1887

Chapter 1 : Structure and Fucntion of Mucosal Surfaces

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Structure and Fucntion of Mucosal Surfaces, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817619/9781555813239_Chap01-1.gif /docserver/preview/fulltext/10.1128/9781555817619/9781555813239_Chap01-2.gif

Abstract:

The mucosal surfaces of the body are the areas where important absorptive and excretive functions occur. The innate defense system consists of three components: mechanical, chemical, and cellular. The first defense that an invading pathogen would encounter is the preepithelial barrier. Mucins form two lines of preepithelial defense, such that the secreted gel overlies the mucins forming part of the glycocalyx on the apical surface of the epithelial cells. The most important chemokine released from the epithelial cells is interleukin-8 (IL-8), which, as well as being an effective chemoattractant for granulocytes, stimulates mucin secretion by goblet cells. Some microorganisms can utilize the mucus layer for protection. Several proteinase inhibitors are produced by epithelial cells and, where present, submucosal glands, e.g., in the airways. These inhibitors form an important part of the preepithelial defenses and the innate immune system. Secretory leukocyte proteinase inhibitor (SLPI) is one such epithelial secretion, along with elafin (SKALP), which is an elastase inhibitor with 42% sequence homology to SLPI. A key role for the preepithelial barrier is to prevent microbial adherence by interfering with microbial adhesins and toxins. Several enzymes are secreted by the epithelial cells into the external secretions. A key role for the preepithelial barrier is to prevent microbial adherence by interfering with microbial adhesins and toxins. As well as cell membrane-associated mucin, the apical surface of the epithelial cells has other molecules presented to approaching microbes.

Citation: Pearson J, Brownlee I. 2005. Structure and Fucntion of Mucosal Surfaces, p 1-16. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch1

Key Concept Ranking

Human immunodeficiency virus 1
0.474885
Tumor Necrosis Factor alpha
0.44693983
0.474885
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1a
Figure 1a

The diverse natures of mucosal surfaces. (A) Airway epithelium. The airway epithelium consists mainly of two cell types, ciliated cells that move the mucus blanket and goblet cells that secrete the mucus layer. Submucosal glands (not shown) also contribute to the mucus blanket. Above the cell surface is a low-viscosity pericilliary layer, which allows the cilia to beat effectively with the tips of the cilia just engaged into the mucus blanket. (B) Esophageal epithelium. The basal layer is where active cell division takes place. The prickle cell layer is where the cells differentiate into functional cells, and the functional layer is where the cells start to die and are shed into the lumen. The functional layer is covered by a thin unstirred water layer containing some salivary mucus and some mucus secreted by the esophageal submucosal glands. (C) Intestinal epithelium. The small intestinal epithelium consists of small finger-like extensions called villi, and the absorptive cells also have microvilli on their apical surface, creating the brush border. Interspaced among the absorptive cells are the mucus-secreting goblet cells. This epithelium is covered by a mucus bilayer of variable thickness. The layer is thickest in the ileum; the total thickness of 480 ± 47 µm is made up of 447 ± 47 µm of sloppy mucus and 29 ± 8 µm of firm mucus layers in the rat. (D) Urinary bladder epithelium. The urinary bladder epithelium consists of three layers: the basal, intermediate, and superficial layers. The surface is not covered by a secreted mucus gel but does have a surface protection by MUC 1 and 4 mucins extending 0.7 µm from the cell membrane.

Citation: Pearson J, Brownlee I. 2005. Structure and Fucntion of Mucosal Surfaces, p 1-16. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 1b
Figure 1b

The diverse natures of mucosal surfaces. (A) Airway epithelium. The airway epithelium consists mainly of two cell types, ciliated cells that move the mucus blanket and goblet cells that secrete the mucus layer. Submucosal glands (not shown) also contribute to the mucus blanket. Above the cell surface is a low-viscosity pericilliary layer, which allows the cilia to beat effectively with the tips of the cilia just engaged into the mucus blanket. (B) Esophageal epithelium. The basal layer is where active cell division takes place. The prickle cell layer is where the cells differentiate into functional cells, and the functional layer is where the cells start to die and are shed into the lumen. The functional layer is covered by a thin unstirred water layer containing some salivary mucus and some mucus secreted by the esophageal submucosal glands. (C) Intestinal epithelium. The small intestinal epithelium consists of small finger-like extensions called villi, and the absorptive cells also have microvilli on their apical surface, creating the brush border. Interspaced among the absorptive cells are the mucus-secreting goblet cells. This epithelium is covered by a mucus bilayer of variable thickness. The layer is thickest in the ileum; the total thickness of 480 ± 47 µm is made up of 447 ± 47 µm of sloppy mucus and 29 ± 8 µm of firm mucus layers in the rat. (D) Urinary bladder epithelium. The urinary bladder epithelium consists of three layers: the basal, intermediate, and superficial layers. The surface is not covered by a secreted mucus gel but does have a surface protection by MUC 1 and 4 mucins extending 0.7 µm from the cell membrane.

Citation: Pearson J, Brownlee I. 2005. Structure and Fucntion of Mucosal Surfaces, p 1-16. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Structure of a gastric gland. Mucus is secreted by the neck cells and the surface mucosal cells. Acid and pepsinogen are secreted from cells deeper within the gland.

Citation: Pearson J, Brownlee I. 2005. Structure and Fucntion of Mucosal Surfaces, p 1-16. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Structures of MUC 2 (secreted mucin) and MUC 13 (membrane-tethered mucin) proteins. (a) In the VNTR in MUC 2, there are many tandem repeats of the amino acid sequence. (b) In MUC 13 there are 10 degenerative tandem repeats rich in serine and threonine.

Citation: Pearson J, Brownlee I. 2005. Structure and Fucntion of Mucosal Surfaces, p 1-16. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Colonic mucus bilayer. *, mucus layer thicknesses shown are from in vivo measurements made in the rat colon.

Citation: Pearson J, Brownlee I. 2005. Structure and Fucntion of Mucosal Surfaces, p 1-16. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Frequency sweep of pig gastric mucus gels. Shear-compliant (△) and shear-resistant (○) gels were subjected to frequency sweeps between 0.1 and 3 Hz by using a Bohlin CV050 rheometer at 25°C. Results are shown as δ (the phase angle), a measure of gel strength. The lower the δ, the stronger the gel.

Citation: Pearson J, Brownlee I. 2005. Structure and Fucntion of Mucosal Surfaces, p 1-16. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

The LPO/Duox mucosal protective system. NIS, sodium/iodine symporter (substrates iodide and thiocyanate).

Citation: Pearson J, Brownlee I. 2005. Structure and Fucntion of Mucosal Surfaces, p 1-16. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817619.chap1
1. Allen, A., 1989. Gastrointestinal mucus, p. 359382. In J. G. Forte (ed.), Handbook of Physiology—The Gastrointestinal System, vol. 3. American Physiological Society, Bethesda, Md.
2. Allen, A.,, D. A. Hutton,, A. J. Leonard,, J. P. Pearson,, and L. A. Sellers. 1986. The role of mucus in the protection of the gastroduodenal mucosa. Scand. J. Gastroenterol. 21:7178.
3. Allen, A.,, D. A. Hutton,, and J. P. Pearson. 1998. The MUC2 gene product: a human intestinal mucin. Int. J. Biochem. Cell Biol. 30:797801.
4. Atuma, C.,, V. Strugala,, A. Allen,, and L. Holm. 2001. The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo. Am. J. Physiol. Ser. G 280:G922G929.
5. Bajaj-Elliott, M.,, P. Fedeli,, G. V. Smith,, P. Domizio,, L. Maher,, R. S. Ali,, A. G. Quinn,, and M. J. G. Farthing. 2002. Modulation of host antimicrobial peptide (beta-defensins 1 and 2) expression during gastritis. Gut 51:356361.
6. Bals, R. 2000. Epithelial antimicrobial peptides in host defense against infection. Respir. Res. 1:141150.
7. Basset, C.,, J. Holton,, R. O’Mahony,, and I. Roitt. 2003. Innate immunity and pathogen-host interaction. Vaccine 21:S12S23.
8. Beamer, L. J.,, S. F. Carroll,, and D. Eisenberg. 1997. Crystal structure of human BPI and two bound phospholipids at 2.4 angstrom resolution. Science 276:18611864.
9. Bell, A. E.,, A. Allen,, E. R. Morris,, and S. B. Rossmurphy. 1984. Functional interactions of gastric mucus glycoprotein. Int. J. Biol. Macromol. 6:309315.
10. Bork, P.,, and L. Patthy. 1995. The sea module—a new extracellular domain associated with O-glycosylation. Protein Sci. 4:14211425.
11. Canny, G.,, O. Levy,, G. T. Furuta,, S. Narravula-Alipati,, R. B. Sisson,, C. N. Serhan,, and S. P. Colgan. 2002. Lipid mediator-induced expression of bactericidal/permeability-increasing protein (BPI) in human mucosal epithelia. Proc. Nat. Acad. Sci. USA 99:39023907.
12. Chen, Y.,, Y. H. Zhao,, T. B. Kalaslavadi,, E. Hamati,, K. Nehrke,, A. D. Le,, D. K. Ann,, and R. Wu. 2003. Genome-wide search and identification of a novel gel-forming mucin MUC19/Muc19 in glandular tissues. Am. J. Respir. Cell Mol. Biol. 30:155165.
13. Crawley, S. C.,, J. R. Gum,, J. W. Hicks,, W. S. Pratt,, J. P. Aubert,, D. M. Swallow,, and Y. S. Kim. 1999. Genomic organization and structure of the 3? region of human MUC3: alternative splicing predicts membrane-bound and soluble forms of the mucin. Biochem. Biophys. Res. Communi. 263:728736.
14. Dekker, J.,, J. W. A. Rossen,, H. A. Buller,, and A. W. C. Einerhand. 2002. The MUC family: an obituary. Trends Biochem. Sci. 27:126131.
15. Desseyn, J. L.,, J. P. Aubert,, N. Porchet,, and A. Laine. 2000. Evolution of the large secreted gel-forming mucins. Mol. Biol. Evol. 17:11751184.
16. Dixon, J.,, V. Strugala,, S. M. Griffin,, M. R. Welfare,, P. W. Dettmar,, A. Allen,, and J. P. Pearson. 2001. Esophageal mucin: an adherent mucus gel barrier is absent in the normal esophagus but present in columnar-lined Barrett’s esophagus. Am. J. Gastroenterol. 96:25752583.
17. Ellison, R. T. 1994. The effects of lactoferrin on Gram-negative bacteria. Adv. Exp. Med. Biol. 357:7190.
18. Elsbach, P.,, and J. Weiss. 1998. Role of the bactericidal/permeability- increasing protein in host defense. Curr. Opini. Immunol. 10:4549.
19. Enss, M. L.,, H. Muller,, U. Schmidt-Wittig,, R. Kownatzki,, M. Coenen,, and H. J. Hedrich. 1996. Effects of perorally applied endotoxin on colonic mucins of germfree rats. Scand. J. Gastroenterol. 31:868874.
20. Fernie-King, B. A.,, D. J. Seilly,, A. Davies,, and P. J. Lachmann. 2002. Streptococcal inhibitor of complement inhibits two additional components of the mucosal innate immune system: secretory leukocyte proteinase inhibitor and lysozyme. Infect. Immun. 70:49084916.
21. Geiszt, M.,, J. Witta,, J. Baffi,, K. Lekstrom,, and T. L. Leto. 2003. Dual oxidases represent novel hydrogen peroxide sources supporting mucosal surface host defense FASEB J. 17:U362U375.
22. Gendler, S. J.,, and A. P. Spicer. 1995. Epithelial mucin genes. Annu. Rev. Physiol. 57:607634.
23. Gerson, C.,, J. Sabater,, M. Scuri,, A. Torbati,, R. Coffey,, J. W. Abraham,, I. Lauredo,, R. Forteza,, A. Wanner,, M. Salathe,, W. M. Abraham,, and G. E. Conner. 2000. The lactoperoxidase system functions in bacterial clearance of airways. Am. J. Respir. Cell Mol. Biol. 22:665671.
24. Hase, K.,, L. Eckmann,, J. D. Leopard,, N. Varki,, and M. F. Kagnoff. 2002. Cell differentiation is a key determinant of cathelicidin LL-37/human cationic antimicrobial protein 18 expression by human colon epithelium. Infect. Immun. 70:953963.
25. Hecht, G. 1999. Innate mechanisms of epithelial host defense: spotlight on intestine. Am. J. Physiol. Ser. C277:C351C358.
26. Hopwood, D. 1997. Oesophageal damage and defense in reflux oesophagitis: pathophysiological and cell biological mechanisms. Prog. Histochem. Cytochem. 32:142.
27. Hunt, J. S.,, A. R. McGiven,, A. Groufsky,, K. L. Lynn,, and M. C. Taylor. 1985. Affinity-purified antibodies of defined specificity for use in a solid-phase microplate radioimmunoassay of human Tamm-Horsfall glycoprotein in urine. Biochem. J. 227:957963.
28. Johansson, J.,, G. H. Gudmundsson,, M. E. Rottenberg,, K. D. Berndt,, and B. Agerberth. 1998. Conformation-dependent antibacterial activity of the naturally occurring human peptide LL-37. J. Biol. Chem. 273:37183724.
29. Jordan, N.,, J. Newton,, J. Pearson,, and A. Allen. 1998. A novel method for the visualization of the in situ mucus layer in rat and man. Clin. Sci. 95:97106.
30. Klebanoff, S. J.,, W. H. Clem,, and R. G. Luebke. 1966. The peroxidase-thiocyanate-hydrogen peroxide antimicrobial system. Biochim. Biophys. Acta 117:6372.
31. Kuriyama, S. M.,, and F. J. Silverblatt. 1986. Effect of Tamm- Horsfall urinary glycoprotein on phagocytosis and killing of type I-fimbriated Escherichia coli. Infect. Immun. 51:193198.
32. Lambert, J. R.,, S. K. Lin,, and J. Arandamichel. 1995. Helicobacter pylori. Scand. J. Gastroenterol. 30:3346.
33. Lapensee, L.,, Y. Paquette,, and G. Bleau. 1997. Allelic polymorphism and chromosomal localization of the human oviductin gene (MUC9). Fertil. Steril. 68:702708.
34. Leeker, A.,, B. Kreft,, J. Sandmann,, J. Bates,, G. Wasenauer,, H. Muller,, K. Sack,, and S. Kumar. 1997. Tamm-Horsfall protein inhibits binding of S- and P-fimbriated Escherichia coli to human renal tubular epithelial cells. Exp. Nephrol. 5:3846.
35. Lehrer, R. I.,, and T. Ganz. 2002. Defensins of vertebrate animals. Curr. Opini. Immunol. 14:96102.
36. Levy, O. 2000. A neutrophil-derived anti-infective molecule: bactericidal/permeability-increasing protein. Antimicrob. Agents Chemother. 44:29252931.
37. Mack, D. R.,, S. Ahrne,, L. Hyde,, S. Wei,, and M. A. Hollingsworth. 2003. Extracellular MUC3 mucin secretion follows adherence of Lactobacillus strains to intestinal epithelial cells in vitro. Gut 52:827833.
38. Menozzi, F. D.,, A. S. Debrie,, J. P. Tissier,, C. Locht,, K. Pethe,, and D. Raze. 2002. Interaction of human Tamm-Horsfall glycoprotein with Bordetella pertussis toxin. Microbiology 148: 11931201.
39. N’Dow, J.,, C. N. Robson,, J. N. S. Matthews,, D. E. Neal,, and J. P. Pearson. 2001. Reducing mucus production after urinary reconstruction: a prospective randomized trial. J. Urol. 165: 14331440.
40. Oliver, L.,, J. Newton,, P. Dettmar,, J. Pearson,, and A. Allen. 1996. Effects of Helicobacter pylori colonisation on the adherent gastric mucus barrier. Immunology 89:OG415OG415.
41. O’Neil, D. A.,, E. M. Porter,, D. Elewaut,, G. M. Anderson,, L. Eckmann,, T. Ganz,, and M. F. Kagnoff. 1999. Expression and regulation of the human beta-defensins hBD-1 and hBD-2 in intestinal epithelium. J. Immunol. 163:67186724.
42. Pearson, J. P.,, I. A. Brownlee,, and C. Taylor,. Mucin genes in the GI tract. In P. A. Williams,, and G. O. Phillips (ed.), Gums and Stabilisers for the Food Industry, in press. Royal Society of Chemistry, Cambridge, United Kingdom.
43. Phalipon, A.,, A. Cardona,, J. P. Kraehenbuhl,, L. Edelman,, P. J. Sansonetti,, and B. Corthesy. 2002. Secretory component: a new role in secretory IgA-mediated immune exclusion in vivo. Immunity 17:107115.
44. Pison, U.,, M. Max,, A. Neuendank,, S. Weissbach,, and S. Pietschmann. 1994. Host-defense capacities of pulmonary surfactant—evidence for nonsurfactant functions of the surfactant system. Eur. J. Clini. Investig. 24:586599.
45. Quigley, E. M. M.,, and L. A. Turnberg. 1987. pH of the microclimate lining human gastric and duodenal mucosa in vivo—studies in control subjects and in duodenal-ulcer patients. Gastroenterology 92:18761884.
46. Rindisbacher, L.,, S. Cottet,, R. Wittek,, J. P. Kraehenbuhl,, and B. Corthesy. 1995. Production of human secretory component with dimeric IgA binding-capacity using viral expression systems. J. Biol. Chem. 270:1422014228.
47. Ruselervanembden, J. G. H.,, L. M. C. Vanlieshout,, M. J. Gosselink,, and P. Marteau. 1995. Inability of Lactobacillus casei strain Gg, L. acidophilus, and Bifidobacterium bifidum to degrade intestinal mucus glycoproteins. Scand. J. Gastroenterol. 30:675680.
48. Russell, J. P.,, G. Diamond,, A. P. Tarver,, T. F. Scanlin,, and C. L. Bevins. 1996. Coordinate induction of two antibiotic genes in tracheal epithelial cells exposed to the inflammatory mediators lipopolysaccharide and tumor necrosis factor alpha. Infect. Immun. 64:15651568.
49. Schilling, J. D.,, S. M. Martin,, C. S. Hung,, R. G. Lorenz,, and S. J. Hultgren. 2003. Toll-like receptor 4 on stromal and hematopoietic cells mediates innate resistance to uropathogenic Escherichia coli. Proc. Nat. Acad. Sci. USA 100:42034208.
50. Severn, T. L.,, D. A. Hutton,, A. Sama,, J. A. Wilson,, J. P. Birchall,, and J. P. Pearson,. 1999. Is hypertrophic nasal mucosa a good model system for studying mucus production in OME? p. 503507. In M. Tos,, J. Thomsen,, and V. Balle (ed.), Otitis Media Today. Kugler Publications, The Hague, The Netherlands.
51. Shankar, V.,, M. S. Gilmore,, R. C. Elkins,, and G. P. Sachdev. 1994. A novel human airway mucin cDNA encodes a protein with unique tandem-repeat organization. Biochem. J. 300: 295298.
52. Singh, P. K.,, M. R. Parsek,, E. P. Greenberg,, and M. J. Welsh. 2002. A component of innate immunity prevents bacterial biofilm development. Nature 417:552555.
53. Slungaard, A.,, and J. R. Mahoney. 1991. Thiocyanate is the major substrate for eosinophil peroxidase in physiological fluids— implications for cytotoxicity. J. Biol. Chem. 266:49034910.
54. Smirnova, M. G.,, J. P. Birchall,, and J. P. Pearson. 2000. TNFalpha in the regulation of MUC5AC secretion: some aspects of cytokine-induced mucin hypersecretion on the in vitro model. Cytokine 12:17321736.
55. Smirnova, M. G.,, L. Guo,, J. P. Birchall,, and J. P. Pearson. 2003. LPS up-regulates mucin and cytokine mRNA expression and stimulates mucin and cytokine secretion in goblet cells. Cell. Immunol. 221:4249.
56. Strugala, V.,, A. Allen,, P. W. Dettmar,, and J. P. Pearson. 2003. Colonic mucin: methods of measuring mucus thickness. Proc. Nutri. Soc. 62:237243.
57. Stubbe, H.,, J. Berdoz,, J. P. Kraehenbuhl,, and B. Corthesy. 2000. Polymeric IgA is superior to monomeric IgA and IgG carrying the same variable domain in preventing Clostridium difficile toxin A damaging of T84 monolayers. J. Immunol. 164:19521960.
58. Taylor, C.,, A. Allen,, P. W. Dettmar,, and J. P. Pearson. 2003. The gel matrix of gastric mucus is maintained by a complex interplay of transient and nontransient associations. Biomacromolecules 4:922927.
59. Valore, E. V.,, C. H. Park,, A. J. Quayle,, K. R. Wiles,, P. B. McCray,, and T. Ganz. 1998. Human beta-defensin-1: an antimicrobial peptide of urogenital tissues. J. Clin. Investig. 101: 16331642.
60. Van de Bovenkamp, J. H. B.,, J. Mahdavi,, A. M. Korteland-VanMale,, H. A. Buller,, A. W. C. Einerhand,, T. Boren,, and J. Dekker. 2003. The MUC5AC glycoprotein is the primary receptor for Helicobacter pylori in the human stomach. Helicobacter 8:521532.
61. Van den Brink, G. R.,, K. Tytgat,, R. W. M. Van der Hulst,, C. M. Van der Loos,, A. W. C. Einerhand,, H. A. Buller,, and J. Dekker.2000. H. pylori colocalises with MUC5AC in the human stomach. Gut 46:601607.
62. Walsh, M. D.,, B. G. Hohn,, W. Thong,, P. L. Devine,, R. A. Gardiner,, M. Samaratunga,, and M. A. McGuckin. 1994. Mucin expression by transitional-cell carcinomas of the bladder. Br. J. Urol. 73:256262.
63. Williams, S. J.,, D. H. Wreschner,, M. Tran,, H. J. Eyre,, G. R. Sutherland,, and M. A. McGuckin. 2001. MUC13, a novel human cell surface mucin expressed by epithelial and hemopoietic cells. J. Biol. Chem. 276:1832718336.

Tables

Generic image for table
Table 1

Chromosomal location of genes

Citation: Pearson J, Brownlee I. 2005. Structure and Fucntion of Mucosal Surfaces, p 1-16. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch1
Generic image for table
Table 2

Epithelial cell protective secretions

Citation: Pearson J, Brownlee I. 2005. Structure and Fucntion of Mucosal Surfaces, p 1-16. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch1

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error