Development of an acute and chronic ecotoxicity assay using lux-marked Rhizobium leguminosarum biovar trifolii. Lett. Appl. Microbiol. 24:296300.
100. Paulus, W. 1993. Microbicides for the Protection of Materials. Chapman and Hall, London, United Kingdom.
101. Perkins, E. J.,, M. P. Gordon,, O. Caceres,, and P. F. Lurquin. 1990. Organization and sequence analysis of the 2,4-dichlorophenol hydroxylase and dichlorocatechol oxidative operons of plasmid pJP4. J. Bacteriol. 172:23512359.
102. Philp, J. C.,, C. French,, S. Wiles,, J. M. L. Bell,, A. S. Whiteley,, and M. J. Bailey,. 2004. Wastewater toxicity assessment by whole cell biosensor, p. 165225. In D. Barceló (ed.), Handbook of Environmental Chemistry, vol. 5. Water Pollution: Emerging Organic Pollutants in Wastewaters. Springer Verlag, Berlin, Germany.
103. Pritchard, P. H.,, J. G. Mueller,, J. C. Rogers,, F. V. Kremer,, and J. A. Glaser. 1992. Oil spill bioremediation: experiences, lessons and results from the Exxon Valdez oil spill in Alaska. Biodegradation 3:315335.
104. Reid, B. J.,, K. C. Jones,, and K. T. Semple. 2000. Bioavailability of persistent organic pollutants in soils and sediments—a perspective on mechanisms, consequences and assessment. Environ. Poll. 108:103112.
105. Reid, B. J.,, K. C. Jones,, and K. T. Semple. 2000. Non-exhaustive cyclodextrin-based extraction technique for the evaluation of PAH bioavailability. Environ. Sci. Technol. 34: 31743179.
106. Rensing, C.,, and R. M. Maier. 2003. Issues underlying use of biosensors to measure metal bioavailability. Ecotoxicol. Environ. Safety 56: 140147.
107. Rockne, K. J.,, J. C. Chee-Sandford,, R. Sanford,, B. P. Hedlund,, J. T. Staley,, and S. E. Strand. 2000. Anaerobic naphthalene degradation by microbial pure cultures under nitrate reducing conditions. Appl. Environ. Microbiol. 66: 15951601.
108. Rockne, K. J.,, and S. E. Strand. 2001. Anaerobic biodegradation of naphthalene, phenanthrene and biphenyl as a denitrifying enrichment culture. Water Res. 35:291299.
109. Ruby, M. V.,, A. Davis,, R. Schoof,, S. Eberle,, and C. M. Sellstone. 1996. Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environ. Sci. Technol. 30:422430.
110. Safe, S. 1989. Polychlorinated biphenyls (PCBs): mutagenicity and carcinogenicity. Mutat. Res. 220:3147.
111. Salanitro, J. P.,, L. A. Diaz,, M. P. Williams,, and H. L. Wisniewski. 1994. Isolation of a bacterial culture that degrades methyl t-butyl ether. Appl. Environ. Microbiol. 60:25932596.
112. Salkinoja-Salonen, M. S.,, R. Hakulinen,, R. Valo,, and J. Apajalahti. 1983. Biodegradation of recalcitrant organochlorine compounds in fixed film reactors. Water Sci. Technol. 15:309319.
113. Scheibenbogen, K.,, R. G. Zytner,, H. Lee,, and J. T. Trevors. 1994. Enhanced removal of selected hydrocarbons from soil by Pseudomonas aeruginosa UG2 biosurfactants and some chemical surfactants. J. Chem. Technol. Biotechnol. 59:5359.
114. Schultz, T. W.,, and M. T. D. Cronin. 1997. Quantitative structure-activity relationships for weak acid respiratory uncouplers to Vibrio fischeri. Environ. Toxicol. Chem. 16:357360.
115. Sikkema, J.,, J. A. de Bont,, and B. Poolman. 1995. Mechanisms of membrane toxicity of hydrocarbons. Microbiol. Rev. 59:201222.
116. Siron, R.,, E. Pelletier,, and H. Brochu. 1995. Environmental factors influencing the biodegradation of petroleum hydrocarbons in cold seawater. Arch. Environ. Contam. Toxicol. 28:406416.
117. Slater, J. H.,, A. T. Bull,, and D. J. Hardman. 1995. Microbial dehalogenation. Biodegradation 6:181189.
118. Snoeyink, V. L.,, and D. Jenkins. 1980. Water Chemistry. John Wiley & Sons, New York, N.Y.
119. Spain, J. C. 1995. Degradation of nitroaromatic compounds. Annu. Rev. Microbiol. 49:523555.
120. Spiker, J. K.,, D. L. Crawford,, and R. L. Crawford. 1992. Influence of 2,4,6-trinitrotoluene (TNT)concentration on the degradation of TNT in explosive-contaminated soils by the white rot fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol. 58:31993202.
121. Szejtli, J. 1982. Cyclodextrins and their inclusion complexes, p. 95109. In Proceedings of the First International Symposium on Cyclodextrins, 30 September to 2 October, Akademiai Kiado, Budapest. D. Reidel Publishing, Dordrecht, The Netherlands.
122. Tanabe, S.,, H. Tanake,, and R. Tatsukawa. 1984. Polychlorobiphenyls, total DDT and hexachlorohexane isomers in the western North Pacific ecosystem. Arch. Environ. Contam. Tox. 13: 731738.
123. Tao, S.,, L. Q. Guo,, X. J. Wang,, W. X. Liu,, T. Z. Ju,, R. Dawson,, J. Cao,, F. L. Xu,, and B. G. Li. 2004. Use of sequential ASE extraction to evaluate the bioavailability of DDT and its metabolites to wheat roots in soils with various organic carbon contents. Sci. Tot. Environ. 320: 19.
124. Terada, H. 1990. Uncouplers of oxidative phosphorylation. Environ. Health Perspec. 87: 213218.
125. Tessier, A.,, P. G. C. Campbell,, and M. Bisson. 1979. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 51:844851.
126. Thomann, R. V.,, and J. A. Mueller. 1987. Principles of Surface Water Quality Modelling and Control.Harper & Row, New York, N.Y..
127.. Tiehm, A. 1994. Degradation of polycyclic aromatic hydrocarbons in the presence of synthetic surfactants. Appl. Environ. Microbiol. 60:258263.
128. Tiensing, T.,, S. Preston,, N. Strachan,, and G. I. Paton. 2001. Soil solution extraction techniques for microbial ecotoxicity testing: a comparative evaluation. J. Environ. Monit. 3:9196.
129. Timmis, K. N.,, R. J. Steffan,, and R. Unterman. 1994. Designing microorganisms for the treatment of toxic wastes. Annu. Rev. Microbiol. 48:525557.
130. Tuomela, M.,, M. Lyytikainen,, P. Oivanen,, and A. Hatakka. 1999. Mineralization and conversion of pentachlorophenol (PCP)in soil inoculated with the white-rot fungus Trametes versicolor. Soil Biol. Biochem. 31:6574.
131. Van Beilen, J. B.,, S. Panke,, S. Lucchini,, A. G. Franchini,, M. Rothlisberger,, and B. Witholt. 2001. Analysis of Pseudomonas putida alkane degradation gene clusters and flanking insertion sequences: evolution and regulation of the alk genes. Microbiology 147:16211630.
132. van Beilen, J. B.,, M. G. Wubbolts,, and B. Witholt. 1994. Genetics of alkane oxidation by Pseudomonas oleovorans. Biodegradation 5: 161174.
133. van der Meer, J. R.,, W. M. de Vos,, S. Harayama,, and A. J. B. Zehnder. 1992. Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiol. Rev. 56:677694.
134. Vogel, T. M.,, and P. L. McCarty. 1985. Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions. Appl. Environ. Microbiol. 49:10801083.
135. Volkering, F.,, A. M. Breure,, A. Sterkenburg,, and J. G. van Andel. 1992. Microbial degradation of polycyclic aromatic hydrocarbons: effect of substrate availability on bacterial growth kinetics. Appl. Microbiol. Biotechnol. 36: 548552.
136. Wackett, L. P.,, and C. D. Hershberger. 2001. Biocatalysis and Biodegradation: Microbial Transformation of Organic Compounds. ASM Press, Washington, D.C.
137. Watts, R. J. 1997. Hazardous Wastes: Sources, Pathways, Receptors. John Wiley and Sons Inc., New York, N.Y.
138. Whyte, L. G.,, J. Hawari,, E. Zhou,, L. Bourbonnie` re,, W. E. Inniss,, and C. W. Greer. 1998. Biodegradation of variable-chain-length alkanes at low temperatures by a psychrotrophic Rhodococcus sp. Appl. Environ. Microbiol. 64: 25782584.
139. Wild, S. R.,, A. J. Beck,, and K. C. Jones. 1995. Predicting the fate of non-ionic organic chemicals entering soils following sewage sludge application. Land Contam. Reclam. 3:181190.
140. Wilkes, H.,, R.-M. Wittich,, K. N. Timmis,, P. Fortnagel,, and W. Franke. 1996. Degradation of dibenzofurans and dibenzo-p-dioxins by Sphingomonas sp. strain RW1. Appl. Environ. Microbiol. 62:361371.
141.. Williams, P. A.,, and M. J. Worsey. 1976. Ubiquity of plasmids in coding for toluene and xylene metabolism in soil bacteria: evidence for the existence of new TOL plasmids. J. Bacteriol. 125:818828.
142. Wittich, R.-M.,, H. Wilkes,, V. Sinnwell,, W. Franke,, and P. Fortnagel. 1992. Metabolism of dibenzo-p-dioxin by Sphingomonas sp. strain RW1. Appl. Environ. Microbiol. 58:10051010.
143. Wodzinski, R. S.,, and D. Bertolini. 1972. Physical state in which naphthalene and dibenzyl are utilised by bacteria. Appl. Microbiol. 23: 10771081.
144. Wuertz, S.,, and M. Mergeay,. 1997. The impact of heavy metals on soil microbial communities and their activities, p. 607642. In J. D. van Elsas,, J. T. Trevors,, and E. M. H. Wellington (ed.), Modern Soil Microbiology. Marcel Dekker Inc., New York, N.Y.
145. Yalkowsky, S. H.,, and S. C. Valvani. 1979. Solubilities and partitioning. 2. Relationships between aqueous solubilities, partition coefficients and molecular surface areas of rigid aromatic hydrocarbons. J. Chem. Eng. Data 24: 127129.
146. Young, P. J.,, S. Pollard,, and P. Crowcroft,. 1997. Overview: context, calculating risk and using consultants, p. 124. In R. E. Hester, and R. M. Harrison (ed.), Contaminated Land and Its Reclamation. Thomas Telford Publishing, London, United Kingdom.
147. Zhang, X.,, E. R. Sullivan,, and L. Y. Young. 2000. Evidence for aromatic ring reduction in the biodegradation pathway of carboxylated naphthalene by a sulphate-reducing consortium. Biodegradation 11:117124.
148. Zhang, Y.,, and R. M. Miller. 1992. Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Appl. Environ. Microbiol. 58: 32763282.
149. Zhang, Y.,, and R. M. Miller. 1995. Effect of rhamnolipid (biosurfactant)structure on solubilization and biodegradation of n-alkanes. Appl. Environ. Microbiol. 61:22472251.

Tables

Generic image for table
TABLE 1.1

Categories of major industrial land uses and capacity for soil contamination

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Generic image for table
TABLE 1.2

World bioremediation markets 1994–2000

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Generic image for table
TABLE 1.3

Economics of bioremediation

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Generic image for table
TABLE 1.4

Typical costs of land remediation techniques

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Generic image for table
TABLE 1.5

Some effects of pollution and those affected

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Generic image for table
TABLE 1.6

Some toxic responses to common pollutants

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Generic image for table
TABLE 1.7

Suggested values of log K, log H and influencing the fate and behavior of organic pollutants in soils

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Generic image for table
TABLE 1.8

Increasing ring number and molecular weight of the PAHs decreases water solubility and increases hydrophobicity and half-life in soil, thereby increasing persistence

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Generic image for table
TABLE 1.9

Distribution between phases of some representative chemicals

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1
Generic image for table
Untitled

Solubility of oxygen in water

Citation: Philp J, Bamforth S, Singleton I, Atlas R. 2005. Environmental Pollution and Restoration: A Role for Bioremediation, p 1-48. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch1

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error