1887

Chapter 5 : Bioremediation of Contaminated Soils and Aquifers

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Bioremediation of Contaminated Soils and Aquifers, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817596/9781555812393_Chap05-1.gif /docserver/preview/fulltext/10.1128/9781555817596/9781555812393_Chap05-2.gif

Abstract:

This chapter provides a review of the various in situ and ex situ bioremediation technologies and the situations to which they are applicable. As many as 2 billion people rely directly on aquifers for drinking water, and 40% of the world’s food is produced by irrigated agriculture that relies largely on groundwater. Two technologies - biopiles and windrow composting - currently dominate the ex situ bioremediation market for treatment of contaminated soils. Permeable reactive barriers (PRBs) have traditionally been designed as chemical and physical intervention techniques, with incidental biodegradation taking place, and it is only recently that deliberately turning PRBs into bioremediation technology has arisen. Even materials such as garden waste provide extra microbial communities, even though that is not the primary function in the bioremediation, which is normally to provide heat-generating materials during composting. A variety of genetically modified organism (GMO) that have been designed for bioremediation are still at the laboratory or early field test stage, but there is optimism that in the future, GMOs will be used for bioremediation, targeting most recalcitrant pollutants in inhospitable environments at relatively low cost. Delivery of bioaugmentation cultures in an immobilized form may offer more complete and/or more rapid degradation. The longer-term success of bioremediation may well depend upon developing in situ treatments that can greatly accelerate the rates of degradation of contaminants, especially in groundwater, in a predictable and cost-effective manner.

Citation: Philp J, Atlas R. 2005. Bioremediation of Contaminated Soils and Aquifers, p 139-236. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch5

Key Concept Ranking

Microbial Ecology
0.41522282
Restriction Fragment Length Polymorphism
0.40655652
0.41522282
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 5.1
FIGURE 5.1

Calculation of volume of a biopile. After the work of von Fahnestock et al. ( ). = 1/6( + 4 + ), where is the volume of the pile (in cubic meters), is pile height (meters), is the area of the lower base (square meters), is the area of the upper base (square meters), and is the area of the biopile midsection (square meters).

= ( + 2)( + 2) + + 2 + 2 + 4 .

= .

= [1 + 2(/2)] × [ + 2(/2)] = + + + .

= 1/6( + 2 × 2 + 4 + 4 + 4 + 4 + 4 + ).

= 1/6(6 + 6 + 6 + 8 ).

= ( + + + 1.33 ).

tan θ = / ?? = /tan θ.

An angle θ of 50 to 60θ gives an approximate slope (/) of 1.2 to 1.75.

Citation: Philp J, Atlas R. 2005. Bioremediation of Contaminated Soils and Aquifers, p 139-236. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5.2
FIGURE 5.2

Elements of a biopile. After the work of Kodres ( ). (A) Schematic. (B) Detailed diagram.

Citation: Philp J, Atlas R. 2005. Bioremediation of Contaminated Soils and Aquifers, p 139-236. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5.3
FIGURE 5.3

Photograph of a biopile base showing its preparation. Courtesy of WSP Remediation Ltd., Cardiff, United Kingdom.

Citation: Philp J, Atlas R. 2005. Bioremediation of Contaminated Soils and Aquifers, p 139-236. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5.4
FIGURE 5.4

Photograph of a biopile slotted pipe (plastic pipe, 4-in. diameter).

Citation: Philp J, Atlas R. 2005. Bioremediation of Contaminated Soils and Aquifers, p 139-236. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5.5
FIGURE 5.5

Photograph of a typical blower for full-scale biopile operations. Courtesy of WSP Remediation Ltd.

Citation: Philp J, Atlas R. 2005. Bioremediation of Contaminated Soils and Aquifers, p 139-236. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5.6
FIGURE 5.6

Photograph of a fleece roller. A self-propelled windrow turner can be seen in the background. Courtesy of Shanks Waste Management Ltd., United Kingdom.

Citation: Philp J, Atlas R. 2005. Bioremediation of Contaminated Soils and Aquifers, p 139-236. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5.7
FIGURE 5.7

Photograph of soil screening and addition of wood chips (the lighter material in the soil heap) and bioaugmentation culture (contained in the 1-m3 Intermediate Bulk Container), which is being applied by spray at the top of the soil grader.

Citation: Philp J, Atlas R. 2005. Bioremediation of Contaminated Soils and Aquifers, p 139-236. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5.8
FIGURE 5.8

Photograph of a Knight Reel Auggie for soil mixing and distribution. Courtesy of Kuhn Knight.

Citation: Philp J, Atlas R. 2005. Bioremediation of Contaminated Soils and Aquifers, p 139-236. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5.9
FIGURE 5.9

Photograph of an ALLU bucket. It is fitted with rotating drums with blades, and also crushing bars, so that it can be used to grade soil containing materials such as brick. Courtesy of WSP Remediation Ltd.

Citation: Philp J, Atlas R. 2005. Bioremediation of Contaminated Soils and Aquifers, p 139-236. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5.10
FIGURE 5.10

Calculating volume of a windrow. Volume of windrow = 1/2 × × . If the mass of contaminated soil and its density are known, the total volume of material, including the bulk materials such as organic compost and bulking agents, can be calculated. Knowing the width of the site, and the space between windrows, the number of windrows of set width can be calculated.

Citation: Philp J, Atlas R. 2005. Bioremediation of Contaminated Soils and Aquifers, p 139-236. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5.11
FIGURE 5.11

Photograph of an ALLU bucket being used as a windrow turner. Courtesy of WSP Remediation Ltd. Its adaptability to different machinery and its low cost make it a flexible alternative to windrow turners, although slower.

Citation: Philp J, Atlas R. 2005. Bioremediation of Contaminated Soils and Aquifers, p 139-236. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5.12
FIGURE 5.12

Photograph of a tractor-driven windrow turner. Courtesy of Environmental Reclamation Services Ltd., Glasgow, Scotland, United Kingdom.

Citation: Philp J, Atlas R. 2005. Bioremediation of Contaminated Soils and Aquifers, p 139-236. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of BOX FIGURE 5.2.1
BOX FIGURE 5.2.1

Hydrocarbon contamination at the site. Dark squares are areas of highest contamination.

Citation: Philp J, Atlas R. 2005. Bioremediation of Contaminated Soils and Aquifers, p 139-236. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of BOX FIGURE 5.2.2
BOX FIGURE 5.2.2

Field measurements on windrows. Courtesy of WSP Remediation Ltd., Cardiff, Wales, United Kingdom.

Citation: Philp J, Atlas R. 2005. Bioremediation of Contaminated Soils and Aquifers, p 139-236. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of BOX FIGURE 5.2.3
BOX FIGURE 5.2.3

Three-sample series from windrow 11, showing progress of TPH removal during the bioremediation phase of the contract.

Citation: Philp J, Atlas R. 2005. Bioremediation of Contaminated Soils and Aquifers, p 139-236. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5.13
FIGURE 5.13

Photograph of experimental landfarm plots at an oil sludge storage facility, Perm, Russia. The left half of the plot has been sown with common Russian grasses. One plot has been treated with biofertilizer (top), and the other is an untreated control plot (bottom). After Kuyukina et al. ( ).

Citation: Philp J, Atlas R. 2005. Bioremediation of Contaminated Soils and Aquifers, p 139-236. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5.14
FIGURE 5.14

Diagram showing a landfarm schematic (not to scale).

Citation: Philp J, Atlas R. 2005. Bioremediation of Contaminated Soils and Aquifers, p 139-236. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5.15
FIGURE 5.15

Landfarming oil refinery sludges. A disc harrow (top) and a tined tiller (bottom) are being used. Despite proven success in varied climates over several decades, there are concerns over this practice.

Citation: Philp J, Atlas R. 2005. Bioremediation of Contaminated Soils and Aquifers, p 139-236. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of BOX FIGURE 5.3.1
BOX FIGURE 5.3.1

Photograph showing disastrous oil contamination in Kuwait as a result of the Gulf War that resulted in the formation of hundreds of square kilometers of oil lakes.

Citation: Philp J, Atlas R. 2005. Bioremediation of Contaminated Soils and Aquifers, p 139-236. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5.16
FIGURE 5.16

Soil slurry reactor.

Citation: Philp J, Atlas R. 2005. Bioremediation of Contaminated Soils and Aquifers, p 139-236. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5.17
FIGURE 5.17

Ex situ source control projects at Superfund sites. Data are adapted from the work of the U.S. EPA ( ). (A) 1982 to 2002. (B) 2000 to 2002.

Citation: Philp J, Atlas R. 2005. Bioremediation of Contaminated Soils and Aquifers, p 139-236. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5.18
FIGURE 5.18

In situ source control at Superfund sites. Data are adapted from work of the U.S. EPA ( ). (A) 1982 to 2002. (B) 2000 to 2002.

Citation: Philp J, Atlas R. 2005. Bioremediation of Contaminated Soils and Aquifers, p 139-236. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5.19
FIGURE 5.19

Bioventing schematic. After the work of Cookson ( ).

Citation: Philp J, Atlas R. 2005. Bioremediation of Contaminated Soils and Aquifers, p 139-236. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5.20
FIGURE 5.20

Vent well spacing, based on radius of influence.

Citation: Philp J, Atlas R. 2005. Bioremediation of Contaminated Soils and Aquifers, p 139-236. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5.21
FIGURE 5.21

Bioventing well design. After work of the U.S. EPA ( ).

Citation: Philp J, Atlas R. 2005. Bioremediation of Contaminated Soils and Aquifers, p 139-236. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5.22
FIGURE 5.22

Biosparging schematic. After the work of Cookson ( ).

Citation: Philp J, Atlas R. 2005. Bioremediation of Contaminated Soils and Aquifers, p 139-236. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5.23
FIGURE 5.23

Biosparging well design. After work of the U.S. EPA ( ).

Citation: Philp J, Atlas R. 2005. Bioremediation of Contaminated Soils and Aquifers, p 139-236. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5.24
FIGURE 5.24

PRB schematic.

Citation: Philp J, Atlas R. 2005. Bioremediation of Contaminated Soils and Aquifers, p 139-236. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of BOX FIGURE 5.4.1
BOX FIGURE 5.4.1

Site and design drawings of the engineered bioreactive barrier for project SEREBAR at a former coal gasification site in the United Kingdom, combining abiotic and anaerobic biotransformation, aerobic biotransformation and abiotic sorption stages showing conceptual reactor design. Reprinted from the work of Kalin ( ) with permission from Elsevier.

Citation: Philp J, Atlas R. 2005. Bioremediation of Contaminated Soils and Aquifers, p 139-236. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of BOX FIGURE 5.4.2
BOX FIGURE 5.4.2

Photograph of SEREBAR at active site of remediation. Courtesy of Second Site Property Holdings.

Citation: Philp J, Atlas R. 2005. Bioremediation of Contaminated Soils and Aquifers, p 139-236. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5.25
FIGURE 5.25

Bioslurping dual drop tube. After the work of Place et al. ( ).

Citation: Philp J, Atlas R. 2005. Bioremediation of Contaminated Soils and Aquifers, p 139-236. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5.26
FIGURE 5.26

MNA decision support flowchart. After work of the U.S. EPA ( ).

Citation: Philp J, Atlas R. 2005. Bioremediation of Contaminated Soils and Aquifers, p 139-236. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5.27
FIGURE 5.27

Typical serial enrichment procedure for bioaugmentation.

Citation: Philp J, Atlas R. 2005. Bioremediation of Contaminated Soils and Aquifers, p 139-236. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5.28
FIGURE 5.28

Food web relationships in a percolating filter. After the work of Wheatley ( ). Practitioners should remember that adding microorganisms in a bioremediation project is very different from a chemical addition. It has the potential to shift the balance in the food web, so that simply adding more might make more problems, rather than solve any.

Citation: Philp J, Atlas R. 2005. Bioremediation of Contaminated Soils and Aquifers, p 139-236. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5.29
FIGURE 5.29

Solvent efflux pump schematic. The diagram shows how toluene might be transported out of the gram-negative cell by membrane- and periplasm-spanning proteins.

Citation: Philp J, Atlas R. 2005. Bioremediation of Contaminated Soils and Aquifers, p 139-236. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5.30
FIGURE 5.30

Scanning electron micrograph of bacteria emerging from bulges in a PVA immobilization gel. Such evidence suggests that it should be possible to manufacture engineered slow-release bioaugmentation.

Citation: Philp J, Atlas R. 2005. Bioremediation of Contaminated Soils and Aquifers, p 139-236. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5.31
FIGURE 5.31

A trehalose glycolipid from . After the work of Philp et al. ( ). The trehalose imparts the hydrophilic group, and the longchain fatty acids impart the hydrophobic group.

Citation: Philp J, Atlas R. 2005. Bioremediation of Contaminated Soils and Aquifers, p 139-236. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5.32
FIGURE 5.32

Influence of biosurfactants on alkane metabolism. After the work of Hommel ( ).

Citation: Philp J, Atlas R. 2005. Bioremediation of Contaminated Soils and Aquifers, p 139-236. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5.33
FIGURE 5.33

Positively charged metals may be released from soils by binding to negatively charged head groups in anionic (bio)surfactants.

Citation: Philp J, Atlas R. 2005. Bioremediation of Contaminated Soils and Aquifers, p 139-236. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5.34
FIGURE 5.34

The cyclodextrin molecule. Courtesy of Brian Reid, University of East Anglia, East Anglia, United Kingdom.

Citation: Philp J, Atlas R. 2005. Bioremediation of Contaminated Soils and Aquifers, p 139-236. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817596.chap5
1. Abalos, A.,, A. Pinaso,, M. R. Infante,, M. Casals,, F. Garcia,, and A. Manresa. 2001. Physicochemical and antimicrobial properties of new rhamnolipids by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir 17:13671371.
2. Abramowicz, D. A. 1990. Aerobic and anaerobic biodegradation of PCBs. Crit. Rev. Biotechnol. 10:241251.
3. Abramowicz, D. A.,, M. J. Brennan,, H. M. Van Dort,, and E. L. Gallagher. 1993. Factors influencing the rate of polychlorinated biphenyl dechlorination in Hudson River sediments. Environ. Sci. Technol. 27:11251131.
4. Adams, J. A.,, and K. R. Reddy. 2003. Extent of benzene biodegradation in saturated soil column during air sparging. Groundwater Monitor. Remed. 23:8594.
5. Aggarwal, P. K.,, J. L. Means,, and R. E. Hinchee,. 1991. Formulation of nutrient solutions for in situ bioremediation, p. 51-66. In R. E. Hinchee, and R. F. Olfenbuttel (ed.), In Situ Bioreclamation. Applications and Investigations for Hydrocarbon and Contaminated Site Remediation. Butterworth-Heinemann, Stoneham, Mass.
6. Aislabie, J. M.,, M. McLeod,, and R. Fraser. 1998. Potential for biodegradation of hydrocarbons in soil from Ross Dependency, Antarctica. Appl. Microbiol. Biotechnol. 49:210214.
7. Aislabie, J. M.,, M. R. Balks,, J. M. Foght,, and E. J. Waterhouse. 2004. Hydrocarbon spills on Antarctic soils: effects and management. Environ. Sci. Technol. 38:12651274.
8. Aislabie, J. M.,, R. Fraser,, S. Duncan,, and R. L. Farrell. 2001. Effects of oil spills on microbial heterotrophs in Antarctic soils. Polar Biol. 24: 308313.
9. Al-Awadhi, N.,, R. Al-Daher,, A. ElNawawy,, and M. T. Balba. 1996. Bioremediation of oil-contaminated soil in Kuwait. I. Landfarming to remediate oil-contaminated soil. J. Soil Contam. 5:243260.
10. Alexander, M. 1999. Biodegradation and Bioremediation, 2nd ed. Academic Press, San Diego, Calif.
11. Alfke, G.,, G. Bunch,, G. Crociani,, D. Dando,, M. Fontaine,, P. Goodsell,, A. Green,, W. Hafker,, G. Isaak,, J. Marvillet,, B. Poot,, H. Sutherland,, A. van der Rest,, J. van Ouden hoven,, T. Walden,, E. Martin,, and H. Schipper. 1999. Best Available Techniques to Reduce Emissions from Refineries—Introduction. CONCAWE 99/01-1. [Online.] CONCAWE, Brussels, Belgium. http://aaa.am.lt/naudinga.
12. Amann, R.,, H. Lemmer,, and M. Wagner. 1998. Monitoring the community structure of wastewater treatment plants: a comparison of old and new techniques. FEMS Microbiol. Ecol. 25: 205215.
13.American Petroleum Institute. 1983. Land Treatment Practice in the Petroleum Industry. Report prepared by Environmental Research and Technology Inc., Washington, D.C.
14. Amos, R. T.,, K. U. Mayer,, D. W. Blowes,, and C. J. Ptacek. 2004. Reactive transport modelling of column experiments for the remediation of acid mine drainage. Environ. Sci. Technol. 38:31313138.
15. Anderson, R. T.,, and D. R. Lovley. 1997. Ecology and biogeochemistry of in situ groundwater bioremediation. Adv. Microb. Ecol. 15: 289350.
16. Anderson, R. T.,, J. N. Rooney-Varga,, C. V. Gaw,, and D. R. Lovley. 1998. Anaerobic benzene oxidation in the Fe(III) reduction zone of petroleum-contaminated aquifers. Environ. Sci. Technol. 32:12221229.
17. Andreoni, V.,, G. Baggi,, M. Colombo,, L. Cavalca,, M. Zangrossi,, and S. Bernasconi. 1998. Degradation of 2,4,6-trichlorophenol by a specialised organism and by indigenous soil microflora: bioaugmentation and self- remediability for soil restoration. Lett. Appl. Microbiol. 27: 8692.
18.Anonymous. 2000. Science offers glowing microbes to detect explosives at Edwards. [Online.] http://www.edwards.af.mil.
19.Anonymous. 2001. TNT-munching microbes get makeover at Edwards. [Online.] http:// www.edwards.af.mil.
20.Anonymous. 2004. Helping nature to clean up the Niger Delta. Impact. 1:15. [Online.] http:// www.shellglobalsolutions.com/impact.
21. Antizar-Ladislao, B.,, J. M. Lopez-Real,, and A. J. Beck. 2004. Bioremediation of polycyclic aromatic hydrocarbons (PAH)-contaminated waste using composting approaches. Crit. Rev. Environ. Sci. Technol. 34:249289.
22. Atagana, H. I.,, R. J. Haynes,, and F. M. Wallis. 2003. Co-composting of soil heavily contaminated with creosote with cattle manure and vegetable waste for the bioremediation of creosotecontaminated soil. Soil Sed. Contam. 12: 885899.
23. Atlas, R. M. 1995. Bioremediation. Chem. Eng. News 73:3242.
24. Atlas, R. M.,, and R. Bartha. 1972. Degradation and mineralization of petroleum in seawater: limitation by nitrogen and phosphorus. Biotech. Bioeng. 52:149156.
25. Avakian, M. D. 2004. Quantifying Enhanced In Situ TCE Biodegradation. Research Brief 109. [Online.] NIEHS/EPA Superfund Basic Research Program. http://www-apps.niehs.nih.gov.
26. Azadpour-Keeley, A.,, J. W. Keeley,, H. H. Russell,, and G. W. Sewell. 2001. Monitored natural attenuation of contaminants in the subsurface: processes. Groundwater Monitor. Remed. 21:97107.
27. Azadpour-Keeley, A.,, J. W. Keeley,, H. H. Russell,, and G. W. Sewell. 2001. Monitored natural attenuation of contaminants in the subsurface: applications. Groundwater Monitor. Remed. 21:136143.
28. Badr, T.,, K. Hanna,, and C. de Brauer. Enhanced solubilization and removal of naphthalene and phenanthrene by cyclodextrins from two contaminated soils. J. Haz. Mat., in press.
29. Bai, G.,, M. L. Brusseau,, and R. M. Miller. 1997. Biosurfactant enhanced removal of residual hydrocarbon from soil. J. Contam. Hydrol. 25: 157170.
30. Bai, G.,, M. L. Brusseau,, and R. M. Miller. 1997. Influence of rhamnolipid biosurfactant on the transport of bacteria through a sandy soil. Appl. Environ. Microbiol. 63:18661873.
31. Balba, M. T.,, R. Al-Daher,, and N. Al- Awadhi. 1998. Bioremediation of oil-contami nated desert soil: the Kuwaiti experience. Environ. Int. 24:163173.
32. Barbaro, J. R.,, J. F. Barker,, L. A. Lemon,, and C. I. Mayfield. 1992. Biotransformation of BTEX under anaerobic, denitrifying conditions: field and laboratory observations. J. Contam. Hydrol. 11:245272.
33. Barbeau, C.,, L. Deschenes,, D. Karamenev,, Y. Comeau,, and R. Samson. 1997. Bioremediation of pentachlorophenol-contaminated soil by bioaugmentation using activated soil. Appl. Microbiol. Biotechnol. 48:745752.
34. Bardi, L.,, A. Mattei,, S. Steffan,, and M. Marzano. 2000. Hydrocarbon degradation by a soil microbial population with β-cyclodextrin as surfactant to enhance bioavailability. Enzyme Microb. Technol. 27:709713.
35.Battelle Memorial Institute. 1994. Bioremediation of Hazardous Wastes at CERCLA and RCRA Sites: Hill AFB 280 Site, Low Intensity Bioreclamation. U.S. Environmental Protection Agency, Washington, D.C.
36. Bekins, B. A.,, B. E. Rittmann,, and J. A. MacDonald. 2001. Natural attenuation strategy for groundwater cleanup focuses on demonstrating cause and effect. Eos Trans. AGU 82(5):53:57-53:58. [Online.] http://toxics.usgs.gov.
37. Benner, S. G.,, D. W. Blowes,, J. C. Ptacek,, and K. U. Mayer. 2002. Rates of sulfate reduction and metal sulfide precipitation in a permeable reactive barrier. Appl. Geochem. 17: 301320.
38. Benner, S. G.,, D. W. Blowes,, W. D. Gould,, R. B. Herbert, Jr.,, and J. C. Ptacek. 1999. Geochemistry of a permeable reactive barrier for metals and acid mine drainage. Environ. Sci. Technol. 33:27932799.
39. Berwanger, D. J.,, and J. F. Barker. 1988. Aerobic biodegradation of aromatic and chlorinated hydrocarbons commonly detected in landfill leachate. Water Pollut. Res. J. Can. 23: 460475.
40. Birke, V.,, H. Burmeier,, and D. Rosenau. 2003. Permeable reactive barrier technologies for groundwater remediation in Germany: recent progress and new developments. Fresenius Environ. Bull. 12:623628.
41. Blumenroth, P.,, and I. Wagner-Dobler. 1998. Survival of inoculants in polluted sediments: effect of strain origin and carbon source competition. Microb. Ecol. 35:279288.
42. Bollati, A.,, and C. Luzi,. 1997. Appendix 3, p. 167185. In P. Lecomte, and C. Mariotti (ed.), Handbook of Diagnostic Procedures for Petroleum-Contaminated Sites. John Wiley and Sons Ltd., Chichester, United Kingdom.
43. Bosma, T.,, J. Damborsky,, G. Stucki,, D. Janssen,, and B. Dick. 2002. Biodegradation of 1,2,3-trichloropropane through directed evolution and heterologous expression of a haloalkane dehalogenase gene. Appl. Environ. Microbiol. 68: 35823587.
44. Bouchez, T.,, D. Patureau,, P. Dabert,, S. Juretschko,, J. Doré,, P. Delgenès,, R. Moletta,, and M. Wagner. 2000. Ecological study of a bioaugmentation failure. Environ. Microbiol. 2:179190.
45. Boufadel, M. C.,, P. Reeser,, M. T. Suidan,, B. A. Wrenn,, J. Cheng,, X. Du,, T. H. L. Huang,, and A. D. Venosa. 1999. Optimal nitrate concentration for the biodegradation of nheptadecane in a variably-saturated sand column. Environ. Technol. 20:191199.
46. Boving, T. B.,, X. Wang,, and M. L. Brusseau. 2000. Solubilization and removal of residual trichloroethene from porous media: comparison of several solubilization agents. J. Contam. Hydrol. 42:5167.
47. Breitung, J.,, D. Bruns-Nagel,, K. Steinbach,, L. Kaminski,, D. Gemsa,, and E. von Löw. 1996. Bioremediation of 2,4,6-trinitrotoluenecontaminated soils by two different aerated compost systems. Appl. Microbiol. Biotechnol. 44: 795800.
48. Briglia, M.,, P. J. M. Middeldorp,, and M. S. Salkinoja-Salonen. 1994. Mineralization performance of Rhodococcus chlorophenolicus strain PCP-1 in contaminated soil simulating conditions. Soil Biol. Biochem. 26:377385.
49. Brim, H.,, A. Venkateswaran,, H. M. Kostandarithes,, J. K. Fredrickson,, and M. J. Daly. 2003. Engineering Deinococcus geothermalis for bioremediation of high-temperature radioactive waste environments. Appl. Environ. Microbiol. 69:45754582.
50. Brim, H.,, S. C. McFarlan,, J. K. Fredrickson,, K. W. Minton,, M. Zhai,, L. P. Wackett,, and M. J. Daly. 2000. Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments. Nature Biotechnol. 18: 8590.
51. Brown, R. A.,, and J. Crosbie. 1989. Oxygen sources in in situ bioremediation. In Proceedings of the 10th National Conference, HMCRI, Washington, D.C.
52. Brown, R. A.,, R. D. Norris,, and R. L. Raymond. 1984. Oxygen transport in contaminated aquifers, p. 441450. In Proceedings of the Conference on Petroleum Hydrocarbons and Organic Chemicals in Groundwater—Prevention, Detection and Restoration. National Water Well Association, Worthington, Ohio.
53. Bruce, C. L.,, I. L. Amerson,, R. L. Johnson,, and P. C. Johnson. 2001. Use of an SF6-based diagnostic tool for assessing air distributions and oxygen transfer rates during IAS operation. Bioremed. J. 5:337347.
54. Bruns, A.,, H. Cypionka,, and J. Overmann. 2002. Cyclic AMP and acyl homoserine lactones increase the cultivation efficiency of heterotrophic bacteria from the central Baltic Sea. Appl. Environ. Microbiol. 68:39783987.
55. Burns, K. A.,, S. Codi,, and N. C. Duke. 2000. Gladstone, Australia field studies: weathering and degradation of hydrocarbons in oiled mangrove and salt marsh sediments with and without the application of an experimental bioremediation protocol. Mar. Pollut. Bull. 41: 392402.
56. Bury, S. J.,, and C. A. Miller. 1993. Effect of micellar solubilization on biodegradation rates of hydrocarbons. Environ. Sci. Technol. 27: 104110.
57. Cameotra, S. S.,, and R. S. Makkar. 2004. Recent applications of biosurfactants as biological and immunological molecules. Curr. Opin. Microbiol. 7:262266.
58. Campagnolo, J. F.,, and A. Akgerman. 1995. Modeling of soil vapor extraction (SVE) systems. Part II. Biodegradation aspects of soil vapor extraction. Waste Manage. 15:391397.
59. Cantrell, K. J.,, D. I. Kaplan,, and T. W. Wietsma. 1995. Zero-valent iron for the in situ remediation of selected metals in groundwater. J. Haz. Mat. 42:201212.
60. Carey, M. A.,, B. A. Fretwell,, N. G. Mosley,, and J. W. N. Smith. 2002. Guidance on the Use of Permeable Reactive Barriers for Remediating Contaminated Groundwater. National Groundwater and Contaminated Land Centre Report NC/01/ 51. Environment Agency, Bristol, United Kingdom.
61. Cassidy, M. B.,, H. Lee,, and J. T. Trevors. 1996. Environmental applications of immobilized microbial cells: a review. J. Ind. Microbiol. 16:79101.
62. Chakrabarty, A. M. March 1981. Microorganisms having multiple compatible degradative energy-generating plasmids and preparation thereof. U.S. patent 4,259,444.
63. Chakrabarty, A. M., 1998. Diamond v. Chakrabarty: a historical perspective. In D. S. Chisum,, C. A. Nard,, H. F. Schwartz,, P. Newman,, and S. F. Kief (ed.), Principles of Patent Law. Foundation Press, New York, N.Y.
64. Chakrabarty, A. M., 2000. Moving ahead with pseudomonad genes, p. 235242. In R. M. Atlas (ed.), Many Faces, Many Microbes. ASM Press, Washington, D.C.
65. Civilini, M. 1994. Fate of creosote compounds during composting. Microbiol. Eur. 2:1624.
66. Clement, T. P.,, M. J. Truex,, and P. Lee. 2002. A case study for demonstrating the application of U.S. EPA’s monitored natural attenuation screening protocol at a hazardous waste site. J. Contam. Hydrol. 59:133162.
67. Clint, J. H. 1992. Surfactant Aggregation. Blackie and Son Ltd., Glasgow, United Kingdom.
68. Cookson, J. T., Jr. 1995. Bioremediation Engineering: Design and Application. McGraw-Hill, New York, N. Y.
69. Corman, A.,, Y. Crozat,, and J. C. Cleyet- Marel. 1987. Modelling of survival kinetics of some Bradyrhizobium japonicum strains in soils. Biol. Fertil. Soils 4:7984.
70. Crawford, R. L.,, and W. W. Mohn. 1985. Microbiological removal of pentachlorophenol from soil using a Flavobacterium. Enzyme Microb. Technol. 7:617620.
71. Cunningham, A.,, and R. Hiebert. 2000. Subsurface biofilm barriers for contaminated groundwater containment, p. 34. In Ground Water Currents. EPA 542-N-00-004. U.S. Environmental Protection Agency, Washington, D.C.
72. Cunningham, C. J.,, and J. C. Philp. 2000. Comparison of bioaugmentation and biostimulation in ex situ treatment of diesel contaminated soil. Land Contam. Reclam. 8:261269.
73. Cunningham, C. J.,, I. B. Ivshina,, V. I. Lozinsky,, M. S. Kuyukina,, and J. C. Philp. 2004. Bioremediation of diesel-contaminated soil by microorganisms immobilised in a polyvinyl alcohol. Int. Biodeterior. Biodegrad. 54:167174.
74. Cunningham, J. A.,, H. Rahme,, G. D. Hopkins,, C. Lebron,, and M. Reinhard. 2001. Enhanced in situ bioremediation of BTEX-contaminated groundwater by combined injection of nitrate and sulfate. Environ. Sci. Technol. 35: 16631670.
75. Curtis, T. P.,, W. T. Sloan,, and J. W. Scannell. 2002. Estimating prokaryotic diversity and its limits. Proc. Natl. Acad. Sci. USA 99: 1049410499.
76. Daane, L. L.,, and M. M. Häggblom. 1999. Earthworm egg capsules as vectors for the environmental introduction of biodegradative bacteria. Appl. Environ. Microbiol. 65:23762381.
77. Dando, D. A.,, and D. E. Martin. 2003. A Guide for Reduction and Disposal of Waste from Oil Refineries and Marketing Installations. CONCAWE 6/03. [Online.] CONCAWE, Brussels, Belgium. http://aaa.am.lt/naudinga.
78. Dasch, J. M.,, A. S. Abdul,, D. N. Rai,, T. L. Gibson,, and N. Grosvenor. 1997. Synergistic application of four remedial techniques at an industrial site. Groundwater Monitor. Remed. 17: 194209.
79. DaSilva, M. L.,, and P. J. Alvarez. 2004. Enhanced anaerobic biodegradation of benzenetoluene- ethylbenzene-xylene-ethanol mixtures in bioaugmented aquifer columns. Appl. Environ. Microbiol. 70:47204726.
80. Day, S. R.,, S. F. O’Hannesin,, and L. Marsden. 1999. Geotechnical techniques for the construction of reactive barriers. J. Haz. Mat. B67: 285297.
81. Dejonghe, W.,, N. Boon,, D. Seghers,, E. M. Top,, and W. Verstraete. 2001. Bioaugmentation of soils by increasing microbial richness: missing links. Environ. Microbiol. 3:649657.
82. de Lorenzo, V. 2001. Cleaning up polluted environments: how microbes can help. In European Commission-Sponsored Research on Safety of Genetically Modified Organisms—A Review of Results: Bioremediation. [Online.] http://europa.eu.int.
83. Demque, D. E.,, K. W. Biggar,, and J. A. Heroux. 1997. Land treatment of diesel contaminated soil. C. Geotech. J. 34:421431.
84. DePaoli, D. W. 1996. Design equations for soil aeration via bioventing. Separations Technol. 6: 165174.
85. Dernbach, L. S., 1999. Failure of non-indigenous micro-organisms to remediate petroleum hydrocarbon contaminated sites, p. 415420. In B. C. Alleman, and A. Leeson (ed.), In Situ Bioremediation of Petroleum Hydrocarbons and Other Organic Compounds. Battelle Press, Columbus, Ohio.
86. Devlin, J. F.,, D. Katic,, and J. F. Barker. 2004. In situ sequenced bioremediation of mixed contaminants in groundwater. J. Contam. Hydrol. 69:233261.
87. Diele, F.,, F. Notarnicola,, and I. Sgura. 2002. Uniform air velocity field for a bioventing system design: some numerical results. Int. J. Eng. Sci. 40:11991210.
88. Downey, D. C.,, P. R. Guest,, and J. W. Ratz. 1995. Results of a two-year in situ bioventing demonstration. Environ. Prog. 14: 121125.
89. Drinkwine, A. D. 2001. Remediation of TCE contaminated ground water using methane injection to enhance cometabolism demonstration project at the Hastings former naval ammunition depot. [Online.] http://hq.environmental .usace.army.mil.
90. Dua, M.,, A. Singh,, N. Sethunathan,, and A. K. Johri. 2002. Biotechnology and bioremediation: successes and failures. Appl. Microbiol. Biotechnol. 59:143152.
91. Dunbar, J.,, S. White,, and L. Forney. 1997. Genetic diversity through the looking glass: effect of enrichment bias. Appl. Environ. Microbiol. 63:13261331.
92. Dupont, R. R. 1993. Fundamentals of bioventing applied to fuel contaminated sites. Environ. Prog. 12:4553.
93. Dutta, S. K.,, G. P. Hollowell,, F. M. Hashem,, and L. D. Kuykendall. 2003. Enhanced bioremediation of soil containing 2,4-dinitrotoluene by a genetically modified Sinorhizobium meliloti. Soil Biol. Biochem. 35:667675.
94. Edgehill, R. U.,, and R. K. Finn. 1983. Microbial treatment of soil to remove pentachlorophenol. Appl. Environ. Microbiol. 45:11221125.
95. Eggen, T. 1999. Application of fungal substrate from commercial mushroom production—Pleuorotus ostreatus—for bioremediation of creosote contaminated soil. Int. Biodeterior. Biodegrad. 44: 117126.
96. Fehmidakhatun, A.,, A. Mesania,, and A. A. Jennings. 2000. Modeling soil biopile bioremediation. Environ. Modelling Software 15: 411424.
97. Fernandez-Sanchez, J. M.,, E. J. Sawvel,, and P. J. J. Alvarez. 2004. Effect of Fe0 quantity on the efficiency of integrated microbial-Fe0 treatment processes. Chemosphere 54:823829.
98. Filler, D. M.,, and R. F. Carlson. 2000. Thermal insulation systems for bioremediation in cold regions. J. Cold Regions Eng. 14:119129.
99. Filz, G. M.,, M. A. Widdowson,, and J. C. Little. 2001. Barrier-controlled monitored natural attenuation. Environ. Sci. Technol. 35: 32253230.
100. Fogel, M. M.,, A. R. Taddeo,, and S. Fogel. 1986. Biodegradation of chlorinated ethanes by a methane-utilizing mixed culture. Appl. Environ. Microbiol. 51:720724.
101. Ford, C. Z.,, G. S. Sayler,, and R. S. Burlage. 1999. Containment of a genetically engineered microorganism during a field bioremediation application. Appl. Microbiol. Biotechnol. 51: 397400.
102. Fukui, S.,, and A. Tanaka. 1982. Immobilised microbial cells. Annu. Rev. Microbiol. 36: 145172.
103. Fuller, C. C.,, J. R. Bargar,, and J. A. Davis. 2003. Molecular-scale characterization of uranium sorption by bone apatite materials for a permeable reactive barrier demonstration. Environ. Sci. Technol. 37:46424649.
104. Futamata, H.,, S. Harayama,, and K. Watanabe. 2001. Group-specific monitoring of phenol hydroxylase genes for a functional assessment of phenol-stimulated trichloroethylene bioremediation. Appl. Environ. Microbiol. 67: 46714677.
105. Gallardo, V. 2000. Enhanced in situ bioremediation demonstrated in fractured bedrock. EPA Groundwater Curr. 38:23.
106. Gandhi, S.,, B. T. Oh,, J. L. Schnoor,, and P. J. J. Alvarez. 2002. Degradation of TCE, Cr(VI), sulfate, and nitrate mixtures by granular iron in flow-through columns under different microbial conditions. Water Res. 36:19731982.
107. Geerdink, M. J.,, R. H. Kleijntjens,, M. C. M. van Loosdrecht,, and K. C. A. M. Luyben. 1996. Microbial decontamination of polluted soil in a slurry process. J. Environ. Eng. ASCE 122:975982.
108. Gentry, T. J.,, K. L. Josephson,, and I. L. Pepper. 2004. Functional establishment of introduced chlorobenzoate degraders following bioaugmentation with newly activated soil. Biodegradation 15:6775.
109. Gieg, L. M.,, R. V. Kolhatkar,, M. J. McInerney,, R. S. Tanner,, S. H. Harris, Jr.,, K. L. Sublette,, and J. M. Suflita. 1999. Intrinsic bioremediation of petroleum hydrocarbons in a gas condensate-contaminated aquifer. Environ. Sci. Technol. 33:25502560.
110. Goddard, V. J.,, M. J. Bailey,, P. Darrah,, A. K. Lilley,, and I. P. Thompson. 2001. Monitoring temporal and spatial variation in rhizosphere bacterial population diversity: a community approach for the improved selection of rhizosphere competent bacteria. Plant Soil 232: 181193.
111. Goldstein, R. M.,, L. M. Mallory,, and M. Alexander. 1985. Reasons for possible failure of inoculation to enhance biodegradation. Appl. Environ. Microbiol. 50:977983.
112. Grasso, D. 1993. Hazardous Waste Site Remediation. Source Control. CRC Press, Boca Raton, Fla.
113. Grasso, D.,, K. Subramaniam,, J. J. Pignatello,, Y. Yang,, and D. Ratte. 2001. Micellar desorption of polynuclear aromatic hydrocarbons from contaminated soil. Colloids Surf. A Physicochem. Eng. Aspects 194:6574.
114. Gray, N. F. 2004. Biology of Wastewater Treatment, 2nd ed. Imperial College Press, London, United Kingdom.
115. Gray, S. N. 1998. Fungi as potential bioremediation agents in soil contaminated with heavy or radioactive metals. Biochem. Soc. Trans. 26: 666670.
116. Gu, B. H.,, D. B. Watson,, L. Y. Wu,, D. H. Phillips,, D. C. White,, and J. Z. Zhou. 2002. Microbiological characteristics in a zero-valent iron reactive barrier. Environ. Monitor. Assess. 77: 293309.
117. Gu, M. B.,, and S. T. Chang. 2001. Soil biosensor for the detection of PAH toxicity using an immobilized recombinant bacterium and a biosurfactant. Biosens. Bioelectron. 16:667674.
118. Guerin, T. F. 2001. Co-composting of pharmaceutical wastes in soil. Lett. Appl. Microbiol. 33: 256263.
119. Guerin, T. F. 2001. Co-composting of residual fuel contamination in soil. Soil Sed. Contam. 10: 659673.
120. Haas, J. E.,, and D. A. Trego. 2001. A field application of hydrogen-releasing compound (HRC (TM)) for the enhanced bioremediation of methyl tertiary butyl ether (MTBE). Soil Sed. Contam. 10:555575.
121. Haferburg, D.,, R. K. Hommel,, R. Claus,, and H. P. Kleber. 1986. Extracellular microbial lipids as biosurfactants. Adv. Biochem. Eng. Biotechnol. 33:5393.
122. Hageman, K. J.,, J. Istok,, J. A. Field,, T. E. Buscheck,, and L. Semprini. 2001. In situ anaerobic transformation of trichlorofluoroethene in trichloroethene-contaminated groundwater. Environ. Sci. Technol. 35:17291735.
123. Hammer, M. J.,, and M. J. Hammer, Jr. 1996. Water and Wastewater Technology, 3rd ed. Prentice-Hall, Englewood Cliffs, N. J.
124. Harkness, M. R.,, J. B. McDermott,, D. A. Aramowicz,, J. J. Salvo,, W. P. Flanagan,, M. L. Stephens,, F. J. Mondello,, R. J. May,, J. H. Lobos,, K. M. Carroll,, M. J. Brennan,, A. A. Bracco,, K. M. Fish,, G. L. Warner,, P. R. Wilson,, D. K. Dietrich,, D. T. Lin,, C. B. Morgan,, and W. L. Gately. 1993. In situ stimulation of aerobic PCB biodegradation in Hudson River sediments. Science 259:503507.
125. Heath, J.,, and E. Lory. 1999. In situ bioremediation of methyl tertiary butyl ether (MTBE)- advanced fuel hydrocarbon remediation national test location. [Online.] http://www.storming media.us.
126. Hejazi, R. F.,, and T. Husain. 2004. Landfarm performance under arid conditions. 1. Conceptual framework. Environ. Sci. Technol. 38: 24492456.
127. Hejazi, R. F.,, and T. Husain. 2004. Landfarm performance under arid conditions. 2. Evaluation of parameters. Environ. Sci. Technol. 38: 24572469.
128. Hengge-Aronis, R. 1993. Survival of hunger and stress: the role of rpoS in early stationary phase gene regulation in Escherichia coli. Cell 72: 165168.
129. Hengge-Aronis, R. 2002. Signal transduction and regulatory mechanisms involved in control of the σS (RpoS) subunit of RNA polymerase. Microbiol. Mol. Biol. Rev. 66:373395.
130. Herman, D. C.,, J. F. Artiola,, and R. M. Miller. 1995. Removal of cadmium, lead and zinc from soil by a rhamnolipid biosurfactant. Environ. Sci. Technol. 29:22802285.
131. Hicks, R. J. 1993. Above ground bioremediation: practical approaches and field experiences. In Proceedings of Applied Bioremediation, 25 to 26 October, Fairfield, N. J.
132. Hinchee, R. E.,, R. N. Miller,, and R. R. Du-Pont,. 1991. Enhanced biodegradation of petroleum hydrocarbons: an air-based in situ process, p. 177183. In H. M. Freeman, and P. R. Sferra (ed.), Biological Processes: Innovative Hazardous Waste Treatment Technology Series. Technomic Publishing, Lancaster, Pa.
133. Hitsatsuka, K.,, T. Nakahara,, N. Sano,, and K. Yamada. 1971. Formation of a rhamnolipid by Pseudomonas aeruginosa and its function in hydrocarbon fermentation. Agric. Biol. Chem. 35: 686692.
134. Hommel, R. K. 1990. Formation and physiological role of biosurfactants produced by hydrocarbon- utilising microorganisms. Biodegradation 1:107119.
135. Hopkins, G. D.,, and P. L. McCarty. 1995. Field evaluation of in situ aerobic co-metabolism of trichloroethylene and three dichloroethylene isomers using phenol and toluene as the primary substrates. Environ. Sci. Technol. 29:16281637.
136. Hopkins, G. D.,, J. Munakata,, L. Semprini,, and P. L. McCarty. 1993. Trichloroethylene concentration effects on pilot field scale in situ groundwater bioremediation by phenol-oxidizing microorganisms. Environ. Sci. Technol. 27:25422547.
137. Hopkins, G. D.,, L. Semprini,, and P. L. McCarty. 1993. Microcosm and in situ field studies of enhanced biotransformation of trichloroethylene by phenolutilizing microorganisms. Appl. Environ. Microbiol. 59:22772285.
138. Huesemann, M. H. 1994. Guidelines for landtreating petroleum hydrocarbon-contaminated soils. J. Soil Contam. 3:299318.
139. Huesemann, M. H.,, and M. J. Truex. 1996. The role of oxygen diffusion in passive bioremediation of petroleum contaminated soils. J. Haz. Mat. 51:93113.
140. Hunkeler, D.,, P. Hohener,, and J. Zeyer. 2002. Engineered and subsequent intrinsic in situ bioremediation of a diesel fuel contaminated aquifer. J. Contam. Hydrol. 59(3-4):231245.
141. Hur, J. M.,, and J. A. Park. 2003. Effect of sewage sludge mix ratio on the biodegradation of diesel-oil in a contaminated soil composting. Korean J. Chem. Eng. 20:307314.
142. Huss, L. 1977. The ANAMET process for food and fermentation industry effluent. Tribune CEBEDEAU 30:390396.
143. Illmer, P., 2002. Backyard composting: general considerations and a case study, p. 34. In H. Insam,, N. Riddech, and S. Klammer (ed.), Microbiology of Composting. Springer-Verlag, Heidelberg, Germany.
144. Ivshina, I. B.,, M. S. Kuyukina,, M. I. Ritchkova,, J. C. Philp,, C. J. Cunningham,, and N. Christofi. 2001. Oleophilic biofertilizer based on a Rhodococcus surfactant complex for the bioremediation of crude oil-contaminated soil. AHES Soil Sed. Water August: 2024.
145. Jain, D. K.,, H. Lee,, and J. T. Trevors. 1992. Effect of addition of Pseudomonas aeruginosa UG2 inocula or biosurfactants on biodegradation of selected hydrocarbons in soil. J. Ind. Microbiol. 10:8793.
146. Jansson, J. K.,, K. Björklöf,, A. M. Elvang,, and K. S. Jørgensen. 2000. Biomarkers for monitoring efficacy of bioremediation by microbial inoculants. Environ. Pollut. 107:217223.
147. Johnson, P. C. 1998. Assessment of the contributions of volatilization and biodegradation to in situ air sparging performance. Environ. Sci. Technol. 32:276281.
148. Johnson, P. C.,, A. Leeson,, R. L. Johnson,, C. M. Vogel,, R. E. Hinchee,, M. Marley,, T. Peargin,, C. L. Bruce,, I. L. Amerson,, C. T. Coonfare,, and R. D. Gillespie. 2001. A practical approach for the selection, pilot testing, design, and monitoring of in situ air sparging/biosparging systems. Bioremed. J. 5:267281.
149. Johnson, P. C.,, R. L. Johnson,, C. L. Bruce,, and A. Leeson. 2001. Advances in in situ air sparging/biosparging. Bioremed. J. 5:251266.
150. Jorgensen, K. S.,, J. Puustinen,, and A. M. Suortti. 2000. Bioremediation of petroleum hydrocarbon- contaminated soil by composting in biopiles. Environ. Pollut. 107:245254.
151. Junker, F.,, and J. L. Ramos. 1999. Involvement of the cis/trans isomerase Cti in solvent resistance of Pseudomonas putida DOT-TIE. J. Bacteriol. 181:56935700.
152. Juteau, P.,, J. G. Bisaillon,, F. Lepine,, V. Ratheau,, R. Beaudet,, and R. Villemur. 2003. Improving the biotreatment of hydrocarbonscontaminated soils by addition of activated sludge taken from the wastewater treatment facilities of an oil refinery. Biodegradation 14:3140.
153. Kalin, R. M. 2004. Engineered passive bioreactive barriers: risk-managing the legacy of industrial soil and groundwater pollution. Curr. Opin. Microbiol. 7:227238.
154. Kao, C. M.,, and C. C. Wang. 2000. Control of BTEX migration by intrinsic bioremediation at a gasoline spill site. Water Res. 34:34133423.
155. Kao, C. M.,, and L. Yang. 2000. Enhanced bioremediation of trichlorethylene contaminated by a barrier system. Water Sci. Technol. 42: 429434.
156. Khan, F. I.,, and T. Husain. 2001. Risk-based monitored natural attenuation—a case study. J. Haz. Mat. B85:243272.
157. Khan, F. I.,, T. Husain,, and R. Hejazi. 2004. An overview and analysis of site remediation technologies. J. Environ. Manage. 71:95122.
158. Kieboom, J.,, J. J. Dennis,, J. A. M. de Bont,, and G. J. Zylstra. 1998. Identification and molecular characterization of an efflux pump involved in Pseudomonas putida S12 solvent tolerance. J. Biol. Chem. 273:8591.
159. Kiely, G. 1996. Environmental Engineering. McGraw-Hill Publishing Company, Maidenhead, United Kingdom.
160. King, J. M. H.,, P. M. DiGrazia,, B. Applegate,, R. Burlage,, J. Sanseverino,, P. Dunbar,, F. Larimer,, and G. S. Sayler. 1990. Rapid, sensitive bioluminescent reporter technology for naphthalene exposure and biodegradation. Science 249:778781.
161. Kirtland, B. C.,, and C. M. Aelion. 2000. Petroleum mass removal from low permeability sediment using air sparging/soil vapor extraction: impact of continuous or pulsed operation. J. Contam. Hydrol. 41:367383.
162. Kitamoto, D.,, H. Isoda,, and T. Nakahara. 2002. Functions and potential applications of glycolipid biosurfactants—from energy-saving materials to gene delivery systems. J. Biosci. Bioeng. 94:187201.
163. Kodres, C. A. 1999. Coupled water and air flows through a bioremediation soil pile. Environ. Modelling Software 14:3747.
164. Kuiper, I.,, G. V. Bloemberg,, and B. J. J. Lugtenberg. 2001. Selection of a plant-bacterium pair as a novel tool for rhizostimulation of polycyclic aromatic hydrocarbon-degrading bacteria. Mol. Plant-Microbe Interact. 14:11971205.
165. Kuyukina, M. S.,, I. B. Ivshina,, M. I. Ritchkova,, S. M. Kostarev,, J. C. Philp,, C. J. Cunningham,, and N. Christofi. 2003. Bioremediation of crude oil contaminated soil using slurryphase biological treatment and landfarming techniques. Soil Sed. Contam. 12:8599.
166. Laha, S.,, and R. G. Luthy. 1992. Effects of nonionic surfactants on the solubilization and mineralization of phenanthrene in soil-water systems. Biotechnol. Bioeng. 40:13671380.
167. Laine, M. M.,, and K. S. Jørgensen. 1997. Effective and safe composting of chlorophenolcontaminated soil in pilot scale. Environ. Sci. Technol. 31:371378.
168. Lang, S.,, and J. C. Philp. 1998. Surface-active lipids in rhodococci. Antonie Leeuwenhoek Int. J. Gen. Mol. Microbiol. 74:5970.
169. Lau, K. L.,, Y. Y. Tsang,, and S. W. Chiu. 2003. Use of spent mushroom compost to bioremediate PAH-contaminated samples. Chemosphere 52:15391546.
170. Lawrence, L. 2002. Enzymes that can clean up pesticide residues. 111: CSIRO Entomology. http://www.ento.csiro.au.
171. Layton, A. C.,, M. Muccini,, M. M. Ghosh,, and G. S. Sayler. 1998. Construction of a bioluminescent reporter strain to detect polychlorinated biphenyls. Appl. Environ. Microbiol. 64: 50235026.
172. Lee, K.,, and E. M. Levy. 1991. Bioremediation: waxy crude oils stranded on low-energy shorelines, p. 541547. In Proceedings of the 1991 Oil Spill Conference. American Petroleum Institute, Washington, D. C.
173. Lee, M. D.,, and C. M. Swindoll. 1993. Bioventing for in situ remediation. Hydrol. Sci. J. J. Sciences Hydrologiques 38:273282.
174. Leeson, A.,, and R. E. Hinchee. 1994. Field Treatability Study at the Greenwood Chemical Superfund Site, Albermarle County, Virginia. Report prepared for the U. S. Environmental Protection Agency, Cincinnati, Ohio.
175. Lewis, R. 2001. PCB dilemma: government, industry, and public debate dredging vs. bioremediation in the Hudson River. Scientist 15(6):1.
176. Li, L.,, C. J. Cunningham,, V. Pas,, J. C. Philp,, D. A. Barry,, and P. Anderson. 2004. Field trial of a new aeration system for enhancing biodegradation in a biopile. Waste Manage. 24: 127137.
177. Liang, L. Y.,, A. B. Sullivan,, O. R. West,, G. R. Molin,, and W. Kamolpornwijit. 2003. Predicting the precipitation of mineral phases in permeable reactive barriers. Environ. Eng. Sci. 20: 635653.
178. Liebeg, E. W.,, and T. J. Cutright. 1999. The investigation of enhanced bioremediation through the addition of macro and micro nutrients in a PAH contaminated soil. Int. Biodeterior. Biodegrad. 44:5564.
179. Lin, J. E.,, and H. Y. Wang. 1991. Use of coimmobilised biological systems to degrade toxic organic compounds. Biotechnol. Bioeng. 38: 273279.
180. Lin, Q.,, I. A. Mendelssohn,, C. B. Henry, Jr.,, E. B. Overton,, R. J. Portier,, P. O. Roberts,, and M. M. Walsh,. 2003. Effects of bioremediation agents on oil degradation on mineral and sandy salt marsh sediments, p. 47–57. In I. A. Mendelssohn, and Q. Lin (ed.), Coastal Marine Institute Development of Bioremediation for Oil Spill Cleanup in Coastal Wetlands. U.S. Department of the Interior Cooperative Agreement Minerals Management Service Coastal Marine Institute, Gulf of Mexico, OCS Region, Louisiana State University.
181. Lindstrom, J. E.,, R. C. Prince,, J. C. Clark,, M. T. Grossman,, T. R. Yeager,, J. F. Brad dock,, and E. J. Brown. 1991. Microbial populations and hydrocarbon biodegradation potentials in fertilized shoreline sediments affected by the T/V Exxon Valdez oil spill. Appl. Environ. Microbiol. 57:25142522.
182. Little, C. D.,, A. V. Palumbo,, S. E. Herbes,, M. E. Lidstrom,, R. L. Tyndall,, and P. J. Gilmer. 1988. Trichloroethylene biodegradation by a methane-oxidizing bacterium. Appl. Environ. Microbiol. 54:951956.
183. Liu, Z.,, A. M. Jacobson,, and R. G. Luthy. 1995. Biodegradation of naphthalene in aqueous sulfate surfactant systems. Appl. Environ. Microbiol. 61:145151.
184. Lovley, D. R. 1997. Potential for anaerobic bioremediation of BTEX in petroleum-contaminated aquifers. J. Ind. Microbiol. Biotechnol. 18(2-3):7581.
185. Lowe, D.,, B. Kueper,, M. Pitts,, K. Wyatt,, T. Simpkin,, and T. Sale. 1997. Technology Practices Manual for Surfactants and Cosolvents. CH2Mhill. [Online.] http://clu-in.org.
186. Ludwig, R. D.,, R. G. McGregor,, D. W. Blowes,, S. G. Benner,, and K. Mountjoy. 2002. A permeable reactive barrier for treatment of heavy metals. Groundwater 40:5966.
187. Lund, N. C.,, J. Swinianski,, G. Gudehus,, and D. Maier,. 1991. Laboratory and field tests for a biological in situ remediation of a coke oven plant, p. 396412. In R. E. Hinchee, and R. F. Olfenbuttel (ed.), In Situ Bioreclamation: Applications and Investigations for Hydrocarbon and Contaminated Site Remediation. Butterworth-Heinemann Publishing, Stoneham, Mass.
188. Makkar, R. S.,, and S. S. Cameotra. 2002. An update on the use of unconventional substrates for biosurfactant production and their new applications. Appl. Microbiol. Biotechnol. 58: 428434.
189. Malina, G.,, J. T. C. Grotenhuis,, and W. H. Rulkens. 2002. Vapor extraction/bioventing sequential treatment of soil contaminated with semivolatile hydrocarbon mixes. Bioremed. J. 6: 159176.
190. Manefield, M.,, A. S. Whiteley,, N. Ostle,, P. Ineson,, and M. J. Bailey. 2002. Technical considerations for RNA-based stable isotope probing: an approach in associating microbial diversity with microbial function. Rapid Commun. Mass Spectrom. 16:21792183.
191. Manefield, M.,, A. S. Whiteley,, R. I. Griffiths,, and M. J. Bailey. 2002. RNA stable isotope probing: a novel means of linking microbial community function to phylogeny. Appl. Environ. Microbiol. 68:53675373.
192. Manilal, V. B.,, and M. Alexander. 1991. Factors affecting the microbial degradation of phenanthrene in soils. Appl. Microbiol. Biotechnol. 35: 401405.
193. Mann, M.,, J. D. Dahlstrom,, P. Esposito,, G. Everett,, G. Peterson,, and R. P. Traver. 1993. Innovative Site Remediation Technology: Soil Washing/Soil Flushing. American Academy of Environmental Engineers, Annapolis, Md.
194. Margesin, R.,, and F. Schinner. 1997. Efficiency of indigenous and inoculated coldadapted soil microorganisms for biodegradation of diesel oil in Alpine soils. Appl. Environ. Microbiol. 63:26602664.
195. Martin, E., 2001. Environmental protection, p. 197210. In A. G. Lucas (ed.), Modern Petroleum Technology, 6th ed., vol. 2. Downstream. John Wiley and Sons, Chichester, United Kingdom.
196. Martinson, M. M.,, J. G. Steiert,, D. L. Saber,, W. W. Mohn,, and R. L. Crawford,. 1986. Microbiological contamination in pentachlorophenol- contaminated natural waters, p. 529534. In G. C. Llewellyn, and C. E. O’Rear (ed.), Biodeterioration 6. CAB International Mycological Institute, Slough, United Kingdom.
197. McCabe, W. L.,, J. C. Smith,, and P. Harriott. 2001. Unit Operations of Chemical Engineering, 6th ed. McGraw-Hill, New York, N. Y.
198. McCarty, P. L., 1987. Bioengineering issues related to in situ remediation of contaminated soils and groundwater, p. 143162. In G. S. Omenn (ed.), Environmental Biotechnology. Plenum Press, New York, N. Y.
199. McCarty, P. L. 1995. Field evaluation of in situ aerobic cometabolism of trichloroethylene and three dichloroethylene isomers using phenol and toluene as the primary substrates. Environ. Sci. Technol. 29:16281637.
200. McCarty, P. L.,, L. Semprini,, M. E. Dolan,, T. C. Harmon,, C. Tiedeman,, and S. M. Gorelick,. 1991. In situ methanotrophic bioremediation for contaminated groundwater at St. Joseph, Michigan, p. 1640. In R. E. Hinchee, and R. F. Olfenbuttel (ed.), On-Site Bioreclamation: Processes for Xenobiotic and Hydrocarbon Treatment. Butterworth-Heinemann, Boston, Mass.
201. McCarty, P. L.,, M. N. Goltz,, and G. D. Hopkins. 1999. Full-scale evaluation of in situ bioremediation of chlorinated solvent groundwater contamination. [Online.] http://www.hsrc.org.
202. McCarty, P. L.,, M. N. Goltz,, G. D. Hopkins,, M. E. Dolan,, J. P. Allan,, B. T. Kawakami,, and T. J. Carrothers. 1998. Full scale evaluation of in situ cometabolic degradation of trichloroethylene in groundwater through toluene injection. Environ. Sci. Technol. 32:88100.
203. McGovern, T.,, T. F. Guerin,, S. Horner,, and B. Davey. 2002. Design, construction and operation of a funnel and gate in situ permeable reactive barrier for remediation of petroleum hydrocarbons in groundwater. Water Air Soil Pollut. 136:1131.
204. Mearns, A. 1991. Observations of an oil spill bioremediation activity in Galveston Bay, Texas, p. 38. In NOAA Technical Memorandum NOS OMA 57. National Oceanic and Atmospheric Administration, Seattle, Wash.
205. Michel, F. C.,, J. Quensen,, and C. A. Reddy. 2001. Bioremediation of a PCB-contaminated soil via composting. Compost Sci. Utiliz. 9: 274284.
206. Michel, F. C., Jr.,, C. A. Reddy,, and L. J. Forney. 1995. Microbial degradation and humification of the lawn care pesticide 2,4-dichlorophenoxyacetic acid during composting of yard trimmings. Appl. Environ. Microbiol. 61: 25662571.
207. Mihopoulos, P. G.,, M. T. Suidan,, and G. D. Sayles. 2001. Complete remediation of PCE contaminated unsaturated soils by sequential anaerobic- aerobic bioventing. Water Sci. Technol. 43:365372.
208. Miller, R. M. 1995. Biosurfactant-facilitated remediation of metal-contaminated soils. Environ. Health Perspec. 103:5962.
209. Miller, R. R. 1996. Bioslurping. Technical overview report TO-96-05. Ground-Water Remediation Technologies Analysis Center (GWRTAC), Pittsburgh, Pa.
210. Mills, M. A.,, J. S. Bonner,, M. A. Simon,, T. J. McDonald,, and R. L. Autenrieth. 1997. Bioremediation of a controlled oil release in a wetland, p. 606616. In Proceedings of the 20th Arctic and Marine Oilspill Program (AMOP) Technical Seminar. Environment Canada, Ottawa, Canada.
211. Mohn, W. W.,, and G. R. Stewart. 2000. Limiting factors for hydrocarbon biodegradation at low temperature in Arctic soils. Soil Biol. Biochem. 32:11611172.
212. Mohn, W. W.,, C. Z. Radziminski,, M. C. Fortin,, and K. J. Reimer. 2001. On site bioremediation of hydrocarbon-contaminated Arctic tundra soils in inoculated biopiles. Appl. Microbiol. Biotechnol. 57:242247.
213. Moller, J.,, H. Gaarn,, T. Steckel,, E. B. Wedebye,, and P. Westermann. 1995. Inhibitory effects on degradation of diesel oil in soil microcosms by a commercial bioaugmentation product. Bull. Environ. Contam. Toxicol. 54:913918.
214. Mondello, F. J.,,