1887

Chapter 8 : Bioremediation of Metals and Radionuclides

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Bioremediation of Metals and Radionuclides, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817596/9781555812393_Chap08-1.gif /docserver/preview/fulltext/10.1128/9781555817596/9781555812393_Chap08-2.gif

Abstract:

This chapter provides an overview of metal-microbe interactions and describes how they could be harnessed to clean up metal-contaminated water, soil, and land. Biosorption of metals has been reviewed extensively, and this chapter notes only some salient points and recent developments of interest. Biosensors may prove very useful in identifying the need for metal remediation, which will be dictated in many cases by the concentration of bioavailable toxic metals in a given soil or water matrix, and also in defining the end point for bioremediation efforts. The biodegradation of toxic organotin compounds used as biocides and antifouling agents has also received recent attention. Laboratory tests have indicated that the immobilization of metals and radionuclides by bioremediation could be very effective, with removal of contaminants from the mobile aqueous phase to below critical values. Nevertheless, contaminant immobilization caused by bioremediation must be regarded as the retardation of contaminant migration rather than as a permanent solution to the problem. However, driven by the realization that large areas of land contaminated with metal and radionuclides cannot be economically remediated by conventional chemical approaches, significant resources have become available for this research area. Supported by genomics-enabled studies ongoing in many laboratories worldwide, one can expect this research area to develop further in the near future, delivering more robust technologies for the bioremediation of metal-contaminated waters and land.

Citation: Lloyd J, Anderson R, Macaskie L. 2005. Bioremediation of Metals and Radionuclides, p 293-317. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch8

Key Concept Ranking

Dissimilatory Metal Reduction
0.4198343
0.4198343
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 8.1
FIGURE 8.1

Mechanisms of metal-microbe interactions.

Citation: Lloyd J, Anderson R, Macaskie L. 2005. Bioremediation of Metals and Radionuclides, p 293-317. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of BOX FIGURE 8.1.1
BOX FIGURE 8.1.1

Flow scheme (left) and photograph (right) of a pilot plant for removal of mercury from wastewater by mercury-resistant bacteria. The plant includes pH adjustment to pH 7, nutrient amendment, the bioreactor (volume, 1 m), a buffering tank, and a polishing carbon filter. Continuous automated Hg measurement is performed at the inflow, after the bioreactor, and at the outflow. pH is measured before and after adjustment to pH 7. Other parameters determined continuously are chlorine concentration (Cl), oxygen concentration (O), redox potential (R), conductivity (C), and temperature (T). Figures were kindly provided by Dr. Irene Wagner-Döbler.

Citation: Lloyd J, Anderson R, Macaskie L. 2005. Bioremediation of Metals and Radionuclides, p 293-317. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of BOX FIGURE 8.2.1
BOX FIGURE 8.2.1

Aerial photograph (right) and flow sheet (facing page) of the Paques BV Thiopaq zinc-sulfate treatment process at the Budel Zinc BV refinery at Budel-Dorplein in The Netherlands. TPS, tilted plate settler. With permission from Paques BV.

Citation: Lloyd J, Anderson R, Macaskie L. 2005. Bioremediation of Metals and Radionuclides, p 293-317. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of BOX FIGURE 8.3.1
BOX FIGURE 8.3.1

Schematic showing the removal of soluble U(VI) from contaminated groundwater under Fe(III)-reducing conditions, stimulated by the addition of acetate to the subsurface. aq, aqueous phase; s, solid phase.

Citation: Lloyd J, Anderson R, Macaskie L. 2005. Bioremediation of Metals and Radionuclides, p 293-317. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of BOX FIGURE 8.3.2
BOX FIGURE 8.3.2

Test plot for U(VI) remediation at the Old Rifle UMTRA site, consisting of an acetate injection gallery composed of 20 injection wells and 18 monitoring wells installed within a 16- by 24-m area.

Citation: Lloyd J, Anderson R, Macaskie L. 2005. Bioremediation of Metals and Radionuclides, p 293-317. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of BOX FIGURE 8.4.1
BOX FIGURE 8.4.1

Aerial photograph (above) of the Wheal Jane Mine in Cornwall, United Kingdom, and a schematic of the passive treatment processes (next page) installed for the bioremediation of mine wastewaters (with permission from CL:AIRE).

Citation: Lloyd J, Anderson R, Macaskie L. 2005. Bioremediation of Metals and Radionuclides, p 293-317. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817596.chap8
1. REFERENCES 1. Abdelouas, A., Y. L. Lu, W. Lutze, and H. E. Nuttall. 1998. Reduction of U(VI) to U(IV) by indigenous bacteria in contaminated ground water. J. Contam. Hydrol. 35: 217233.
2. Abdelouas, A.,, W. Lutze,, and E. H. Nuttall. 1998. Chemical reactions of uranium in groundwater at a mill tailings site. J. Contam. Hydrol. 34: 343 361.
3. Abdelouas, A.,, W. Lutze,, and H. E. Nuttall. 1999. Uranium contamination in the subsurface: characterization and remediation, p. 433-473. In P. C. Burns and R. Finch (ed.), Uranium: Mineralogy, Geochemistry and the Environment, vol. 38. Mineralogical Society of America, Washington, D.C.
4. Ahmann, D. 1997. Bioremediation of metal contaminated soil. Soc. Ind. Microbiol. News 47: 218 233.
5. Anderson, R. T.,, and D. R. Lovley,. 2002. Microbial redox interactions with uranium: an environmental perspective, p. 205 233. In F. R. Livens, and M. Keith-Roach (ed.), Microbiology and Radioactivity. Elsevier, Amsterdam, The Netherlands.
6. Anderson, R. T.,, J. Rooney-Varga,, C. V. Gaw,, and D. R. Lovley. 1998. Anaerobic benzene oxidation in the Fe(III)-reduction zone of petroleum-contaminated aquifers. Environ. Sci. Technol. 32: 1222 1229.
7. Anderson, R. T.,, H. A. Vrionis,, I. Ortiz- Bernad,, C. T. Resch,, P. E. Long,, R. Day vault,, K. Karp,, S. Marutzky,, D. R. Metzler,, A. Peacock,, D. C. White,, M. Lowe,, and D. R. Lovley. 2003. Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Appl. Environ. Microbiol. 69: 5884 5891.
8. Andres, Y.,, H. J. MacCordick,, and J.-C. Hubert. 1993. Adsorption of several actinide (Th, U) and lanthanide (La, Eu, Yb) ions by Mycobacterium smegmatis. Appl. Microbiol. Biotechnol. 39: 413 417.
9.Anonymous. 2002. Managing the Nuclear Legacy— A Strategy for Action. United Kingdom Government White Paper. Presented to Parliament by the Secretary of State for Trade and Industry by Command of Her Majesty. [Online.] http://www.dti.gov.uk.
10. Avery, S. A.,, and J. M. Tobin. 1992. Mechanisms of strontium uptake by laboratory and brewing strains of Saccharomyces cerevisiae. Appl. Environ. Microbiol. 58: 3883 3889.
11. Barnes, L. J.,, F. J. Janssen,, J. Sherren,, J. H. Versteegh,, R. O. Koch,, and P.J.H. Scheeren. 1991. A new process for the microbial removal of sulphate and heavy metal from contaminated waters extracted by a geohydrological control system. Chem. Eng. Res. Des. 69A: 184 186.
12. Baxter-Plant, V.S.,, I. P. Mikheenko,, and L. E. Macaskie. 2003. Sulphate-reducing bacteria, palladium and the reductive dehalogenation of chlorinated aromatic compounds. Biodegradation 14 (2): 83 90.
13. Berne, C. 2004. Etude des mecanismes de degradation du phosphate de tributyle par des bacteries. Ph.D. dissertation. Universite de la Mediterranee, Aix-Marseille, France.
14. Beveridge, T. J.,, M. N. Hughes,, H. Lee,, K. T. Leung,, R. K. Poole,, I. Savvaidis,, S. Silver,, and J. T. Trevors. 1997. Metal-microbe interactions: contemporary approaches. Adv. Microb. Physiol. 38: 177 243.
15. Bonthrone, K. M.,, G. Basnakova,, F. Lin,, and L. E. Macaskie. 1996. Bioaccumulation of nickel by intercalation into polycrystalline hydrogen uranyl phosphate deposited via an enzymatic mechanism. Nat. Biotechnol. 14: 635 638.
16. Bontidean, I.,, E. Csoregi,, P. Corbisier,, J. R. Lloyd,, and N. L. Brown,. 2002. Bacterial metal-responsive elements and their use in biosensors for monitoring of heavy metals, p. 647 680. In B. Sankar (ed.), The Handbook of Heavy Metals in the Environment. Marcel Dekker, Inc., New York, N.Y.
17. Bontidean, I.,, J. R. Lloyd,, J. L. Hobman,, J. R. Wilson,, E. Csoregi,, B. Mattiasson,, and N. L. Brown. 2000. Bacterial metal-resistance proteins and their use in biosensors for the detection of bioavailable heavy metals. J. Inorg. Biochem. 79: 225 229.
18. Borst-Pauwels, G. W. F. H. 1981. Ion transport in yeast. Biochim. Biophys. Acta 650: 88 127.
19. Boswell, C. D.,, R. E. Dick,, H. Eccles,, and L. E. Macaskie. 2001. Phosphate uptake and release by Acinetobacter johnsonii in continuous culture and coupling of phosphate release to heavy metal accumulation. J. Ind. Microbiol. Biotechnol. 26: 333 340.
20. Brady, D.,, A. Stoll,, and J. R. Buncan. 1994. Biosorption of heavy metal cations by non-viable yeast biomass. Environ. Technol. 15: 429 439.
21. Bruins, M. R.,, S. Kapil,, and F. W. Oehme. 2000. Microbial resistance to metals in the environment. Ecotoxicol. Environ. Safety 45: 198 207.
22. Bustard, M.,, A. Donnellan,, A. Rollan,, L. McHale,, and A. P. McHale. 1996. The effect of pulsed field strength on electric field stimulated biosorption of uranium by Kluyveromyces marxianus IMB3. Biotechnol. Lett. 18: 479 482.
23. Caccavo, F., Jr., D. J. Lonergan, D. R. Lovley, M. Davis, J. F. Stolz, and M. J. McInerney. 1994. Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl. Environ. Microbiol. 60: 3752 3759.
24. Carpentier, W.,, K. Sandra,, I. De Smet,, A. Brige,, L. De Smet,, and J. Van Beeumen. 2003. Microbial reduction and precipitation of vanadium by Shewanella oneidensis. Appl. Environ. Microbiol. 69: 3636 3639.
25. Chen, J. M.,, and O. J. Hao. 1998. Microbial chromium(VI) reduction. Crit. Rev. Environ. Sci. Technol. 28: 219 251.
26. Clearfield, A. 1988. Role of ion exchange in solid-state chemistry. Chem. Rev. 88: 125 148.
27. Cummings, D. E.,, O. L. Snoeyenbos-West,, D. T. Newby,, A. M. Niggemyer,, D. R. Lovley,, L. A. Achenbach,, and R. F. Rosenzweig. 2003. Diversity of Geobacteraceae species inhabiting metal-polluted freshwater lake sediments ascertained by 16S rDNA analyses. Microb. Ecol. 46: 257 269.
28. deRome, L.,, and G. M. Gadd. 1991. Use of pelleted and immobilized yeast and fungal biomass for heavy metal and radionuclide recovery. J. Ind. Microbiol. 7: 97 104.
29. Diels, L.,, Q. Dong,, D. van der Lelie,, W. Baeyens,, and M. Mergeay. 1995. The czc operon of Alcaligenes eutrophus CH34: from resistance mechanism to the removal of heavy metals. J. Ind. Microbiol. 14: 142 153.
30. Eccles, H.,, G. Garnham,, C. Lowe,, and N. Bruce. March 1996. Biosensors for detecting metal ions capable of being reduced by reductase enzymes. U.S. patent 5,500,351. http://patft. uspto.gov.
31. Ehrlich, H. L. 1996. Geomicrobiology, 3rd ed. Marcel Dekker, Inc., New York, N.Y..
32. Ellwood, D. C.,, M. J. Hill,, and J. H. P. Watson,. 1992. Pollution control using microorganisms and metal separation, p. 89 112. In J. C. Fry,, G. M. Gadd,, R. A. Herbert,, C. W. Jones,, and I. A. Watson-Craik (ed.), Microbial Control of Pollution, vol. 48. Cambridge University Press, Cambridge, United Kingdom.
33. Fendorf, S.,, B. W. Wielinga,, and C. M. Hansel. 2000. Chromium transformations in natural environments: the role of biological and abiological processes in chromium(VI) reduction. Int. Geol. Rev. 42: 691 701.
34. Finneran, K. T.,, R. T. Anderson,, K. P. Nevin,, and D. R. Lovley. 2002. Potential for bioremediation of uranium-contaminated aquifers with microbial U(VI) reduction. Soil Sed. Contam. 11: 339 357.
35. Francis, A. J. 1994. Microbial transformations of radioactive wastes and environmental restoration through bioremediation. J. Alloys Compounds 213/ 214: 226 231.
36. Gadd, G. M. 2000. Microbial interactions with tributyltin compounds; detoxification, accumulation, and environmental fate. Sci. Total Environ. 258: 119 127.
37. Gadd, G. M.,, and C. White,. 1989. Heavy metal and radionuclide accumulation and toxicity in fungi and yeasts, p. 19 38. In R. K. Poole, and G. M. Gadd (ed.), Metal-Microbe Interactions. Society for General Microbiology, IRL Press, Oxford, England.
38. Geiselhart, L.,, M. Osgood,, and D. S. Holmes. 1991. Construction and evaluation of a self-luminescent biosensor. Ann. N.Y. Acad. Sci. 646: 53 60.
39. Gorby, Y. A.,, F. Caccavo, Jr., Jr., and H. Bolton 1998. Microbial reduction of cobalt(III) EDTA in the presence and absence of manganese( IV) oxide. Environ. Sci. Technol. 32: 244 250.
40. Gorby, Y. A.,, and D. R. Lovely. 1992. Enzymatic uranium precipitation. Environ. Sci. Technol. 26: 205 207.
41. Gray, K. R.,, and A. J. Biddlestone. 1995. Engineered reed-bed systems for wastewater treatment. Trends Biotechnol. 13: 248 252.
42. Gray, N. F. 1992. Biology of Wastewater Treatment. Oxford University Press, Oxford, United Kingdom.
43. Greiner, R.,, U. Konietzny,, and K. D. Jany. 1993. Purification and characterization of two phytases from Escherichia coli. Arch. Biochem. Biophys. 303: 107 113.
44. Higham, D. P.,, P. J. Sadler,, and M. D. Scawen. 1984. Cadmium-resistant Pseudomonas putida synthesizes novel cadmium binding proteins. Science 225: 1043 1046.
45. Hobman, J. L.,, J. W. Wilson,, and N. L. Brown,. 2000. Microbial mercury reduction, p. fp– 197. In D. R. Lovely (ed.), Environmental Microbe-Metal Interactions. ASM Press, Washington, D. C.
46. Holmes, D. E.,, K. T. Finneran,, R. A. O’Neil,, and D. R. Lovely. 2002. Enrichment of members of the family Geobacteraceae associated with stimulation of dissimilatory metal reduction in uranium-contaminated aquifer sediments. Appl. Environ. Microbiol. 68: 2300 2306.
47. Hunsberger, L. R.,, and A. B. Ellis. 1990. Excited-state properties of lamellar solids derived from metal complexes and hydrogen uranyl phosphate. Coord. Chem. Rev. 97: 209 224.
48. Inoue, H.,, O. Takimura,, H. Fuse,, K. Murakami,, K. Kamimura,, and Y. Yamaoka. 2000. Degradation of triphenyltin by a fluorescent pseudomonad. Appl. Environ. Microbiol. 66: 3492 3498.
49. Jeong, B. C.,, H.-W. Kim,, S. J. Owen,, R. E. Dick,, and L. E. Macaskie. 1994. Phosphoesterase activity and phosphate release from tributyl phosphate by a Citrobacter sp. Appl. Biochem. Biotechnol. 47: 21 32.
50. Kalin, M. 2000. Biogeochemical and geological considerations in designing wetland treatment systems in post-mining landscapes. Waste Manage. 21: 191 196.
51. Kjaergaard, K.,, J. K. Sorenson,, M. A. Schembri,, and P. Klemm. 2000. Sequestration of zinc oxide by fimbrial designer chelators. Appl. Environ. Microbiol. 66: 10 14.
52. Lloyd, J. R. 2003. Microbial reduction of metals and radionuclides. FEMS Microbiol. Rev. 27: 411 425.
53. Lloyd, J. R.,, C. L. Harding,, and L. E. Macaskie. 1997. Tc(VII) reduction and accumulation by immobilized cells of Escherichia coli. Biotechnol. Bioeng. 55: 505 510.
54. Lloyd, J. R.,, and L. E. Macaskie,. 2002. The biochemical basis of radionuclide-microbe interactions, p. 313 342. In F. R. Livens, and M. Keith-Roach (ed.), Microbiology and Radioactivity. Elsevier, Amsterdam, The Netherlands.
55. Lloyd, J. R.,, and L. E. Macaskie,. 2000. Bioremediation of radioactive metals, p. 277 327. In D. R. Lovely (ed.), Environmental Microbe-Metal Interactions. ASM Press, Washington, D. C.
56. Lloyd, J. R.,, and L. E. Macaskie. 1996. A novel PhosphorImager-based technique for monitoring the microbial reduction of technetium. Appl. Environ. Microbiol. 62: 578 582.
57. Lloyd, J. R.,, V. A. Sole,, C. V. Van Praagh,, and D. R. Lovely. 2000. Direct and Fe(II)- mediated reduction of technetium by Fe(III)-reducing bacteria. Appl. Environ. Microbiol. 66: 3743 3749.
58. Lloyd, J. R.,, P. Yong,, and L. E. Macaskie. 1998. Enzymatic recovery of elemental palladium by using sulfate-reducing bacteria. Appl. Environ. Microbiol. 64: 4607 4609.
59. Losi, M. E.,, and W. T. Frankenberger. 1997. Bioremediation of selenium in soil and water. Soil Sci. 162: 692 702.
60. Lovley, D.,, and E. J. Phillips. 1992. Reduction of uranium by Desulfovibrio desulfuricans. Appl. Environ. Microbiol. 58: 850 856.
61. Lovely, D. R. 2003. Cleaning up with genomics: applying molecular biology to bioremediation. Nat. Rev. Microbiol. 1: 36 44.
62. Lovley, D. R. 1993. Dissimilatory metal reduction. Annu. Rev. Microbiol. 47: 263 290.
63. Lovley, D. R., 2001. Reduction of iron and humics in subsurface environments, p. 193 217. In J. K. Frederickson, and M. Fletcher (ed.), Subsurface Microbiology and Biogeochemistry. Wiley- Liss, Inc., New York, N. Y.
64. Lovley, D. R.,, and J. D. Coates. 2000. Novel forms of anaerobic respiration of environmental relevance. Curr. Opin. Microbiol. 3: 252 256.
65. Lovley, D. R.,, and E. J. P. Phillips. 1992. Bioremediation of uranium contamination with enzymatic uranium reduction. Environ. Sci. Technol. 26: 2228 2234.
66. Lovley, D. R.,, E. J. P. Phillips,, Y. A. Gorby,, and E. Landa. 1991. Microbial reduction of uranium. Nature 350: 413 416.
67. Lovley, D. R.,, E. E. Roden,, E. J. P. Phillips,, and J. C. Woodward. 1993. Enzymatic iron and uranium reduction by sulfate reducing bacteria. Mar. Geol. 113: 41 53.
68. Mabbett, A. N.,, and L. E. Macaskie. 2002. A new bioinorganic process for the remediation of Cr(VI). J. Chem. Technol. Biotechnol. 77: 1169 1175.
69. Macaskie, L. E. 1991. The application of biotechnology to the treatment of wastes produced from nuclear fuel cycle: biodegradation and bioaccumulation as a means of treating radionuclide- containing streams. Crit. Rev. Biotechnol. 11: 41 112.
70. Macaskie, L. E. 1990. An immobilized cell bioprocess for the removal of heavy metals from aqueous flows. J. Chem. Technol. Biotechnol. 49: 357 379.
71. Macaskie, L. E.,, and A. C. R. Dean. 1990. Trimethyl lead degradation by free and immobilized cells of an Arthrobacter sp. and by the wood decay fungus Phaeolus schweinitzii. Appl. Microbiol. Biotechnol. 33: 81 87.
72. Macaskie, L. E.,, R. M. Empson,, A. K. Cheetham,, C. P. Grey,, and A. J. Skarnulis. 1992. Uranium bioaccumulation by a Citrobacter sp. as a result of enzymically-mediated growth of polycrystalline HUO2PO4. Science 257: 782 784.
73. Macaskie, L. E.,, R. M. Empson,, F. Lin,, and M. R. Tolley. 1995. Enzymatically-mediated uranium accumulation and uranium recovery using a Citrobacter sp. immobilised as a biofilm within a plug-flow reactor. J. Chem. Technol. Biotechnol. 63: 1 16.
74. Macaskie, L. E.,, B. C. Jeong,, and M. R. Tolley. 1994. Enzymically-accelerated biomineralization of heavy metals: application to the removal of americium and plutonium from aqueous flows. FEMS Microbiol. Rev. 14: 351 368.
75. Macaskie, L. E.,, J. R. Lloyd,, R. A. P. Thomas,, and M. R. Tolley. 1996. The use of microoorganisms for the remediation of solutions contaminated with actinide elements, other radionuclides and organic contaminants generated by nuclear fuel cycle activities. Nucl. Energy 35: 257 271.
76. Macaskie, L. E.,, P. Yong,, T. C. Doyle,, M. G. Roig,, M. Diaz,, and T. Manzano. 1997. Bioremediation of uranium-bearing wastewater: biochemical and chemical factors influencing bioprocess application. Biotechnol. Bioeng. 53: 100 109.
77. McCullough, J.,, T. C. Hazen,, S. M. Benson,, F. B. Metting,, and A. C. Palmisano. 1999. Bioremediation of Metals and Radionuclides . . . What It Is and How It Works. Lawrence Berkeley National Laboratory, Berkeley, Calif. http://
78. McHale, A. P.,, and S. McHale. 1994. Microbial biosorption of metals: potential in the treatment of metal pollution. Biotechnol. Adv. 12: 647 652.
79. Michel, L. J.,, L. E. Macaskie,, and A. C. R. Dean. 1986. Cadmium accumulation by immobilized cells of a Citrobacter sp. using various phosphate donors. Biotechnol. Bioeng. 28: 1358 1365.
80.National Academies of Science. 1999. Groundwater and Soil Cleanup: Improving Management of Persistent Contaminants. National Academies Press, Washington, D.C. http://www.nap.edu.
81. Okorov, L. A.,, L. P. Lichko,, V. M. Kodomtseva,, V. P. Kholodenko,, V. T. Titovsky,, and I. S. Kulaev. 1977. Energy-dependent transport of manganese into yeast cells and distribution of accumulated ions. Eur. J. Biochem. 75: 373 377.
82. Ortiz-Bernad, I.,, R. T. Anderson,, H. A. Vrionis,, and D. R. Lovley. 2004. Vanadium respiration by Geobacter metallireducens: a novel strategy for the in situ removal of vanadium from groundwater. Appl. Environ. Microbiol. 70: 3091 3095.
83. Ostanin, K.,, E. H. Harms,, P. E. Stevis,, R. Kuciel,, M.-M. Zhou,, and R. L. Van Etten. 1992. Overexpression, site-directed mutagenesis and mechanism of E. coli acid phosphatase. J. Biol. Chem. 267: 22830 22836.
84. Ostanin, K.,, and R. Van Etten. 1993. Asp304 of Escherichia coli acid phosphatase is involved in leaving group protonation. J. Biol. Chem. 268: 20778 20784.
85. Owen, S.,, B. C. Jeong,, P. S. Poole,, and L. E. Macaskie. 1992. Tributyl phosphate degradation by immobilized cells of a Citrobacter sp. Appl. Biochem. Biotechnol. 34/ 35: 693 707.
86. Pattanapipitpaisal, P.,, A. N. Mabbett,, J. A. Finlay,, A. J. Beswick,, M. Paterson-Beedle,, A. Essa,, J. Wright,, M. R. Tolley,, U. Badar,, N. Ahmed,, J. L. Hobman,, N. L. Brown,, and L. E. Macaskie. 2002. Reduction of Cr(VI) and bioaccumulation of chromium by Gram positive and Gram negative microorganisms not previously exposed to Cr-stress. Environ. Technol. 23: 731 745.
87. Pazirandeh, M.,, B. M. Wells,, and R. L. Ryan. 1998. Development of bacterium-based heavy-metal biosorbants: enhanced uptake of cadmium and mercury by Escherichia coli expressing a metal-binding motif. Appl. Environ. Microbiol. 64: 4068 4072.
88. Pham-Thi, M.,, and P. Columban. 1985. Cationic conductivity, water species motions and phase transitions in H3OUO2PO4⋅3H2O (HUP)and MUP related compounds (M__Na_, K_,Ag_, Li_, NH 4 _). Solid State Ion 17: 295 306.
89. Postgate, J. R. 1979. The Sulphate Reducing Bacteria. Cambridge University Press, Cambridge, United Kingdom.
90. Pozas-Tormo, R.,, L. Moreno-Real,, M. Martinez-Lara,, and S. Bruque-Gamez. 1987. Intercalation of lanthanides into H 3OUO2 PO 43H2O and C 4H9NH3UO2PO43H2O. Inorg. Chem. 26: 1442 1445.
91. Pumpel, T. 1997. Metal biosorption: a structured data space? Res. Microbiol. 148: 514 515.
92. Raskin, I.,, R. D. Smith,, and D. E. Salt. 1997. Phytoremediation of metals: using plants to remove pollutants from the environment. Curr. Opin. Biotechnol. 8: 221 226.
93. Riordan, C.,, M. Bustard,, R. Putt,, and A. P. McHale. 1997. Removal of uranium from solution using residual brewery yeast: combined biosorption and bioprecipitation. Biotechnol. Lett. 19: 385 387.
94. Rodriguez, H.,, and R. Fraga. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17: 319 339.
95. Roig, M. G.,, J. F. Kennedy,, and L. E. Macaskie. 1995. Biological Rehabilitation of Metal Bearing Wastewaters. Final report. EC contract EV5V-CT93-0251. Programme: Environment. The European Commission, Brussels, Belgium.
96. Röling, W. F. M.,, B. M. van Breukelen,, M. Braster,, B. Lin,, and H. W. van Verseveld. 2001. Relationships between microbial community structure and hydrochemistry in a landfill leachate-polluted aquifer. Appl. Environ. Microbiol. 67: 4619 4629.
97. Ross, I. S.,, and C. C. Townsley,. 1986. The uptake of heavy metals by filamentous fungi, p. 49 58. In H. Eccles, and S. Hunt (ed.), Immobilisation of Ions by Biosorption. Ellis Horwood, Chichester, United Kingdom.
98. Salt, D. E.,, M. Blaylock,, N. P. B. A. Kumar,, V. Dushenkov,, B. D. Ensley,, I. Chet,, and I. Raskin. 1995. Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13: 468 474.
99. Salt, D. E.,, R. D. Smith,, and I. Raskin. 1998. Phytoremediation. Annu. Rev. Plant Phys. Plant Mol. Biol. 49: 643 668.
100. Samuelson, P.,, H. Wernerus,, M. Svedberg,, and S. Stahl. 2000. Staphylococcal surface display of metal-binding polyhistidyl peptides. Appl. Environ. Microbiol. 66: 1243 1248.
101.. Satroutdinov, A. D.,, E. G. Dedyukhina,, T. I. Chistyakova,, M. Witschel,, I. G. Minkevich,, V. K. Eroshin,, and T. Egli. 2000. Degradation of metal-EDTA complexes by resting cells of the bacterial strain DSM 9103. Environ. Sci. Technol. 34: 1715 1720.
102. Simmons, P.,, J. M. Tobin,, and I. Singleton. 1995. Considerations on the use of commercially available yeast biomass for the treatment of metal-containing effluents. J. Ind. Microbiol. 14: 240 246.
103. Snoeyenbos-West, O.,, K. P. Nevin,, R. T. Anderson,, and D. R. Lovley. 2000. Enrichment of Geobacter species in response to stimulation of Fe(III) reduction in sandy aquifer sediments. Microb. Ecol. 39: 153 167.
104. Tebo, B. M.,, and A. Y. Obraztsova. 1998. Sulfate-reducing bacterium grows with Cr(VI), U(VI), Mn(IV), and Fe(III) as electron acceptors. FEMS Microbiol. Lett. 162: 193 198.
105. Thomas, R. A. P.,, A. J. Beswick,, G. Basnakova,, R. Moller,, and L. E. Macaskie. 2000. Growth of naturally-occurring microbial isolates in metal-citrate medium and bioremediation of metal-citrate wastes. J. Chem. Technol. Biotechnol. 75: 187 195.
106. Thomas, R. A. P.,, K. Lawlor,, M. Bailey,, and L. E. Macaskie. 1998. The biodegradation of metal-EDTA complexes by an enriched microbial population. Appl. Environ. Microbiol. 64: 1319 1322.
107. Thomas, R. A. P.,, and L. E. Macaskie. 1996. Biodegradation of tributyl phosphate by naturally occurring microbial isolates and coupling to the removal of uranium from aqueous solution. Environ. Sci. Technol. 30: 2371 2375.
108. Thomas, R. A. P.,, and L. E. Macaskie. 1998. The effect of growth conditions on the biodegradation of tributyl phosphate and potential for the remediation of acid mine drainage waters by a naturally-occurring mixed microbial culture. Appl. Microbiol. Biotechnol. 49: 202 209.
109. Tobin, J. M.,, D. G. Cooper,, and R. J. Neufeld. 1984. Uptake of metal ions by Rhizopus arrhizus biomass. Appl. Environ. Microbiol. 47: 821 824.
110. Tobin, J. M.,, C. White,, and G. M. Gadd. 1994. Metal accumulation by fungi: applications in environmental biotechnology. J. Ind. Microbiol. 13: 126 130.
111. Tolley, M. R.,, L. F. Strachan,, and L. E. Macaskie. 1995. Lanthanum accumulation from acidic solutions using Citrobacter sp. Immobilized in a flow through bioreactor. J. Ind. Microbiol. 14: 271 280.
112. Treen-Sears, M. E.,, B. Volesky,, and R. J. Neufeld. 1984. Ion exchange/complexation of the uranyl ion by Rhizopus biosorbent. Biotechnol. Bioeng. 26: 1323 1329.
113. Tucker, M. D. 1996. Technical Considerations for the Implementation of Subsurface Microbial Barriers for Restoration of Ground Water at UMTRCA Sites. SAND96-1459. Sandia National Laboratories, Albuquerque, N.M.
114. Turner, J. S.,, and N. J. Robinson. 1995. Cyanobacterial metallothioneins: biochemistry and molecular genetics. J. Ind. Microbiol. 14: 119 125.
115.U.S. Department of Energy, Grand Junction Office. 1999. Final site observational work plan for the UMTRA project Old Rifle site GJO-99-88-TAR. U. S. Department of Energy, Grand Junction, Colo.
116. Valls, M.,, S. Atrian,, V. de Lorenzo,, and L. A. Fernandez. 2000. Engineering a mouse metallothionein on the cell surface of Ralstonia eutropha CH34 for immobilization of heavy metals in soil. Nat. Biotechnol. 18: 661 665.
117. Van Roy, S.,, K. Peys,, T. Dresselaers,, and L. Diels. 1997. The use of an Alcaligenes eutrophus biofilm in a membrane bioreactor for heavy metal recovery. Res. Microbiol. 148: 526 528.
118.. Volesky, B.,, and Z. R. Holan. 1995. Biosorption of heavy metals. Biotechnol. Prog. 11: 235 250.
119. Volesky, B.,, and H. A. May-Phillips. 1995. Biosorption of heavy metals by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 42: 797 806.
120. von Canstein, H.,, Y. Li,, J. Leonhäuser,, E. Haase,, A. Felske,, W.-D. Deckwer,, and I. Wagner-Döbler. 2002. Spatially oscillating activity and microbial succession of mercury-reducing biofilms in a technical scale bioremediation system. Appl. Environ. Microbiol. 68: 1938 1946.
121.. von Canstein, H.,, Y. Li,, K. N. Timmis,, W. D. Deckwer,, and I. Wagner-Döbler. 1999. Removal of mercury from chloralkali electrolysis wastewater by a mercury-resistant Pseudomonas putida strain. Appl. Environ. Microbiol. 65: 5279 5284.
122. von Canstein, H. F.,, Y. Li,, and I. Wagner-Döbler. 2001. Long term stability of mercury reducing microbial biofilm communities analysed by 16S-23S rDNA interspacer region polymorphism. Microb. Ecol. 42: 624 634.
123. von Canstein, H. F.,, Y. Li,, and I. Wagner-Döbler. 2001. Long-term performance of bioreactors cleaning mercury contaminated wastewater and their response to temperature and mercury stress and mechanical perturbation. Biotechnol. Bioeng. 74: 212 219.
124. Wagner-Döbler, I.,, H. Lunsdorf,, T. Lubbehusen,, H. F. von Canstein,, and Y. Li. 2000. Structure and species composition of mercuryreducing biofilms. Appl. Environ. Microbiol. 66: 4559 4563.
125. Wagner-Döbler, I.,, H. von Canstein,, Y. Li,, K. N. Timmis,, and W. D. Deckwer. 2000. Removal of mercury from chemical wastewater by microoganisms in technical scale. Environ. Sci. Technol. 34: 4628 4634.
126. Watson, J. H. P.,, and D. C. Ellwood. 1994. Biomagnetic separation and extraction process for heavy metals from solution. Minerals Eng. 7: 1017 1028.
127. Weidemann, D. P.,, R. D. Tanner,, G. W. Strandberg,, and S. E. Shumate II. 1981. Modelling the rate of transfer of uranyl ions onto microbial cells. Enzyme Microb. Technol. 3: 33 40.
128. Whicker, F. W.,, T. G. Hinton,, M. M. Mac-Donell,, J. E. Pinder III,, and L. J. Habegger. 2004. Avoiding destructive remediation at DOE sites. Science 303: 1615 1616.
129. White, C.,, and G. M. Gadd. 1987. Inhibition of H_ efflux and K_ uptake and induction of K_ efflux in yeast by heavy metals. Tox. Assess. 2: 437 447.
130. White, C.,, A. K. Sharman,, and G. M. Gadd. 1998. An integrated microbial process for the bioremediation of soil contaminated with toxic metals. Nat. Biotechnol. 16: 572 575.
131. Yong, P.,, and L. E. Macaskie. 1997. Effect of substrate concentration and nitrate inhibition on product release and heavy metal removal by a Citrobacter sp. Biotechnol. Bioeng. 55: 821 830.
132. Yong, P.,, and L. E. Macaskie. 1995. Enhancement of uranium bioaccumulation by a Citrobacter sp. via enzymatically-mediated growth of polycrystalline NH 4UO2PO4. J. Chem. Technol. Biotechnol. 63: 101 108.
133. Yong, P.,, and L. E. Macaskie. 1999. The role of sulfate as a competitive inhibitor of enzymatically- mediated heavy metal uptake by Citrobacter sp.: implications in the bioremediation of acid mine drainage water using biogenic phosphate precipitant. J. Chem. Technol. Biotechnol. 74: 1149 1156.
134. Yong, P.,, N. A. Rowson,, J. P. G. Farr,, I. R. Harris,, and L. E. Macaskie. 2002. Bioaccumulation of palladium by Desulfovibrio desulfuricans. J. Chem. Technol. Biotechnol. 77: 593 601.
135. Yong, P.,, N. A. Rowson,, J. P. G. Farr,, I. R. Harris,, and L. E. Macaskie. 2002. Bioreduction and biocrystallization of palladium by Desulfovibrio desulfuricans NCIMB 8307. Biotechnol. Bioeng. 80: 369 379.
136. Yong, P.,, N. A. Rowson,, J. P. G. Farr,, I. R. Harris,, and L. E. Macaskie. 2003. A novel electrobiotechnology for the recovery of precious metals from spent automotive catalysts. Environ. Technol. 23 (3): 289 297.

Tables

Generic image for table
BOX TABLE 8.2.1

Performance of Thiopaq metal-sulfate treatment process at Budel Dorplein

Citation: Lloyd J, Anderson R, Macaskie L. 2005. Bioremediation of Metals and Radionuclides, p 293-317. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch8
Generic image for table
BOX TABLE 8.4.1

Average composition of Wheal Jane tin mine water (1995 to 1998)

Citation: Lloyd J, Anderson R, Macaskie L. 2005. Bioremediation of Metals and Radionuclides, p 293-317. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch8

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error