Chapter 12 : Microbiota of Mucosal Surfaces in the Gut of Monogastric Animals

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Microbiota of Mucosal Surfaces in the Gut of Monogastric Animals, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817619/9781555813239_Chap12-1.gif /docserver/preview/fulltext/10.1128/9781555817619/9781555813239_Chap12-2.gif


The terminal ileum and the large bowel (cecum and colon) are hospitable places for bacterial proliferation, and a complex and numerous bacterial community resides in this site. This community is often referred to as the normal gut microbiota (microflora). Many of the numerically important members of the gut microbiota have not yet been cultivated under laboratory conditions and are known and detected on the basis of their 16S rRNA gene sequences. Comparisons of the characteristics of germfree and conventional animals have clearly demonstrated that the gut microbiota has considerable influences on host biochemistry, physiology, immunology, and low-level resistance to gut infections. Cytoskeletal rearrangements within the enterocyte form a socket by which the filament becomes permanently attached to the mucosal surface. The influence of the gut microbiota of neonates on the immune system is of especial interest because of the observed increase in the incidence of allergies in children in affluent countries over recent decades. The adherence of cells to, and proliferation on, epithelial surfaces in rodents, pigs, and poultry has tempted some researchers to consider that the same phenomenon occurs in the human gut. This overlooks the differences in the anatomy and histology of the human gut relative to that of other monogastric animals. In other words, the immune systems of different humans or other animals recognize different epitopes. This is apparent from experimental-animal studies because the composition of the gut microbiota of HLA-B27 rats and interleukin-10-deficient mice is different, yet colitis results in both types of animals.

Citation: Tannock G. 2005. Microbiota of Mucosal Surfaces in the Gut of Monogastric Animals, p 163-178. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch12

Key Concept Ranking

Microbial Ecology
Denaturing Gradient Gel Electrophoresis
Bacterial Proteins
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Alander, M.,, R. Satokari,, R. Korpela,, M. Saxelin,, T. Vilpponen- Samela,, T. Mattila-Sandholm,, and A. von Wright. 1999. Persistence of colonization of human colonic mucosa by a probiotic strain, Lactobacillus rhamnosus GG, after oral consumption. Appl. Environ. Microbiol. 65:351354.
2. Alexander, M. 1971. Microbial Ecology. John Wiley & Sons, Inc., New York, N.Y.
3. Barrow, P. A.,, B. E. Brooker,, R. Fuller,, and M. J. Newport. 1980. The attachment of bacteria to the gastric epithelium of the pig and its importance in the microecology of the intestine. J. Appl. Bacteriol. 48:147154.
4. Berg, D. J.,, N. Davidson,, R. Kuhn,, W. Muller,, S. Menon,, G. Holland,, L. Thompson-Snipes,, M. W. Leach,, and D. Rennick. 1996 Enterocolitis and colon cancer in interleukin-10- deficient mice are associated with aberrant cytokine production and CD4+ TH1-like responses. J. Clin. Investig. 98:10101020.
5. Blehert, D. S.,, R. J. Palmer,, J. B. Xavier,, J. S. Almeida,, and P. E. Kolenbrander. 2003. Autoinducer 2 production by Streptococcus gordonii DL1 and the biofilm phenotype of a luxS mutant are influenced by nutritional conditions. J. Bacteriol. 185:48514860.
6. Bouhnik, Y.,, B. Flourie,, M. Riottot,, N. Bisetti,, M.-F. Gailing,, A. Guibert,, F. Bornet, and J.-C. Rambaud. 1996. Effects of fructo-oligosaccharides ingestion on fecal bifidobacteria and selected metabolic indexes of colon carcinogenesis in healthy humans. Nutr. Cancer 26:2129.
7. Bry, L.,, P. G. Falk,, T. Midtvedt,, and J. I. Gordon. 1996. A model of host-microbial interactions in an open mammalian ecosystem. Science 273:13801383.
8. Burney, P. G.,, S. Chinn,, and R. J. Rona. 1990. Has the prevalence of asthma increased in children? Evidence from the national study of health and growth 1973-1986. Br. Med. J. 300:13061310.
9. Burr, M. L.,, B. K. Butland,, S. King,, and W. E. Vaughan. 1989. Changes in asthma prevalence: two surveys 15 years apart. Arch. Dis. Child. 61:14521456.
10. Collins, A. J.,, L. J. Notarianni,, and U. J. Potter. 1999. An unusual helical micro-organism found in the gut lumen of human subjects. J. Med. Microbiol. 48:401405.
11. Cook, G. M., and J. B. Russell. 1994. Energy spilling reactions of treptococcus bovis and resistance of its membrane to proton conductance. Appl. Environ. Microbiol. 60:19421948.
12. Crittenden, R. G., 1999. Prebiotics, p. 141156. In G. W. Tannock (ed.), Probiotics: a Critical Review. Horizon Scientific Press, Wymondham, United Kingdom.
13. Croucher, S. C.,, A. P. Houston,, C. E. Bayliss,, and R. J. Turner. 1983. Bacterial populations associated with different regions of the human colon wall. Appl. Environ. Microbiol. 45:10251033.
14. Cummings, J. H.,, and G. T. Macfarlane. 1991. The control and consequences of bacterial fermentation in the human colon. J. Appl. Bacteriol. 70:443459.
15. Dal Bello, F.,, J. Walter,, W. P. Hammes,, and C. Hertel. 2003. Increased complexity of the species composition of lactic acid bacteria in human feces revealed by alternative incubation condition. Microb. Ecol. 45:455463.
16. Davies, D. G.,, M. R. Parsek,, J. P. Pearson,, B. H. Iglewski,, J.W. Costerton,, and E. P. Greenberg. 1998. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295298.
17. D’Haens, G. R.,, K. Geboes,, M. Peeters, F Baert, F. Penninckx, and P. Rutgeerts. 1998. Early lesions of recurrent Crohn’s disease caused by infusion of intestinal contents in excluded ileum. Gastroenterology 114:262267.
18. Dubos, R.,, R. W. Schaedler,, R. Costello,, and P. Hoet. 1965. Indigenous, normal, and autochthonous flora of the gastrointestinal tract. J. Exp. Med. 122:6776.
19. Duchmann, R.,, I. Kaiser,, E. Hermann,, W. Mayet,, K. Ewe, and K-H. Meyer zum Buschenfelde. 1995. Tolerance exists towards resident intestinal flora but is broken in active inflammatory bowel disease (IBD). Clin. Exp. Immunol. 102:448455.
20. Dunne, C.,, L. Murphy,, S. Flynn,, L. Omahory,, S. O’Halloran,, M. Feeney,, D. Morrissey,, G. Thornton,, G. Fitzgerald,, C. Daly,, B. Keily,, E. M. Quigley,, G. C. O’Sullivan,, F. Shanahan,, and J. K. Collins. 1999. Probiotics: from myth to reality. Demonstration of functionality in animal models of disease and in human clinical trials. Antonie Leeuwenhoek 76:279292.
21. Elson, C. O.,, R. B. Sartor,, G. S. Tennyson,, and R. H. Riddell. 1995. Experimental models of inflammatory bowel disease. Gastroenterology 109:13441367.
22. Farooqi, I. S.,, and J. M. Hopkin. 1998. Early childhood infection and atopic disorder. Thorax 53:927932.
23. Federle, M. J.,, and B. L. Bassler. 2003. Interspecies communications in bacteria. J. Clin. Investig. 112:12911299.
24. Felske, A.,, H. Rheims,, A. Wolerink,, E. Stackebrandt,, and A. D. L. Akkermans. 1997. Ribosome analysis reveals prominent activity of an uncultured member of the class Actinobacteria in grassland soils. Microbiology 143:29832989.
25. Fuller, R. 1975. Nature of the determinant responsible for adhesion of lactobacilli to chicken crop epithelial cells. J. Gen. Microbiol. 87:245250.
26. Fuller, R.,, and B. E. Brooker. 1974. Lactobacilli which attach to the crop epithelium of the fowl. Am. J. Clin. Nutr. 27:13051312.
27. Gerrard, J. W.,, C. A. Geddes,, P. L. Reggin,, C. D. Gerrard,, and S. Horne. 1976. Serum IgE levels in white and metis communities in Saskatchewan. Ann. Allergy 37:91100.
28. Gibson, G. R.,, E. R. Beatty,, X. Wang, and J. H. Cummings. 1995. Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology 108:975982.
29. Gibson, G. R.,, and M. B. Roberfroid. 1995. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J. Nutr. 125:14011412.
30. Gong, J.,, R. J. Forster,, H. Yu,, J. R. Chambers,, P. M. Sabour,, R. Wheatcroft,, and S. Chen. 2002. Diversity and phylogenetic analysis of bacteria in the mucosa of chicken ceca and comparison with bacteria in the cecal lumen. FEMS Microbiol. Lett. 208:17.
31. Gong, J.,, R. J. Forster,, H. Yu,, J. R. Chambers,, P. M. Sabour,, R. Wheatcroft,, and S. Chen. 2002. Molecular analysis of bacterial populations in the ileum of broiler chickens and comparison with bacteria in the cecum. FEMS Microbiol. Ecol. 41:171179.
32. Gordon, H. A.,, and L. Pesti. 1971. The gnotobiotic animal as a tool in the study of host-microbial relationships. Bacteriol. Rev. 35:390429.
33. Greenberg, E. P. 1997. Quorum sensing in gram-negative bacteria. ASM News 63:371377.
34. Harmsen, H. J. M.,, A. C. M. Wildeboer-Veloo,, G. C. Raangs,, A. A. Wagendorp,, N. Klijn,, J. G. Bindels,, and G. W. Welling. 2000. Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J. Pediatr. Gastroenterol. Nutr. 30:6167.
35. Harmsen, H. J. M.,, G. C. Raangs,, A. H. Franks,, A. C. M. Wildeboer-Veloo,, and G. W. Welling. 2002. The effect of the prebiotic inulin and the probiotic Bifidobacterium longum on the fecal microflora of healthy volunteers measured by FISH and DGGE. Microb. Ecol. Health Dis. 14:211219.
36. Hartley, C. L.,, C. S. Neumann,, and M. H. Richmond. 1979. Adhesion of commensal bacteria to the large intestine wall in humans. Infect. Immun. 23:128132.
37. Hayashi, H.,, M. Sakamoto,, and Y. Benno. 2002. Phylogenetic analysis of the human gut microbiota using 16S rDNA clone libraries and strictly anaerobic culture-based methods. Microbiol. Immunol. 46:535548.
38. Hayashi, H.,, M. Sakamoto,, and Y. Benno. 2002. Fecal microbial diversity in a strict vegetarian as determined by molecular analysis and cultivation. Microbiol. Immunol. 46:819831.
39. Hayashi, H.,, M. Sakamoto,, M. Kitihara,, and Y. Benno. 2003. Molecular analysis of fecal microbiota in elderly individuals using 16S rDNA library and T-RFLP. Microbiol. Immunol. 47:557570.
40. Heng, N.C.K.,, J. M., Bateup,, D. M. Loach,, X. Wu,, H. F. Jenkinson,, M. Morrison,, and G. W. Tannock. 1999. Influence of different functional elements of plasmid pGT232 on maintenance of recombinant plasmids in Lactobacillus reuteri populations in vitro and in vivo. Appl. Environ. Microbiol. 65:53785385.
41. Hooper, L. V.,, M. H. Wong,, A. Thelin,, L. Hansson,, P. G. Falk,, and J. I. Gordon. 2001. Molecular analysis of commensal host-microbial relationships in the intestine. Science 291:881884.
42. Hooper, L. V.,, J. Xu,, P. G. Falk,, T. Midtvedt,, and J. I. Gordon. 1999. A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. Proc. Natl. Acad. Sci. USA 96:98339838.
43. Hudson, M. J.,, M. J. Hill,, P. R. Elliott,, L. M. Berghouse,, W. R., Burnham,, and J. E. Lennard-Jones. 1984. The microbial flora of the rectal mucosa and faeces of patients with Crohn’s disease before and during antimicrobial chemotherapy. J. Med. Microbiol. 18:335345.
44. Jepson, M. A.,, M. A. Clark,, N. L. Simmons,, and B. H. Hirst. 1993. Actin accumulation at sites of attachment of indigenous apathogenic segmented filamentous bacteria to mouse ileal epithelial cells. Infect. Immun. 61:40014004.
45. Kaiser, D.,, and R. Losick. 1993. How and why bacteria talk to each other. Cell 73:873885.
46. Kleerebezem, M.,, L. E. N. Quadri,, O. P. Kuipers,, and W. M. de Vos. 1997. Quorum sensing by peptide pheromones and two-component signal transduction systems in Gram-positive bacteria. Mol. Microbiol. 24:895904.
47. Klaasen, H. L.,, J. P. Koopman,, F. G. Poelma,, and A. C. Beynen. 1992. Intestinal, segmented, filamentous bacteria. FEMS Microbiol. Rev. 8:165180.
48. Kleesen, B.,, A. J. Kroesen,, H. J. Buhr,, and M. Blaut. 2002. Mucosal and invading bacteria in patients with inflammatory bowel disease compared with controls. Scand. J. Gastroenterol. 37:10341041.
49. Kruse, H.-P.,, B. Kleesen,, and M. Blaut. 1999. Effects of inulin on faecal bifidobacteria in human subjects. Br. J. Nutr. 82:375382.
50. Lan, P. T. N.,, H. Hayashi,, M. Sakamoto,, and Y. Benno. 2002. Phylogenetic analysis of cecal microbiota in chicken by use of 16S rDNA clone libraries. Microbiol. Immunol. 46:371382.
51. Lee, A., 1999. Helicobacter pylori: opportunistic member of the normal microflora or agent of communicable disease? p. 128163. In G. W. Tannock (ed.), Medical Importance of the Normal Microflora. Kluwer Academic Publishers, Dordrecht, The Netherlands.
52. Leser, T. D.,, J. Z. Amenuvor,, T. K. Jensen,, R. H. Lindecrona,, M. Boye,, and K. Moller. 2002. Culture-independent analysis of gut bacteria: the pig gastrointestinal tract microbiota revisited. Appl. Environ. Microbiol. 68:673690.
53. Lu, J.,, U. Idris,, B. Harmon,, C. Hofaere,, J. J. Maurer,, and M. D. Lee. 2003. Diversity and succession of the intestinal bacterial community of the maturing broiler chicken. Appl. Environ. Microbiol. 69:68166824.
54. Madsen, K. L.,, J. S. Doyle,, M. E. Tavernini,, L. D. Jewel,, R. P. Rennie,, and R. N. Fedorak. 2000. Antibiotic therapy attenuates colitis in interleukin-10 gene-deficient mice. Gastroenterology 118:10941105.
55. Mahan, M. J.,, J. M. Slauch,, and J. J. Mekalanos. 1993. Selection of bacterial virulence genes that are specifically induced in host tissues. Science 259:686688.
56. Marker-Hermann, E.,, and T. Hohler. 1998. Pathogenesis of human leucocyte antigen HLA-B27-positive arthritis. Rheum. Dis. Clin. North Am. 24:865881.
57. Matsuda, H.,, Y. Fujiyama,, A. Andoh,, T. Ushijima,, T. Kajinami,, and T. Bamba. 2000. Characterization of antibody responses against rectal mucosa-associated bacterial flora in patients with ulcerative colitis. J. Gastroenterol. Hepatol. 15:6168.
58. McFall-Ngai, M. J.,, and E. G. Ruby. 1991. Symbiont recognition and subsequent morphogenesis as early events in an animal-bacterial mutualism. Science 254:14911494.
59. McLeod, R. S.,, D. Antonioli,, J. Cullen,, A. Dvorak,, A. Onderdonk,, W. Silen,, J. E. Blair,, R. Monahan-Early,, R. Cisneros,, and Z. Cohen. 1994. Histologic and microbiologic features of biopsy samples from patients with normal and inflamed pouches. Dis. Colon Rectum 37:2631.
60. McNab, R.,, S. K. Ford,, A. El-Sabaeny,, B. Barbieri,, G. S. Cook,, and R. J. Lamont. 2003. LuxS-based signalling in Streptococcus gordonii: autoinducer 2 controls carbohydrate metabolism and biofilm formation with Porphyromonas gingivalis. J. Bacteriol. 185:274284.
61. Merritt, J.,, F. Qi,, S. D. Goodman,, M. H. Anderson,, and W. Shi. 2003. Mutation of luxS affects biofilm formation in Streptococcus mutans. Infect. Immun. 71:19721979.
62. Metchnikoff, E. 1907. The Prolongation of Life. Optimistic Studies. William Heinemann, London, United Kingdom.
63. Metchnikoff, E. 1908. The Nature of Man. Studies in Optimistic Philosophy. William Heinemann, London, United Kingdom.
64. Mitsuoka, T., 1992. The human gastrointestinal tract, p. 69114. In B. J. B. Wood (ed.), The Lactic Acid Bacteria, vol. 1. The Lactic Acid Bacteria in Health and Disease. Elsevier Applied Science, London, United Kingdom.
65. Moore, W. E. C.,, E. P. Cato, and L. V. Holdeman. 1978. Some current concepts in intestinal bacteriology. Am. J. Clin. Nutr. 31:S33S42.
66. Morelli, L. 2000. In vitro selection of probiotic bacteria: a critical appraisal. Curr. Issues Intest. Microbiol. 1:5967.
67. Morrissey, I.,, K. Charrier,, S. Braddy,, D. Liggitt,, and J. D. Watson. 1993. CD4+ T cells that express high levels of CD45RB induce wasting disease when transferred into congenic severe combined immunodeficient mice. Disease development is prevented by cotransfer of purified CD4+ T cells. J. Exp. Med. 178:237244.
68. Nelson, D. P.,, and L. J. Mata. 1970. Bacterial flora associated with the human gastrointestinal mucosa. Gastroenterology 58:5661.
69. Nielsen, D. S.,, P. L. Moller,, V. Rosenfeldt,, A. Parregaard,, K. F. Michaelsen,, and M. Jakobsen. 2003. Case study of the distribution of mucosa-associated Bifidobacterium species, Lactobacillus species, and other lactic acid bacteria in the human colon. Appl. Environ. Microbiol. 69:75457548.
70. Onderdonk, A. B.,, A. M. Dvorak,, R. L. Cisneros,, R. S. McLeod,, D. Antionoli,, W. Silen,, J. E. Blair,, R. A. Monahan- Early,, J. Cullen,, and Z. Cohen. 1992. Microbiologic assessment of tissue biopsy samples from ileal pouch patients. J. Clin. Microbiol. 30:312317.
71. Ohtani, K.,, H. Hayashi,, and T. Shimizu. 2002. The luxS gene is involved in cell-cell signalling for toxin production in Clostridium perfringens. Mol. Microbiol. 44:171179.
72. O’Sullivan, D. J., 1999. Methods of analysis of the intestinal microflora, p. 2344. In G. W. Tannock (ed.), Probiotics: a Critical Review. Horizon Scientific Press, Wymondham, United Kingdom.
73. Podolsky, D. K. 2002. Inflammatory bowel disease. N. Engl. J. Med. 347:417429.
74. Rainey, P. B.,, and G. M. Preston. 2000. In vivo expression technology strategies: valuable tools for biotechnology. Curr. Opin. Biotechnol. 11:440444.
75. Rao, A. V. 1999. Dose-response effects of inulin and oligofructose on intestinal bifidogenesis effects. J. Nutr. 129:1442S1445S.
76. Rath, H. C.,, D. E. Bender,, L. C. Holt,, T. Grenther,, J. D. Taurog,, R. E. Hammer,, and R. B. Sartor. 1995. Metronidazole attenuates colitis in HLA-B27/β2 microglobulin transgenic rats: a pathogenic role for anaerobic bacteria. Clin. Immunol. Immunopathol. 76:S45.
77. Rath,, H. C. H. H. Herfath,, J. S. Ikeda,, W. B. Grenther,, T. E. Hamm,, E. Balish,, K. H. Wilson,, and R. B. Sartor. 1996. Normal luminal bacteria, especially Bacteroides species, mediate chronic colitis, gastritis, and arthritis in HLA-B27/human β2 microglobulin transgenic rats. J. Clin. Investig. 98:945953.
78. Rath, H. C,, M. Schultz,, L. A. Dieleman,, F. Li,, H. Kobl,, W. Falk,, J. Scholmerich,, and R. B. Sartor. 1998. Selective vs. broad spectrum antibiotics in the prevention and treatment of experimental colitis in two rodent models. Gastroenterology 114:A1067.
79. Rath, H.C.,, K. H. Wilson,, and R. B. Sartor. 1999. Differential induction of colitis and gastritis in HLA-B27 transgenic rats selectively colonized with Bacteroides vulgatus or Escherichia coli. Infect. Immun. 67:29692974.
80. Redfield, R. J. 2002. Is quorum sensing a side effect of diffusion sensing? Trends Microbiol. 10:365370.
81. Romagnani, S. 1997. Atopic allergy and other hypersensitivities. Interactions between genetic susceptibility, innocuous and/or microbial antigens and the immune system. Curr. Opin. Immunol. 9:773775.
82. Russell, J. B.,, and G. M. Cook. 1995. Energetics of bacterial growth: balance of anabolic and catabolic reactions. Microbiol. Rev. 59:4862.
83. Saavedra, J. M. 2000. Probiotics and infectious diarrhea. Am. J. Gastroenterol. 95:S16S18.
84. Salzman, N. H.,, H. de Jong,, Y. Paterson,, H. J. M. Harmsen,, G. W. Welling,, and N. A. Bos. 2002. Analysis of 16S libraries of mouse gastrointestinal microflora reveals a large new group of mouse intestinal bacteria. Microbiology 148:36513660.
85. Sartor, R. B. 1997. The influence of the normal microbial flora on the development of chronic mucosal inflammation. Res. Immunol. 148:567576.
86. Sartor, R. B.,, H. C. Rath,, S. N. Lichtman,, and E. A. van Tol. 1996. Animal models of intestinal and joint inflammation. Bailliere’s Clin. Rheumatol. 10:5576.
87. Satokari, R. M.,, E. E. Vaughan,, A. D. L. Akkermans,, M. Sareela,, and W. M. De Vos. 2001. Bifidobacterial diversity in human feces detected by genus-specific PCR and denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 67:504513.
88. Savage, D. C. 1972. Associations and physiological interactions of indigenous microorganisms and gastrointestinal epithelia. Am. J. Clin. Nutr. 25:13721379.
89. Savage, D. C. 1977. Microbial ecology of the gastrointestinal tract. Annu. Rev. Microbiol. 31:107133.
90. Savage, D. C.,, R. Dubos,, and R. W. Schaedler. 1968. The gastrointestinal epithelium and its autochthonous bacterial flora. J. Exp. Med. 127:6776.
91. Schultsz, C.,, F. M. van den Berg,, F. W. Ten Kate,, G. N. J. Tytgat,, and J. Dankert. 1999. The intestinal mucus layer from patients with inflammatory bowel disease harbors high numbers of bacteria compared with controls. Gastroenterology 117:10891097.
92. Schultz, M.,, and H. C. Rath,. 2002. The possible role of probiotic therapy in inflammatory bowel disease, p. 239261. In G. W. Tannock (ed.), Probiotics and Prebiotics: Where Are We Going? Caister Academic Press, Wymondham, United Kingdom.
93. Sellon, R. K.,, S. Tonkonogy,, M. Schultz,, L. A. Dieleman,, W. Grenther,, E. Balish,, D. M. Rennick,, and R. B. Sartor. 1998. Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect. Immun. 66:52245231.
94. Sherman, L. A.,, and D. C. Savage. 1986. Lipoteichoic acids in Lactobacillus strains that colonize the mouse gastric epithelium. Appl. Environ. Microbiol. 52:302304.
95. Snel, J.,, H. J. Blok,, H. M. P. Kengen,, W. Ludwig,, F. G. J. Poelma,, J. P. Koopman,, and A. D. L. Akkermans. 1994. Phylogenetic characterization of the Clostridium related segmented filamentous bacteria in mice based on 16S ribosomal RNA analysis. Syst. Appl. Microbiol. 17:172179.
96. Spanhaak, S.,, R. Havenaar,, and G. Schaafsma. 1998. The effect of consumption of milk fermented by Lactobacillus casei strain Shirota on the intestinal microflora and immune parameters in humans. Eur. J. Clin. Nutr. 52:899907.
97. Stebbings, S.,, K. Munro,, M. A. Simon,, G. W. Tannock,, J. Highton,, H. Harmsen,, G. Welling,, P. Seksik,, J. Dore,, G. Grame,, and A. Tilsala-Timisjarvi. 2002. Comparison of the faecal microflora of patients with ankylosing spondylitis and controls using molecular methods of analysis. Rheumatology 41:13951401.
98. Stokkers, P. C.,, P. H. Reitsma,, G. N. Tytgat,, and S. J. Deventer. 1999. HLA-DR and -DQ phenotypes in inflammatory bowel disease: a meta-analysis. Gut 45:395401.
99. Strachan, D. P. 1989. Hay fever, hygiene, and household size. Br. Med. J. 299:12591260.
100. Suau, A.,, R. Bonnet,, M. Sutren,, J. J. Godon,, G. R. Gibson,, M. D. Collins,, and J. Dore. 1999. Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl. Environ. Microbiol. 65:47994807.
101. Suegara, N.,, M. Morotomi,, T. Watanabe,, Y. Kawai,, and M. Mutai. 1975. Behavior of microflora in the rat stomach: adhesion of lactobacilli to the keratinized epithelial cells of the rat stomach in vitro. Infect. Immun. 12:173179.
102. Surette, M. G.,, and B. L. Bassler. 1998. Quorum sensing in Escherichia coli and Salmonella typhimurium. Proc. Natl. Acad. Sci. USA 95:70467050.
103. Swidsinski, A.,, A. Ladhoff,, A. Pernthaler,, S. Swidsinski,, V. Loening-Baucke,, M. Ortner,, J. Weber,, U. Hoffmann,, S. Schreiber,, M. Dietal,, and H. Lochs. 2002. Mucosal flora in inflammatory bowel disease. Gastroenterology 122:4454.
104. Takeuchi, A.,, and J. A. Zeller. 1972. Scanning electron microscopic observations on the surface of the normal and spirochaete-infested colonic mucosa of the rhesus monkey. J. Ultrastruct. Res. 40:313324.
105. Tannock, G. W., 1984. Control of gastrointestinal pathogens by normal flora, p. 374382. In M. J. Klug, and C. A. Reddy (ed.), Current Perspectives in Microbial Ecology. American Society for Microbiology, Washington, D.C.
106. Tannock, G. W. 1987. Demonstration of mucosa-associated microbial populations in the colons of mice. Appl. Environ. Microbiol. 53:19651968.
107. Tannock, G. W., 1994. The acquisition of the normal microflora in the gastrointestinal tract, p. 116. In S. A. W. Gibson (ed.), Human Health: the Contribution of Microorganisms. Springer-Verlag, London, United Kingdom.
108. Tannock, G. W. 2003. Probiotics: time for a dose of realism. Curr. Issues Intest. Microbiol. 4:3342.
109. Tannock, G. W.,, and G. Cook,. 2002. Enterococci as members of the intestinal microflora of humans, p. 101132. In M. S. Gilmore,, D. B. Clewell,, P. Courvalin,, G. M. Dunny,, B. E. Murray,, and L. B. Rice. (ed.), The Enterococci: Pathogenesis, Molecular Biology, and Antibiotic Resistance. ASM Press, Washington, D.C.
110. Tannock, G. W.,, K. Munro,, R. Bibiloni,, M. A. Simon,, P. Hargreaves,, P. Gopal,, H. Harmsen,, and G. Welling. 2004. Impact of the consumption of oligosaccharide-containing biscuits on the fecal microbiota of humans. Appl. Environ. Microbiol. 70:21292136.
111. Tannock, G. W.,, K. Munro,, H. J. M. Harmsen,, G. W. Welling,, J. Smart,, and P. K. Gopal. 2000. Analysis of the fecal microflora of human subjects consuming a probiotic containing Lactobacillus rhamnosus DR20. Appl. Environ. Microbiol. 66:25782588.
112. Tannock, G. W.,, O. Szylit,, Y. Duval,, and P. Raibaud. 1982. Colonization of tissue surfaces in the gastrointestinal tract of gnotobiotic animals by lactobacillus strains. Can. J. Microbiol. 28:11961198.
113. Tuohy, K. M.,, S. Kolida,, A. M. Lustenberger, and G. R. Gibson. 2001. The prebiotic effects of biscuits containing partially hydrolysed guar gum and fructo-oligosaccharides—a human volunteer study. Br. J. Nutr. 86:341348.
114. Umesaki, Y.,, Y. Okada,, S. Matsumoto,, A. Imaoka,, and H. Setoyama. 1995. Segmented filamentous bacteria are indigenous intestinal bacteria that activate intraepithelial lymphocytes and induce MHC class II molecules and fucosyl asialo GM1 glycolipids on the small intestinal epithelial cells in the ex-germ-free mouse. Microbiol. Immunol. 39:555562.
115. Walter, J.,, N. C. K. Heng,, W. P. Hammes,, D. M. Loach,, G. W. Tannock,, and C. Hertel. 2003. Identification of Lactobacillus reuteri genes specifically induced in the mouse gastrointestinal tract. Appl. Environ. Microbiol. 69:20442051.
116. Walter, J.,, C. Hertel,, G. W. Tannock,, C. M. Lis,, K. Munro,, and W. P. Hammes. 2001. Detection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella species in human feces by using group-specific PCR primers and denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 67:25782585.
117. Wang, X.,, S. P. Heazlewood,, D. O. Krause,, and T. H. J. Florin. 2003. Molecular characterization of the microbial species that colonize human ileal and colonic mucosa by using 16S rDNA sequence analysis. J. Appl. Microbiol. 95:508520.
118. Wesney, E.,, and G. W. Tannock. 1979. Association of rat, pig and fowl biotypes of lactobacilli with the stomach of gnotobiotic mice. Microb. Ecol. 5:3542.
119. Wickens, K.,, N. Pearce,, J. Crane,, and R. Beasley. 1999. Antibiotic use in early chidhood and the development of asthma. Clin. Exp. Allergy 29:766771.
120. Winzer, K.,, K. R. Hardie,, and P. Williams. 2002. Bacterial cellcell communication: sorry, can’t talk now—gone to lunch! Curr. Opin. Microbiol. 5:216222.
121.Wordsworth P. 1998. Genes in the spondyloarthropathies. Rheum. Dis. Clin. North Am. 24:845863.
122. Xavier, K. B.,, and B. L. Bassler. 2003. LuxS quorum sensing: more than just a numbers game. Curr. Opin. Microbiol. 6:191197.
123. Zhu, Y. Y.,, T. Zhong,, Y. Pandya,, and R. D. Joerger. 2002. 16S rRNA-based analysis of microflora from the cecum of broiler chickens. Appl. Environ. Microbiol. 68:124137.
124. Zinkevich, V.,, and I. B. Beech. 2000. Screening of sulfatereducing bacteria in colonoscopy samples from healthy and colitic human gut mucosa. FEMS Microb. Ecol. 34:147155.
125. Zoetendal, E. G.,, A. D. L. Akkermans,, and W. M. de Vos. 1998. Temperature gradient gel electrophoretic analysis of 16S rRNA from fecal samples reveals stable and host-specific communities of active bacteria. Appl. Environ. Microbiol. 64:38543859.
126. Zoetendal, E.G.,, A. D. L. Akkermans,, W. M. Akkermansvan Vliet,, J. A. G. M. de Viosser,, and W. M. de Vos. 2001. The host genotype affects the bacterial community in the human gastrointestinal tract. Microb. Ecol. Health Dis. 13:129134.
127. Zoetendal, E. G.,, A. von Wright,, T. Vilponen-Samela,, K. Ben-Amor,, A. D. L. Akkermans,, and W. M. de Vos. 2002. Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from the feces. Appl. Environ. Microbiol. 68:34013407.


Generic image for table
Table 1

Investigations of the phylogeny of the gut microbiota of humans, mice, chickens, and pigs by the analysis of random clone libraries of 16S rRNA genes

Citation: Tannock G. 2005. Microbiota of Mucosal Surfaces in the Gut of Monogastric Animals, p 163-178. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch12
Generic image for table
Table 2

Comparison of selected biochemical properties of the intestinal tracts of germfree and conventional animals

Citation: Tannock G. 2005. Microbiota of Mucosal Surfaces in the Gut of Monogastric Animals, p 163-178. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch12
Generic image for table
Table 3

Examples of murine gene transcription affected by monoassociation of ex-germfree mice with

Citation: Tannock G. 2005. Microbiota of Mucosal Surfaces in the Gut of Monogastric Animals, p 163-178. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch12
Generic image for table
Table 4

Investigations of gut tissue-associated bacteria of humans

Citation: Tannock G. 2005. Microbiota of Mucosal Surfaces in the Gut of Monogastric Animals, p 163-178. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch12

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error