1887

Chapter 1 : Structure and Fucntion of Mucosal Surfaces

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Structure and Fucntion of Mucosal Surfaces, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817619/9781555813239_Chap01-1.gif /docserver/preview/fulltext/10.1128/9781555817619/9781555813239_Chap01-2.gif

Abstract:

The mucosal surfaces of the body are the areas where important absorptive and excretive functions occur. The innate defense system consists of three components: mechanical, chemical, and cellular. The first defense that an invading pathogen would encounter is the preepithelial barrier. Mucins form two lines of preepithelial defense, such that the secreted gel overlies the mucins forming part of the glycocalyx on the apical surface of the epithelial cells. The most important chemokine released from the epithelial cells is interleukin-8 (IL-8), which, as well as being an effective chemoattractant for granulocytes, stimulates mucin secretion by goblet cells. Some microorganisms can utilize the mucus layer for protection. Several proteinase inhibitors are produced by epithelial cells and, where present, submucosal glands, e.g., in the airways. These inhibitors form an important part of the preepithelial defenses and the innate immune system. Secretory leukocyte proteinase inhibitor (SLPI) is one such epithelial secretion, along with elafin (SKALP), which is an elastase inhibitor with 42% sequence homology to SLPI. A key role for the preepithelial barrier is to prevent microbial adherence by interfering with microbial adhesins and toxins. Several enzymes are secreted by the epithelial cells into the external secretions. A key role for the preepithelial barrier is to prevent microbial adherence by interfering with microbial adhesins and toxins. As well as cell membrane-associated mucin, the apical surface of the epithelial cells has other molecules presented to approaching microbes.

Citation: Pearson J, Brownlee I. 2005. Structure and Fucntion of Mucosal Surfaces, p 1-16. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch1

Key Concept Ranking

Human immunodeficiency virus 1
0.474885
Tumor Necrosis Factor alpha
0.44693983
0.474885
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1a
Figure 1a

The diverse natures of mucosal surfaces. (A) Airway epithelium. The airway epithelium consists mainly of two cell types, ciliated cells that move the mucus blanket and goblet cells that secrete the mucus layer. Submucosal glands (not shown) also contribute to the mucus blanket. Above the cell surface is a low-viscosity pericilliary layer, which allows the cilia to beat effectively with the tips of the cilia just engaged into the mucus blanket. (B) Esophageal epithelium. The basal layer is where active cell division takes place. The prickle cell layer is where the cells differentiate into functional cells, and the functional layer is where the cells start to die and are shed into the lumen. The functional layer is covered by a thin unstirred water layer containing some salivary mucus and some mucus secreted by the esophageal submucosal glands. (C) Intestinal epithelium. The small intestinal epithelium consists of small finger-like extensions called villi, and the absorptive cells also have microvilli on their apical surface, creating the brush border. Interspaced among the absorptive cells are the mucus-secreting goblet cells. This epithelium is covered by a mucus bilayer of variable thickness. The layer is thickest in the ileum; the total thickness of 480 ± 47 µm is made up of 447 ± 47 µm of sloppy mucus and 29 ± 8 µm of firm mucus layers in the rat. (D) Urinary bladder epithelium. The urinary bladder epithelium consists of three layers: the basal, intermediate, and superficial layers. The surface is not covered by a secreted mucus gel but does have a surface protection by MUC 1 and 4 mucins extending 0.7 µm from the cell membrane.

Citation: Pearson J, Brownlee I. 2005. Structure and Fucntion of Mucosal Surfaces, p 1-16. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 1b
Figure 1b

The diverse natures of mucosal surfaces. (A) Airway epithelium. The airway epithelium consists mainly of two cell types, ciliated cells that move the mucus blanket and goblet cells that secrete the mucus layer. Submucosal glands (not shown) also contribute to the mucus blanket. Above the cell surface is a low-viscosity pericilliary layer, which allows the cilia to beat effectively with the tips of the cilia just engaged into the mucus blanket. (B) Esophageal epithelium. The basal layer is where active cell division takes place. The prickle cell layer is where the cells differentiate into functional cells, and the functional layer is where the cells start to die and are shed into the lumen. The functional layer is covered by a thin unstirred water layer containing some salivary mucus and some mucus secreted by the esophageal submucosal glands. (C) Intestinal epithelium. The small intestinal epithelium consists of small finger-like extensions called villi, and the absorptive cells also have microvilli on their apical surface, creating the brush border. Interspaced among the absorptive cells are the mucus-secreting goblet cells. This epithelium is covered by a mucus bilayer of variable thickness. The layer is thickest in the ileum; the total thickness of 480 ± 47 µm is made up of 447 ± 47 µm of sloppy mucus and 29 ± 8 µm of firm mucus layers in the rat. (D) Urinary bladder epithelium. The urinary bladder epithelium consists of three layers: the basal, intermediate, and superficial layers. The surface is not covered by a secreted mucus gel but does have a surface protection by MUC 1 and 4 mucins extending 0.7 µm from the cell membrane.

Citation: Pearson J, Brownlee I. 2005. Structure and Fucntion of Mucosal Surfaces, p 1-16. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Structure of a gastric gland. Mucus is secreted by the neck cells and the surface mucosal cells. Acid and pepsinogen are secreted from cells deeper within the gland.

Citation: Pearson J, Brownlee I. 2005. Structure and Fucntion of Mucosal Surfaces, p 1-16. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Structures of MUC 2 (secreted mucin) and MUC 13 (membrane-tethered mucin) proteins. (a) In the VNTR in MUC 2, there are many tandem repeats of the amino acid sequence. (b) In MUC 13 there are 10 degenerative tandem repeats rich in serine and threonine.

Citation: Pearson J, Brownlee I. 2005. Structure and Fucntion of Mucosal Surfaces, p 1-16. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Colonic mucus bilayer. *, mucus layer thicknesses shown are from in vivo measurements made in the rat colon.

Citation: Pearson J, Brownlee I. 2005. Structure and Fucntion of Mucosal Surfaces, p 1-16. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Frequency sweep of pig gastric mucus gels. Shear-compliant (△) and shear-resistant (○) gels were subjected to frequency sweeps between 0.1 and 3 Hz by using a Bohlin CV050 rheometer at 25°C. Results are shown as δ (the phase angle), a measure of gel strength. The lower the δ, the stronger the gel.

Citation: Pearson J, Brownlee I. 2005. Structure and Fucntion of Mucosal Surfaces, p 1-16. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

The LPO/Duox mucosal protective system. NIS, sodium/iodine symporter (substrates iodide and thiocyanate).

Citation: Pearson J, Brownlee I. 2005. Structure and Fucntion of Mucosal Surfaces, p 1-16. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817619.chap1
1. Allen, A., 1989. Gastrointestinal mucus, p. 359 382. In J. G. Forte (ed.), Handbook of Physiology—The Gastrointestinal System, vol. 3. American Physiological Society, Bethesda, Md.
2. Allen, A.,, D. A. Hutton,, A. J. Leonard,, J. P. Pearson,, and L. A. Sellers. 1986. The role of mucus in the protection of the gastroduodenal mucosa. Scand. J. Gastroenterol. 21: 71 78.
3. Allen, A.,, D. A. Hutton,, and J. P. Pearson. 1998. The MUC2 gene product: a human intestinal mucin. Int. J. Biochem. Cell Biol. 30: 797 801.
4. Atuma, C.,, V. Strugala,, A. Allen,, and L. Holm. 2001. The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo. Am. J. Physiol. Ser. G 280: G922 G929.
5. Bajaj-Elliott, M.,, P. Fedeli,, G. V. Smith,, P. Domizio,, L. Maher,, R. S. Ali,, A. G. Quinn,, and M. J. G. Farthing. 2002. Modulation of host antimicrobial peptide (beta-defensins 1 and 2) expression during gastritis. Gut 51: 356 361.
6. Bals, R. 2000. Epithelial antimicrobial peptides in host defense against infection. Respir. Res. 1: 141 150.
7. Basset, C.,, J. Holton,, R. O’Mahony,, and I. Roitt. 2003. Innate immunity and pathogen-host interaction. Vaccine 21: S12 S23.
8. Beamer, L. J.,, S. F. Carroll,, and D. Eisenberg. 1997. Crystal structure of human BPI and two bound phospholipids at 2.4 angstrom resolution. Science 276: 1861 1864.
9. Bell, A. E.,, A. Allen,, E. R. Morris,, and S. B. Rossmurphy. 1984. Functional interactions of gastric mucus glycoprotein. Int. J. Biol. Macromol. 6: 309 315.
10. Bork, P.,, and L. Patthy. 1995. The sea module—a new extracellular domain associated with O-glycosylation. Protein Sci. 4: 1421 1425.
11. Canny, G.,, O. Levy,, G. T. Furuta,, S. Narravula-Alipati,, R. B. Sisson,, C. N. Serhan,, and S. P. Colgan. 2002. Lipid mediator-induced expression of bactericidal/permeability-increasing protein (BPI) in human mucosal epithelia. Proc. Nat. Acad. Sci. USA 99: 3902 3907.
12. Chen, Y.,, Y. H. Zhao,, T. B. Kalaslavadi,, E. Hamati,, K. Nehrke,, A. D. Le,, D. K. Ann,, and R. Wu. 2003. Genome-wide search and identification of a novel gel-forming mucin MUC19/Muc19 in glandular tissues. Am. J. Respir. Cell Mol. Biol. 30: 155 165.
13. Crawley, S. C.,, J. R. Gum,, J. W. Hicks,, W. S. Pratt,, J. P. Aubert,, D. M. Swallow,, and Y. S. Kim. 1999. Genomic organization and structure of the 3? region of human MUC3: alternative splicing predicts membrane-bound and soluble forms of the mucin. Biochem. Biophys. Res. Communi. 263: 728 736.
14. Dekker, J.,, J. W. A. Rossen,, H. A. Buller,, and A. W. C. Einerhand. 2002. The MUC family: an obituary. Trends Biochem. Sci. 27: 126 131.
15. Desseyn, J. L.,, J. P. Aubert,, N. Porchet,, and A. Laine. 2000. Evolution of the large secreted gel-forming mucins. Mol. Biol. Evol. 17: 1175 1184.
16. Dixon, J.,, V. Strugala,, S. M. Griffin,, M. R. Welfare,, P. W. Dettmar,, A. Allen,, and J. P. Pearson. 2001. Esophageal mucin: an adherent mucus gel barrier is absent in the normal esophagus but present in columnar-lined Barrett’s esophagus. Am. J. Gastroenterol. 96: 2575 2583.
17. Ellison, R. T. 1994. The effects of lactoferrin on Gram-negative bacteria. Adv. Exp. Med. Biol. 357: 71 90.
18. Elsbach, P.,, and J. Weiss. 1998. Role of the bactericidal/permeability- increasing protein in host defense. Curr. Opini. Immunol. 10: 45 49.
19. Enss, M. L.,, H. Muller,, U. Schmidt-Wittig,, R. Kownatzki,, M. Coenen,, and H. J. Hedrich. 1996. Effects of perorally applied endotoxin on colonic mucins of germfree rats. Scand. J. Gastroenterol. 31: 868 874.
20. Fernie-King, B. A.,, D. J. Seilly,, A. Davies,, and P. J. Lachmann. 2002. Streptococcal inhibitor of complement inhibits two additional components of the mucosal innate immune system: secretory leukocyte proteinase inhibitor and lysozyme. Infect. Immun. 70: 4908 4916.
21. Geiszt, M.,, J. Witta,, J. Baffi,, K. Lekstrom,, and T. L. Leto. 2003. Dual oxidases represent novel hydrogen peroxide sources supporting mucosal surface host defense FASEB J. 17: U362 U375.
22. Gendler, S. J.,, and A. P. Spicer. 1995. Epithelial mucin genes. Annu. Rev. Physiol. 57: 607 634.
23. Gerson, C.,, J. Sabater,, M. Scuri,, A. Torbati,, R. Coffey,, J. W. Abraham,, I. Lauredo,, R. Forteza,, A. Wanner,, M. Salathe,, W. M. Abraham,, and G. E. Conner. 2000. The lactoperoxidase system functions in bacterial clearance of airways. Am. J. Respir. Cell Mol. Biol. 22: 665 671.
24. Hase, K.,, L. Eckmann,, J. D. Leopard,, N. Varki,, and M. F. Kagnoff. 2002. Cell differentiation is a key determinant of cathelicidin LL-37/human cationic antimicrobial protein 18 expression by human colon epithelium. Infect. Immun. 70: 953 963.
25. Hecht, G. 1999. Innate mechanisms of epithelial host defense: spotlight on intestine. Am. J. Physiol. Ser. C277: C351 C358.
26. Hopwood, D. 1997. Oesophageal damage and defense in reflux oesophagitis: pathophysiological and cell biological mechanisms. Prog. Histochem. Cytochem. 32: 1 42.
27. Hunt, J. S.,, A. R. McGiven,, A. Groufsky,, K. L. Lynn,, and M. C. Taylor. 1985. Affinity-purified antibodies of defined specificity for use in a solid-phase microplate radioimmunoassay of human Tamm-Horsfall glycoprotein in urine. Biochem. J. 227: 957 963.
28. Johansson, J.,, G. H. Gudmundsson,, M. E. Rottenberg,, K. D. Berndt,, and B. Agerberth. 1998. Conformation-dependent antibacterial activity of the naturally occurring human peptide LL-37. J. Biol. Chem. 273: 3718 3724.
29. Jordan, N.,, J. Newton,, J. Pearson,, and A. Allen. 1998. A novel method for the visualization of the in situ mucus layer in rat and man. Clin. Sci. 95: 97 106.
30. Klebanoff, S. J.,, W. H. Clem,, and R. G. Luebke. 1966. The peroxidase-thiocyanate-hydrogen peroxide antimicrobial system. Biochim. Biophys. Acta 117: 63 72.
31. Kuriyama, S. M.,, and F. J. Silverblatt. 1986. Effect of Tamm- Horsfall urinary glycoprotein on phagocytosis and killing of type I-fimbriated Escherichia coli. Infect. Immun. 51: 193 198.
32. Lambert, J. R.,, S. K. Lin,, and J. Arandamichel. 1995. Helicobacter pylori. Scand. J. Gastroenterol. 30: 33 46.
33. Lapensee, L.,, Y. Paquette,, and G. Bleau. 1997. Allelic polymorphism and chromosomal localization of the human oviductin gene (MUC9). Fertil. Steril. 68: 702 708.
34. Leeker, A.,, B. Kreft,, J. Sandmann,, J. Bates,, G. Wasenauer,, H. Muller,, K. Sack,, and S. Kumar. 1997. Tamm-Horsfall protein inhibits binding of S- and P-fimbriated Escherichia coli to human renal tubular epithelial cells. Exp. Nephrol. 5: 38 46.
35. Lehrer, R. I.,, and T. Ganz. 2002. Defensins of vertebrate animals. Curr. Opini. Immunol. 14: 96 102.
36. Levy, O. 2000. A neutrophil-derived anti-infective molecule: bactericidal/permeability-increasing protein. Antimicrob. Agents Chemother. 44: 2925 2931.
37. Mack, D. R.,, S. Ahrne,, L. Hyde,, S. Wei,, and M. A. Hollingsworth. 2003. Extracellular MUC3 mucin secretion follows adherence of Lactobacillus strains to intestinal epithelial cells in vitro. Gut 52: 827 833.
38. Menozzi, F. D.,, A. S. Debrie,, J. P. Tissier,, C. Locht,, K. Pethe,, and D. Raze. 2002. Interaction of human Tamm-Horsfall glycoprotein with Bordetella pertussis toxin. Microbiology 148: 1193 1201.
39. N’Dow, J.,, C. N. Robson,, J. N. S. Matthews,, D. E. Neal,, and J. P. Pearson. 2001. Reducing mucus production after urinary reconstruction: a prospective randomized trial. J. Urol. 165: 1433 1440.
40. Oliver, L.,, J. Newton,, P. Dettmar,, J. Pearson,, and A. Allen. 1996. Effects of Helicobacter pylori colonisation on the adherent gastric mucus barrier. Immunology 89: OG415 OG415.
41. O’Neil, D. A.,, E. M. Porter,, D. Elewaut,, G. M. Anderson,, L. Eckmann,, T. Ganz,, and M. F. Kagnoff. 1999. Expression and regulation of the human beta-defensins hBD-1 and hBD-2 in intestinal epithelium. J. Immunol. 163: 6718 6724.
42. Pearson, J. P.,, I. A. Brownlee,, and C. Taylor,. Mucin genes in the GI tract. In P. A. Williams,, and G. O. Phillips (ed.), Gums and Stabilisers for the Food Industry, in press. Royal Society of Chemistry, Cambridge, United Kingdom.
43. Phalipon, A.,, A. Cardona,, J. P. Kraehenbuhl,, L. Edelman,, P. J. Sansonetti,, and B. Corthesy. 2002. Secretory component: a new role in secretory IgA-mediated immune exclusion in vivo. Immunity 17: 107 115.
44. Pison, U.,, M. Max,, A. Neuendank,, S. Weissbach,, and S. Pietschmann. 1994. Host-defense capacities of pulmonary surfactant—evidence for nonsurfactant functions of the surfactant system. Eur. J. Clini. Investig. 24: 586 599.
45. Quigley, E. M. M.,, and L. A. Turnberg. 1987. pH of the microclimate lining human gastric and duodenal mucosa in vivo—studies in control subjects and in duodenal-ulcer patients. Gastroenterology 92: 1876 1884.
46. Rindisbacher, L.,, S. Cottet,, R. Wittek,, J. P. Kraehenbuhl,, and B. Corthesy. 1995. Production of human secretory component with dimeric IgA binding-capacity using viral expression systems. J. Biol. Chem. 270: 14220 14228.
47. Ruselervanembden, J. G. H.,, L. M. C. Vanlieshout,, M. J. Gosselink,, and P. Marteau. 1995. Inability of Lactobacillus casei strain Gg, L. acidophilus, and Bifidobacterium bifidum to degrade intestinal mucus glycoproteins. Scand. J. Gastroenterol. 30: 675 680.
48. Russell, J. P.,, G. Diamond,, A. P. Tarver,, T. F. Scanlin,, and C. L. Bevins. 1996. Coordinate induction of two antibiotic genes in tracheal epithelial cells exposed to the inflammatory mediators lipopolysaccharide and tumor necrosis factor alpha. Infect. Immun. 64: 1565 1568.
49. Schilling, J. D.,, S. M. Martin,, C. S. Hung,, R. G. Lorenz,, and S. J. Hultgren. 2003. Toll-like receptor 4 on stromal and hematopoietic cells mediates innate resistance to uropathogenic Escherichia coli. Proc. Nat. Acad. Sci. USA 100: 4203 4208.
50. Severn, T. L.,, D. A. Hutton,, A. Sama,, J. A. Wilson,, J. P. Birchall,, and J. P. Pearson,. 1999. Is hypertrophic nasal mucosa a good model system for studying mucus production in OME? p. 503 507. In M. Tos,, J. Thomsen,, and V. Balle (ed.), Otitis Media Today. Kugler Publications, The Hague, The Netherlands.
51. Shankar, V.,, M. S. Gilmore,, R. C. Elkins,, and G. P. Sachdev. 1994. A novel human airway mucin cDNA encodes a protein with unique tandem-repeat organization. Biochem. J. 300: 295 298.
52. Singh, P. K.,, M. R. Parsek,, E. P. Greenberg,, and M. J. Welsh. 2002. A component of innate immunity prevents bacterial biofilm development. Nature 417: 552 555.
53. Slungaard, A.,, and J. R. Mahoney. 1991. Thiocyanate is the major substrate for eosinophil peroxidase in physiological fluids— implications for cytotoxicity. J. Biol. Chem. 266: 4903 4910.
54. Smirnova, M. G.,, J. P. Birchall,, and J. P. Pearson. 2000. TNFalpha in the regulation of MUC5AC secretion: some aspects of cytokine-induced mucin hypersecretion on the in vitro model. Cytokine 12: 1732 1736.
55. Smirnova, M. G.,, L. Guo,, J. P. Birchall,, and J. P. Pearson. 2003. LPS up-regulates mucin and cytokine mRNA expression and stimulates mucin and cytokine secretion in goblet cells. Cell. Immunol. 221: 42 49.
56. Strugala, V.,, A. Allen,, P. W. Dettmar,, and J. P. Pearson. 2003. Colonic mucin: methods of measuring mucus thickness. Proc. Nutri. Soc. 62: 237 243.
57. Stubbe, H.,, J. Berdoz,, J. P. Kraehenbuhl,, and B. Corthesy. 2000. Polymeric IgA is superior to monomeric IgA and IgG carrying the same variable domain in preventing Clostridium difficile toxin A damaging of T84 monolayers. J. Immunol. 164: 1952 1960.
58. Taylor, C.,, A. Allen,, P. W. Dettmar,, and J. P. Pearson. 2003. The gel matrix of gastric mucus is maintained by a complex interplay of transient and nontransient associations. Biomacromolecules 4: 922 927.
59. Valore, E. V.,, C. H. Park,, A. J. Quayle,, K. R. Wiles,, P. B. McCray,, and T. Ganz. 1998. Human beta-defensin-1: an antimicrobial peptide of urogenital tissues. J. Clin. Investig. 101: 1633 1642.
60. Van de Bovenkamp, J. H. B.,, J. Mahdavi,, A. M. Korteland-VanMale,, H. A. Buller,, A. W. C. Einerhand,, T. Boren,, and J. Dekker. 2003. The MUC5AC glycoprotein is the primary receptor for Helicobacter pylori in the human stomach. Helicobacter 8: 521 532.
61. Van den Brink, G. R.,, K. Tytgat,, R. W. M. Van der Hulst,, C. M. Van der Loos,, A. W. C. Einerhand,, H. A. Buller,, and J. Dekker. 2000. H. pylori colocalises with MUC5AC in the human stomach. Gut 46: 601 607.
62. Walsh, M. D.,, B. G. Hohn,, W. Thong,, P. L. Devine,, R. A. Gardiner,, M. Samaratunga,, and M. A. McGuckin. 1994. Mucin expression by transitional-cell carcinomas of the bladder. Br. J. Urol. 73: 256 262.
63. Williams, S. J.,, D. H. Wreschner,, M. Tran,, H. J. Eyre,, G. R. Sutherland,, and M. A. McGuckin. 2001. MUC13, a novel human cell surface mucin expressed by epithelial and hemopoietic cells. J. Biol. Chem. 276: 18327 18336.

Tables

Generic image for table
Table 1

Chromosomal location of genes

Citation: Pearson J, Brownlee I. 2005. Structure and Fucntion of Mucosal Surfaces, p 1-16. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch1
Generic image for table
Table 2

Epithelial cell protective secretions

Citation: Pearson J, Brownlee I. 2005. Structure and Fucntion of Mucosal Surfaces, p 1-16. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch1

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error