1887

Chapter 16 : Role of Flagella in Mucosal Colonization

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Role of Flagella in Mucosal Colonization, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817619/9781555813239_Chap16-1.gif /docserver/preview/fulltext/10.1128/9781555817619/9781555813239_Chap16-2.gif

Abstract:

In recent years, different studies of bacterial flagella have unmasked novel features regarding their complex and sophisticated structure as well as their biological relevance beyond motility. This chapter focuses on these new structural and functional features of flagella, with emphasis on their ability to favor adherence, colonization, penetration, and translocation by bacterial pathogens and the resulting activation of innate immunity. For most bacterial pathogens, flagella and flagellum-driven motility are recognized as essential elements in their virulence scheme. Klose and Mekalanos constructed an rpoN (encoding s)-null mutant of and found that this strain was defective in motility, flagellation, and colonization in the infant-mouse colonization assay. In this study, they also identified three flagellar regulatory genes (flrABC), among which flrA and flrC encode σ-activators; mutations in these two genes yielded mutants defective in colonization. Flagella purified from enterohemorrhagic (EHEC) and K-12 showed similar levels of interleukin-8 (IL-8) induction as those for H6 flagella, suggesting that this is a property of flagella of some pathogenic bacteria as well as some members of the normal flora. It is possible that the conserved regions play an important role in generating an optimal conformation of the hypervariable domain within the flagellin molecule and, in turn, on the flagellum filament in order to display proinflammatory epitopes effectively. Flagellar genes are highly conserved among gram-negative bacteria, and much similarity in structure and function exists.

Citation: Girón J. 2005. Role of Flagella in Mucosal Colonization, p 213-236. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch16

Key Concept Ranking

Type III Flagellar Export Apparatus
0.41762257
Major Histocompatibility Complex Class II
0.40795568
0.41762257
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Schematic representation of the flagellar structure and the TTSS. The basal body is composed of a series of rings (L, P, S, M, and C), which span the inner and outer membranes and represent the motor that propels the flagellum filament. The filament is connected to the basal body through a hook structure. The flagellin subunits are exported across the cell envelope through the basal body to be assembled in a helical pattern at the tip of the growing filament. The tubular structure is formed by 11 strands of protofilaments of longitudinal helical arrays of flagellin subunits. The cap protein serves as a modulator of flagellum synthesis and secretion of proteins. The virulence-associated TTSS is structurally similar to the flagellar apparatus. Shown here is the TTSS of EPEC, which is composed of several Esc proteins and directs the secretion and translocation of secreted proteins (Esp and Tir) to the host cell cytoplasm. Like flagella, the presence of coiled-coil domains present in EspA suggests the possibility of formation of protofilaments yielding an EspA tubular helical structure. OM, outer membrane; IM, inner membrane; CW, cell wall; CM, cell membrane.

Citation: Girón J. 2005. Role of Flagella in Mucosal Colonization, p 213-236. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Schematic representation of the role of flagella of EPEC in adherence and IL-8 induction. Intimin, bundle-forming pilus (BFP), and EspA fiber are well-recognized EPEC adhesins. The EspA fibers connected to the TTSS secrete proteins (Esp and Tir) involved in attaching and effacing (A/E) lesion formation. The extracellular bacteria are tethered through the bundle-forming pilus and possibly via rod-like pili. The wavy flagellar filaments interconnect the bacteria and may mediate direct binding to a receptor on the cell membrane and hypothetically pierce the cell membrane and inject flagellins or other proteins to the cytosol. It is documented that the flagella may activate IL-8 and induce inflammation, but it is uncertain whether this activation employs the TLR5 signaling pathway.

Citation: Girón J. 2005. Role of Flagella in Mucosal Colonization, p 213-236. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Role of flagella in biofilm formation. Shown is the model for biofilm formation by . The initial attachment of the bacteria to the abiotic surface is promoted by functional flagella and motility. Once attached, the bacteria employ type IV pilus-mediated twitching motility to spread out on the surface, with subsequent formation of aggregates that form three-dimensional domes or columns surrounded by exopolysaccharide material, which renders the bacteria resistant to many antimicrobials. The bacteria may dissociate from the columns to initiate a new community.

Citation: Girón J. 2005. Role of Flagella in Mucosal Colonization, p 213-236. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Schematic representation of the mechanism of flagella-mediated inflammation by S. enterica. The salmonellae utilize flagellum-driven motility to cross the intestinal mucus barrier. These bacteria secrete abundant flagellin to the extracellular milieu; flagellin then translocates to the basolateral surface of epithelial cells, where it interacts specifically with TLR5, leading to MAPK/NF-κB activation pathways, resulting in the induction of proinflammatory molecules (IL-8 and CCL20), synthesis of nitric oxide synthase and human β-defensin 2. (hBD-2). FliC may also induce TNF-α release from PMN, monocytes (MN), promonocytes (ProMN), and dendritic cells (DC) via activation of TLR5. CCL20 is a potent activator of DC, while IL-8 is a potent recruiter of neutrophils (Ns). The end result is inflammation.

Citation: Girón J. 2005. Role of Flagella in Mucosal Colonization, p 213-236. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817619.chap16
1. Aizawa, S. 2001. Bacterial flagella and type III secretion systems. FEMS Microbiol. Lett. 202: 157 164.
2. Andrade, A.,, J. A. Girón,, J. M. K. Amhaz,, L. R. Trabulsi,, and M. B. Martinez. 2002. Expression and characterization of flagella in non-motile enteroinvasive Escherichia coli isolated from diarrhea cases. Infect. Immun. 70: 5882 5886.
3. Arora, S. K.,, B. W. Ritchings,, E. C. Almira,, S. Lory, and R. Ramphal. 1998. The Pseudomonas aeruginosa flagellar cap protein, FliD, is responsible for mucin adhesion. Infect. Immun. 66: 1000 1007.
4. Allen-Vercoe, E.,, and M. J. Woodward. 1999. The role of flagella, but not fimbriae, in the adherence of Salmonella enterica serotype Enteriditis to chick gut explant. J. Med. Microbiol. 48: 771 780.
5. Allen-Vercoe, E. A. R., Sayers,, M. J. Woodward. 1999. Virulence of Salmonella enterica serotype Enteritidis aflagellate and afimbriate mutants in a day-old chick model. Epidemiol. Infect. 122: 395 402.
6. Attridge, S. R.,, and D. Rowley. 1983. The role of flagellum in the adherence of Vibrio cholerae. J. Infect. Dis. 147: 864 872.
7. Auvray, F.,, J. Thomas,, G. M. Fraser,, and C. Hughes. 2001. Flagellin polymerization control by a cytosolic export chaperone. J. Mol. Biol. 308: 221 229.
8. Badger, J. L.,, and V. L. Miller. 1998. Expression of invasin and motility are coordinately regulated in Yersinia enterocolitica. J. Bacteriol. 180: 793 800.
9. Barnich, N.,, J. Boudeau,, L. Claret,, and A. Darfeuille- Michaud. 2003. Regulatory and functional co-operation of flagella and type 1 pili in adhesive and invasive abilities of AIEC strain LF82 isolated from a patient with Crohn’s disease. Mol. Microbiol. 48: 781 794.
10. Blocker, A.,, K. Komoriya,, and S. Aizawa. 2003. Type III secretion systems and bacterial flagella: insights into their function from structural similarities. Proc. Natl. Acad. Sci. USA 100: 3027 3030.
11. Bomchil, N.,, P. Watnick,, and R. Kolter. 2003. Identification and characterization of a Vibrio cholerae gene, mbaA, involved in maintenance of biofilm architecture. J. Bacteriol. 185: 1384 1390.
12. Bonifield, H. R.,, and K. T. Hughes. 2003. Flagellar phase variation in Salmonella enterica is mediated by a posttranscriptional control mechanism. J. Bacteriol. 185: 3567 3574.
13. Bosshardt, S. C.,, R. F. Benson,, and B. S. Fields. 1997. Flagella are a positive predictor for virulence in Legionella. Microb. Pathog. 23: 107 112.
14. Carsiotis, M.,, D. L. Weionstein,, H. Karch,, I. A. Holder,, A.D. O’Brien. 1984. Flagella of Salmonella typhimurium are a virulence factor in infected C57BL/6J mice. Infect. Immun. 46: 814 818.
15. Chaubal, L. H.,, and P. S. Holt. 1999. Characterization of swimming motility and identification of flagellar proteins in Salmonella pullorum isolates. Am. J. Vet. Res. 60: 1322 1327.
16. Chilcott, G. S.,, and K. Hughes. 2000. Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica serovar Typhimurium and Escherichia coli. Microbiol. Mol. Biol. Rev. 64: 694 708.
17. Chua, K. L.,, Y. Y. Chan,, and Y. H. Gan. 2003. Flagella are virulence determinants of Burkholderia pseudomallei. Infect. Immun. 71: 1622 1629.
18. Ciacci-Woolwine, F.,, L. S. Kucera,, S. H. Richardson,, N. P. Iyer,, and S. B. Mizel. 1997. Salmonellae activate tumor necrosis factor alpha production in a human promonocytic cell line via a released polypeptide. Infect. Immun. 65: 4624 4633.
19. Ciacci-Woolwine, F.,, I. C. Blomfield,, S. H. Richardson,, and S. B. Mizel. 1998. Salmonella flagellin induces tumor necrosis factor alpha in a human promonocytic cell line. Infect. Immun. 66: 127 1134.
20. Ciacci-Woolwine, F.,, P. F. McDermott,, and S. B. Mizel. 1999. Induction of cytokine synthesis by flagella from gram-negative bacteria may be dependent on the activation or differentiation state of human monocytes. Infect. Immun. 67: 5176 5185.
21. Clyne, M.,, T. Ocroinin,, S. Suerbaum,, C. Josenhans,, and B. Drumms. 2000. Adherence of isogenic flagellum negative mutants of Helicobacter pylori and Helicobacter mustelae to human and ferret gastric epithelial cells. Infect. Immun. 68: 4335 4339.
22. Cordes, F. S.,, K. Komoriya,, E. Larquet,, S. Yang,, E. D. Egelman,, A. Blocker,, and S. M. Lea. 2003. Helical structure of the needle of the type III secretion system of Shigella flexneri. J. Biol. Chem. 278: 17103 17107.
23. Correa, N. E.,, C. M. Lauriano,, R. McGee,, and K. E. Klose. 2000. Phosphorylation of the flagellar regulatory protein FliC is necessary for Vibrio cholerae motility and enhanced colonization. Mol. Microbiol. 35: 743 755.
24. Czerucka, D.,, S. Dahan,, B. Mograbi,, B. Rossi,, and P. Rampal. 2001. Implication of mitogen-activated protein kinases in T84 cell responses to enteropathogenic Escherichia coli infection. Infect. Immun. 69: 1298 1305.
25. de Grado, M.,, C. M. Rosenberger,, A. Gauthier,, B. A. Vallance,, and B. B. Finlay. 2001. Enteropathogenic Escherichia coli infection induces expression of the early growth response factor by activating mitogen-activated protein kinase cascades in epithelial cells. Infect. Immun. 69: 6217 6224.
26. Delahay, R. M.,, and G. Frankel. 2002. Coiled-coil proteins associated with type III secretion systems: a versatile domain revisited. Mol. Microbiol. 45: 905 916.
27. de Oliveira Garcia, D.,, M. Dall’Agnol,, M. Rosales,, A. C. Azzuz,, M. B. Martinez,, and J. A. Girón. 2002. Characterization of flagella produced by clinical isolates of Stenotrophomonas maltophilia. Emerg. Infect. Dis. 8: 918 923.
28. DeShazer, D.,, P. J. Brett,, R. Carlton, and D. E. Woods. 1997. Mutagenesis of Burkholderia pseudomallei with Tn 5- OT182: isolation of motility mutants and molecular characterization of the flagellin structural gene. J. Bacteriol. 179: 2116 2125.
29. Dibb-Fuller, M. P.,, E. Allen-Vercoe,, C. J. Thorns,, and M. J. Woodward. 1999. Fimbriae- and flagella-mediated association with and invasion of culture epithelial cells by Salmonella enteritidis. Microbiology 145: 1023 1031.
30.DiMango, E, H. J. Zar, R. Bryan, and A. Prince. 1995. Diverse Pseudomonas aeruginosa gene products stimulate respiratory epithelial cells to produce interleukin-8. J. Clin. Investig. 96: 22042210.
31. Donnelly, M. A.,, and T. S. Steiner. 2002. Two nonadjacent regions in enteroaggregative Escherichia coli flagellin are required for activation of toll-like receptor 5. J. Biol. Chem. 277: 40456 40461.
32. Eaton, K. A.,, S. Suerbam,, C. Josenhans,, and S. Krakowka. 1996. Colonization of gnotobiotic piglets by Helicobacter pylori deficient in two flagellin genes. Infect. Immun. 64: 2445 2448.
33. Eaves-Pyles, T. D.,, H. R. Wong,, K. Odoms,, and R. B. Pyles. 2001. Salmonella flagellin dependent proinflammatory responses are localized to the conserved amino and carboxyl regions of the protein. J. Immunol. 167: 7009 7016.
34. Eubanks, E. R.,, M. N. Guentzel,, and L. J. Berry. 1977. Evaluation of surface components of Vibrio cholerae as protective immunogens. Infect. Immun. 15: 533 538.
35. Feldman, M.,, R. Bryan,, S. Rajan,, L. Scheffler,, S. Brunner,, H. Tang,, and A. Prince. 1998. Role of flagella in pathogenesis of Pseudomonas aeruginosa pulmonary infection. Infect. Immun. 66: 43 51.
36.Freter R., P. C. O’Brien, and M. S. Macsai. 1981. Role of chemotaxis in the association of motile bacteria with intestinal mucosa: in vivo studies. Infect. Immun. 34: 234240.
37. Freter, R.,, B. Allweiss,, P. C. O’Brien,, S. A. Halstead,, and M. S. Macsai. 1981. Role of chemotaxis in the association of motile bacteria with intestinal mucosa: in vitro studies. Infect. Immun. 34: 241 249.
38. Freter, R.,, and P. C. O’Brien. 1981. Role of chemotaxis in the association of motile bacteria with intestinal mucosa: chemotactic responses of Vibrio cholerae and description of motile non-chemotactic mutants. Infect. Immun. 34: 215 221.
39. Galán, J. E.,, and A. Collmer. 1999. Type III secretion machines: bacterial devices for protein delivery into host cells. Science 284: 1322 1328.
40. Gardel, C. L.,, and J. J. Mekalanos. 1996. Alterations in Vibrio cholerae motility phenotypes correlate with changes in virulence factor expression. Infect. Immun. 64: 2246 2255.
41. Gavin, R.,, S. Merino,, M. Altarriba,, R. Canals,, J. G. Shaw,, and J. M. Tomas. 2003. Lateral flagella are required for increased cell adherence, invasion and biofilm formation by Aeromonas spp. FEMS Microbiol. Lett. 224: 77 83.
42. Gavin, R.,, A. A. Rabaan,, S. Merino,, J. M. Tomas,, I. Gryllos,, and J. G. Shaw. 2002. Lateral flagella of Aeromonas species are essential for epithelial cell adherence and biofilm formation. Mol. Microbiol. 43: 383 397.
43. Gewirtz, A. T.,, A. M. Siber,, J. L. Madara,, and B. A. Mc- Cormick. 1999. Orchestration of neutrophil movement by intestinal epithelial cells in response to Salmonella typhimurium can be uncoupled from bacterial internalization. Infect. Immun. 67: 608 617.
44. Gewirtz, A. T.,, P. O. Simon, Jr.,, C. K. Schmitt,, L. J. Taylor,, C. H. Hagedorn,, A. D. O’Brien,, A. S. Neish,, and J. L. Madara. 2001. Salmonella typhimurium translocates flagellin across intestinal epithelia, inducing a proinflammatory response. J. Clin. Investig. 107: 99 109.
45. Gewirtz, A. T.,, T. A. Navas,, S. Lyons,, P. J. Godowski,, and J. L. Madara. 2001. Cutting edge. Bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J. Immunol. 167: 1882 1885.
46. Ghigo, J. M. 2003. Are there biofilm-specific physiological pathways beyond a reasonable doubt? Res. Microbiol. 154: 1 8.
47. Girón, J. A. 1995. Expression of flagella and motility by Shigella. Mol. Microbiol. 18: 63 75.
48. Girón, J. A.,, A. G. Torres,, E. Freer,, and J. B. Kaper. 2002. The flagella of enteropathogenic Escherichia coli mediate adherence to epithelial cells. Mol. Microbiol. 44: 361 379.
49. Golden, N. J.,, and D. W. K. Acheson. 2002. Identification of motility and autoagglutination Campylobacter jejuni mutants by random transposon mutagenesis. Infect. Immun. 70: 1761 1771.
50. Grant, C. C. R.,, M. E. Konkel,, W. Cieplak, Jr.,, and L. S. Tompkins. 1993. Role of flagella in adherence, internalization and translocation of Campylobacter jejuni in nonpolarized and polarized epithelial cell cultures. Infect. Immun. 61: 1764 1771.
51. Gupta, S.,, and R. Chowdhruy. 1997. Bile affects production of virulence factors and motility of Vibrio cholerae. Infect. Immun. 65: 1131 1134
52. Hase, C. C. 2001. Analysis of the role of flagella activity in virulence gene expression in Vibrio cholerae. Microbiology 147: 831 837.
53. Harshey, R. M. 2003. Bacterial motility on a surface. Annu. Rev. Microbiol. 57: 249 273.
54. Hawn, T. R.,, A. Verbon,, K. D. Lettinga,, L. P. Zhao,, S. S. Li,, R. J. Laws,, S. J. Skerrett,, B. Beutler,, L. Schroeder,, A. Nachman,, A. Ozinsky,, K. D. Smith,, and A. Aderem. 2003. A common dominant TLR5 stop codon polymorphism abolishes flagellin signaling and is associated with susceptibility to Legionnaires’ disease. J. Exp. Med. 198: 1563 1572.
55. Hayashi, F.,, K. D. Smith,, A. Ozinsky,, T. R. Hawn,, E. C. Yi,, D. R. Goodlett,, J. K. Eng,, S. Akira,, D. M. Underhill,, and A. Aderem. 2001]. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410: 1099 1103.
56. Hueck, C. J. 1998. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev. 62: 379 433.
57. Hybiske,, K. J. K. Ichikawa,, V. Huang,, S. J. Lory, and T. E. Machen. 2004. Cystic fibrosis airway epithelial cell polarity and bacterial flagellin determine host response to Pseudomonas aeruginosa. Cell. Microbiol. 6: 49 63.
58. Ikeda, J. S.,, C. K. Schmitt,, S. C. Darnell,, P. R. Watson,, J. Bispham,, T. S. Wallis,, D. L. Weinstein,, E. S. Metcalf,, P. Adams,, C. D. O’Connor,, and A. D. O’Brien. 2001. Flagellar phase variation of Salmonella enterica serovar Typhimurium contributes to virulence in the murine typhoid infection model but does not influence Salmonella-induced enteropathogenesis. Infect. Immun. 69: 3012 3030.
59. Iriarte, M. I., Stainier,, A. V. Mikulskis,, and G. R. Conelis. 1995. The fliA gene encoding σ-28 in Yersinia enterocolitica. J. Bacteriol. 177: 2299 2304.
60. Jacchieri, S. G.,, R. Torquato,, and R. R. Brentani. 2003. Structural study of binding of flagellin by toll-like receptor 5. J. Bacteriol. 185: 4243 4247.
61. Jones, G. W.,, L. A. Richardson,, and D. Uhlman. 1981. The invasion of HeLa cells by Salmonella typhimurium: reversible and irreversible bacterial attachment and the role of bacterial motility. J. Gen. Microbiol. 127: 351 360.
62. Jones, B. D.,, C. A. Lee,, and S. Falkow. 1992. Invasion by Salmonella typhimurium is affected by the direction of flagellar rotation. Infect. Immun. 60: 2473 2480.
63. Josenhans, C.,, and S. Suerbaum. 2002. The role of motility as a virulence factor in bacteria. Int. J. Med. Microbiol. 291: 605 614.
64. Kaisho, T.,, and S. Akira. 2002. Toll-like receptors as adjuvant receptors. Biochim. Biophys. Acta 1589: 1 13.
65. Khoramian-Falsafi, T.,, S. Harayama,, K. Kutsukake,, and J. C. Pechere. 1990. Effect of motility and chemotaxis on the invasion of Salmonella typhimurium into HeLa cells. Microb. Pathog. 9: 47 53.
66. Kim, J. S.,, J. H. Chang,, S. I. Chung,, and J. S. Yum. 1999. Molecular cloning and characterization of the Helicobacter pylori fliD gene, an essential factor in flagellar structure and motility. J. Bacteriol. 181: 6969 6976.
67. Kimbrough, T. G.,, and S. I. Miller. 2002. Assembly of the type III secretion needle complex of Salmonella typhimurium. Microb. Infect. 4: 75 82.
68. Kirov, S. M. 2003. Bacteria that express lateral flagella enable dissection of the multifunctional roles of flagella in pathogenesis. FEMS Microbiol. Lett. 224: 151 159.
69. Klausen M.,, A. Aaes-Jorgensen,, S. Molin,, and T. Nielsen. 2003. Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Mol. Microbiol. 50: 61 68.
70. Klausen M.,, A. Heydorn,, P. Ragas,, L. Lambertsen,, A. Aaes- Jorgensen,, S. Molin,, and T. Nielsen. 2003. Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol. Microbiol. 48: 1511 1524.
71. Klemm, P.,, and M. A. Schembri. 2000. Bacterial adhesins: function and structure. Int. J. Med. Microbiol. 290: 27 35.
72. Klose, K. E.,, and J. J. Mekalanos. 1998. Distinct roles of an alternative sigma factor during both free-swimming and colonizing phases of the Vibrio cholerae pathogenic cycle. Mol. Microbiol. 28: 501 520.
73. Knutton, S.,, I. Rosenshine,, M. J. Pallen,, I. Nisan,, B. C. Neves,, C. Bain,, C. Wolff,, G. Dougan,, and G. Frankel. 1998. A novel EspA-associated surface organelle of enteropathogenic Escherichia coli involved in protein translocation into epithelial cells. EMBO J. 17: 2166 2176.
74. Komoriya, K.,, N. Shibano,, T. Higano,, N. Azuma,, S. Yamaguchi,, and S. Aizawa. 1999. Flagellar proteins and type IIIexported virulence factors are the predominant proteins secreted into the culture media of Salmonella typhimurium. Mol. Microbiol. 34: 767 779.
75. Kubori, T.,, Y. Matsushima,, D. Nakamura,, J. Uralil,, M. Lara- Tejero,, A. Sukhan,, J.E. Galán,, and S. I. Aizawa. 1998. Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 280: 602 605.
76. Krukonis, E. S.,, and V. J. DiRita. 2003. From motility to virulence: sensing and responding to environmental signals in Vibrio cholerae. Curr. Opin. Microbiol. 6: 186 190.
77. Lahteenmaki, K.,, B. Westerlund,, P. Kuusela,, and T. K. Korhonen. 1993. Immobilization of plasminogen on Escherichia coli flagella. FEMS Microbiol. Lett. 106: 309 314.
78. La Ragione, R. M.,, A. R. Sayers,, and M. J. Woodward. 2000. The role of fimbriae and flagella in the colonization, invasion and persistence of Escherichia coli O78:K80 in the day-oldchick model. Epidemiol. Infect. 124: 351 363.
79. La Ragione, R. M.,, W. A. Cooley,, P. Velge,, M. A. Jepson,, and M. J. Woodward. 2003. Membrane ruffling and invasion of human avian cell lines is reduced for flagellate mutants of Salmonella enterica serotype Enteritiditis. Int. J. Med. Microbiol. 293: 261 272.
80. Lee, M. D.,, R. Curtiss III,, and T. Peay. 1996. The effect of bacterial surface structures on the pathogenesis of S. typhimurium infection in chickens. Avian Dis. 40: 28 36.
81. Lee, S. K.,, A. Stack,, E. Katzowitsch,, S. I. Aizawa,, S. Suerbaum,, and C. Josenhans. 2003. Helicobacter pylori flagellins have very low intrinsic activity to stimulate human gastric epithelial cells via TLR5. Microb. Infect. 5: 1345 1356.
82. Li, X.,, D. A. Rasko,, C. V. Lockatell,, D. E. Johnson,, and H. L. T. Mobley. 2001. Repression of bacterial motility by a novel fimbrial gene product. EMBO J. 20: 4854 4862.
83. Liaudet, L. , K,, G. K. Murthy,, J. G. Mabley,, P. Pacher,, F. G. Soriano,, A. L. Salzman,, and C. Szabo. 2002. Comparison of inflammation, organ damage and oxidant stress induced by Salmonella enterica serovar Muenchen flagellin and serovar Enteritidis lipopolysaccharide. Infect. Immun. 70: 192 198.
84. Liaudet, L.,, C. Szabo,, O. V. Evgenov,, K. G. Murthy,, P. Pacher,, L. Virag,, J. G. Mabley,, A. Marton,, F. G. Soriano,, M. Y. Kirov,, L. J. Bjertnaes,, and A. L. Salzman. 2003. Flagellin from gram-negative bacteria is a potent mediator of acute pulmonary inflammation in sepsis. Shock 19: 131 137.
85. Lillard H. S. 1986. Role of fimbriae and flagella in the attachment of Salmonella typhimurium to poultry skin. J. Food Sci. 51: 54 57.
86. Lillehoj, E. P.,, B. T. Kim,, and K. C. Kim. 2002. Identification of Pseudomonas aeruginosa flagellin as an adhesin for Muc1 mucin. Am. J. Physiol. Ser. L 282: L751 L756.
87. Liu, S.-L.,, T. Ezaaki,, H. Miura,, K. Matsui,, and E. Yabuuchi. 1988. Intact motility as a Salmonella typhi invasion related factor. Infect. Immun. 56: 1967 1973.
88. Liu, X.,, and P. Matsumara. 1994. The FlhD/FlhC complex, a transcriptional activator of the Escherichia coli flagellar class II operons. J. Bacteriol. 176: 7345 7351.
89. Lupas, A.,, M. Van Dyke,, and J. Stock. 1991. Predicting coiled coils from protein sequences. Science 252: 1162 1164.
90. MacNab, R. M. 1999. The bacterial flagellum: reversible rotary propeller and type III export apparatus. J. Bacteriol. 181: 7149 7153.
91. MacNab, R. M. 2000. Type III protein pathway exports Salmonella flagella. ASM News 66: 738 745.
92. MacNab, R. M. 2003. How bacteria assemble flagella. Annu. Rev. Microbiol. 57: 77 100.
93. McDermott, P. E.,, F. Ciacci-Woolwine,, J. A. Snipes,, and S. B. Mizel. 2000. High-affinity interaction between gram-negative flagellin and a cell surface polypeptide results in human monocyte activation. Infect. Immun. 10: 5525 5529.
94. McGee, D. J.,, C. Coker,, T. L. Testerman,, J. M. Harro,, S. V. Gibson,, and H. L. T. Mobley. 2002. The Helicobacter pylori fibA, flagellar biosynthesis and regulatory gene is required for motility and virulence and modulates urease of H. pylori and Proteus mirabilis. J. Med. Microbiol. 51: 958 970.
95. McNamara, N.,, and C. Basbaum. 2002. Mechanism by which bacterial flagellin stimulates host mucin production. Adv. Exp. Med. Biol. 506: 269 273.
96. McSorley, S. J.,, B. D. Ehst,, Y. Yu,, and A. T. Gewirtz. 2002. Bacterial flagellin is an effective adjuvant for CD4 + T cells in vivo. J. Immunol. 169: 3914 3919.
97. Means, T. K.,, F. Hayashi,, K. D. Smith,, A. Aderem,, and A. D. Luster. 2003. The toll-like receptor 5 stimulus: bacterial flagellin induces maturation and chemokine production in human dendritic cells. J. Immunol. 170: 5165 5175.
98. Medzhitov, R. 2001. Toll-like receptors and innate immunity. Nat. Rev. Immunol. 1: 135 145.
99. Mimori-Kyouse, Y.,, F. Vonderviszt,, and K. Namba. Locations of terminal segments of flagellin in the filament structure and their roles in polymerization and polymorphism. J. Mol. Biol. 270: 222 237.
100. Mizel, S. B.,, and J. A. Snipes. 2002. Gram-negative flagellin-induced self-tolerance is associated with a block in interleukin- 1 receptor-associated kinase release from Toll-like receptor 5. J. Biol. Chem. 277: 22414 22420.
101. Mizel, S. B.,, A. P. West,, and R. R. Hantgan. 2003. Identification of a sequence in human toll-like receptor 5 required for the binding of gram-negative flagellin. J. Biol. Chem. 278: 23624 23629.
102. Mobley, H. T.,, B. Belas,, V. Lockatell,, G. Chippendale,, A. L. Trifillis,, D. E. Johnson,, and J. W. Warren. 1996. Construction of a flagellum-negative mutant of Proteus mirabilis: effect on internalization by human renal epithelial cells and virulence in a mouse model of ascending urinary tract infections. Infect. Immun. 64: 5332 5340.
103. Montie, T. C.,, D. Doyle-Huntzinger,, R. C. Craven,, and I. A. Holder. 1982. Loss of virulence associated with absence of flagellum in an isogenic mutant of Pseudomonas aeruginosa in the burned-mouse model. Infect. Immun. 38: 1296 1298.
104. Moreira, C. G.,, S. M. Carneiro,, J. P. Nataro,, L. R. Travulsi,, and W. P. Elias. 2003. Role of type 1 fimbriae in the aggregative adhesion pattern of enteroaggregative Escherichia coli. FEMS Microbiol. Lett. 226: 79 85.
105. Morooka, T.,, A. Umeda,, and K. Amako. 1985. Motility as an intestinal colonization factor for Campylobacter jejuni. J. Gen. Microbiol. 131: 1973 1980.
106. Murthy, K. B.,, A. Deb,, S. Goonesekere,, C. Szabo,, and A. L. Salzman. 2003. Identification of conserved domains in Salmonella muenchen flagellin that are essential for its ability to activate TLR5 and to induce an inflammatory response in vitro. J. Biol. Chem. 279: 5667 5675.
107. Muzio, M.,, and A. Mantovani. 2000. Toll-like receptors. Microbes Infect. 2: 251 255.
108. Nachamkin, I,, X.-H. Yang, and N. J. Stern. 1993. Role of Campylobacter jejuni flagella as colonization factors for three-day old chicks: analysis with flagellar mutants. Appl. Environ. Microbiol. 59: 1269 1273.
109. Nataro, J. P.,, and J. B. Kaper. 1998. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 11: 142 201.
110. Nelson, E. T.,, J. D. Clements,, and R. A. Finkelstein. 1976. Vibrio cholerae adherence and colonization in experimental cholera: electron microscopic studies. Infect. Immun. 14: 527 547.
111. Ogushi, K.,, A. Wada,, T. Niidome,, N. Mori,, K. Oishi,, T. Nagatake,, A. Takahashi,, A. Asakura,, S. Makino,, H. Hojo,, Y. Nakahara,, M. Ohsaki,, T. Hatakeyama,, H. Aoyagi,, H. Kurazono,, J. Moss,, and T. Hirayama. 2001. Salmonella enteritidis FliC (flagella filament protein) induces human β- defensin-2 mRNA production by Caco-2 cells. J. Biol. Chem. 276: 30521 30526.
112. Ormonde, P.,, P. Horstedt,, R. O’Toole,, and D. L. Milton. 2000. Role of motility in adherence to and invasion of a fish cell line by Vibrio anguillarum. J. Bacteriol. 182: 2326 2328.
113. O’Toole, G. A.,, and R. Kolter. 1998. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol. 30: 295 304.
114. Ottemann, K. M.,, and A. C. Lowenthal. 2002. Helicobacter pylori uses motility for initial colonization and to attain robust infection. Infect. Immun. 70: 1984 1990.
115. Pallen, M. J. 1997. Coiled-coil domains in proteins secreted by type III secretion systems. Mol. Microbiol. 25: 423 425.
116. Parker, C. T., and J. Guard-Petter. 2001. Contribution of flagella and invasion proteins to pathogenesis of Salmonella enterica serovar Enteritidis in chicks. FEMS Microbiol. Lett. 204: 287 291.
117. Pavlovskis, O. R.,, D. M. Rollins,, R. L. Haberberger, Jr.,, A. E. Green,, L. Habash,, S. Strocko,, and R. I. Walker. 1991. Significance of flagella in colonization resistance of rabbits immunized with Campylobacter spp. Infect. Immun. 59: 2259 2264.
118. Peel,, M. W. Donachie,, and A. Shaw. 1988. Temperature-dependent expression of flagella of Listeria monocytogenes studied by electron microscopy, SDS-PAGE and western blotting. J. Gen. Microbiol. 134: 2171 2178.
119. Plano, G. V.,, J. B. Day,, and F. Ferracci. 2001. Type III export: new uses for an old pathway. Mol. Microbiol. 40: 284 293.
120. Postnova, T.,, O. G. Gomez-Duarte,, and K. Richardson. 1996. Motility mutants of Vibrio cholerae O1 have reduced adherence in vitro to human small intestinal epithelial cells as demonstrated by ELISA. Microbiology 142: 2767 2776.
121. Pratt, L. A.,, and R. Kolter. 1998. Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol. Microbiol. 30: 285 293.
122. Pruckler, J. M.,, R. F. Benson,, M. Moyenuddi,, W. T. Martin,, and B. S. Fields. 1995. Association of flagellum expression and intracellular growth of Legionella pneumophila. Infect. Immun. 63: 4928 4932.
123. Rabaan, A. A.,, I. Gryllos,, J. M. Tomas,, and J. G. Shaw. 2001. Motility and the polar flagellum are required for Aeromonas caviae adherence to HEp-2 cells. Infect. Immun. 69: 42574267..
124. Ramphal, R.,, S. K. Arora,, and B. W. Ritchings. 1996. Recognition of mucin by the adhesin-flagellar system of Pseudomonas aeruginosa. Am. J. Respir. Crit. Care Med. 154: S170 S174.
125. Read, R. C.,, and D. H. Wyllie. 2001. Toll receptors and sepsis. Curr. Opin. Crit. Care 7: 371 375.
126. Reed, K. A.,, M. E. Hobert,, C. E. Kolenda,, K. A. Sands,, M. Rathman,, M. O’Connor,, S. Lyons,, S. A. T. Gewirtz,, P. J. Sansonetti,, and J. L. Madara. 2002. The Salmonella typhimurium flagellar basal body protein FliE is required for flagellin production and to induce a proinflammatory response in epithelial cells. J. Biol. Chem. 277: 13346 13353.
127. Reid, S. D.,, R. Selander,, and T. S. Whittam. 1999. Sequence diversity of flagellin (FliC) alleles in pathogenic Escherichia coli. J. Bacteriol. 181: 153 160.
128. Richardson, K. 1991. Roles of motility and flagellar structure in pathogenicity of Vibrio cholerae: analysis of motility mutants in three animal models. Infect. Immun. 59: 2727 2736.
129. Robertson, J. M.,, G. Grant,, E. Allen-Vercoe,, M. J. Woodward,, A. Pusztai,, and H. J. Flint. 2000. Adhesion of Salmonella enterica var Enteritidis strains lacking fimbriae and flagella to rat ileal explants cultured at the air interface or submerged in tissue culture medium. J. Med. Microbiol. 49: 691 969.
130. Robertson, J. M.,, N. H. McKenzie,, M. Duncan,, E. Allen- Vercoe,, M. J. Woodward,, and H. J. Flint. 2003. Lack of flagella disadvantages Salmonella enterica serovar Enteritidis during the early stages of infection in the rat. J. Med. Microbiol. 52: 91 99.
131. Sadziene, A.,, D. D. Thomas,, V. G. Bundoc,, S. C. Holt,, and A. G. Barbour. 1991. A flagella-less mutant of Borrelia burgdorferi. Structural, molecular and in vitro functional characterization. J. Clin. Investig. 88: 82 92.
132. Samatey, F. A.,, K. Imada,, S. Nagashima,, F. Venderviszt,, T. Kumasaka,, M. Yamamoto,, and K. Namba. 2001. Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling. Nature 410: 331 337.
133. Schilling, J. D.,, S. M. Matin,, C. S. Hung,, R. G. Lorenz,, S. J. Hultgren. 2003. Toll-like receptor 4 on stomal and hematopoietic cells mediate innate resistance to uropathogenic Escherichia coli. Proc. Natl. Acad. Sci. USA 100: 4203 4208.
134. Schmiel, D. H.,, G. M. Young,, and V. L. Miller. 2000. The Yersinia enterocolitica phospholipase gene yplA is part of the flagellar regulon. J. Bacteriol. 182: 2314 2320.
135. Schmitt, C. K.,, J. S. Ikeda,, S. C. Darnell,, P. R. Watson,, J. Bispham,, T. S. Wallis,, D. L. Weinstein,, E. S. Metcalf,, and A. D. O’Brien. 2001. Absence of all components of the flagellar export and synthesis machinery differentially alters virulence of Salmonella enterica serovar Typhimurium in models of typhoid fever, survival in macrophages, tissue culture invasiveness and calf enterocolitis. Infect. Immun. 69: 5619 5625.
136. Sellek, R. E.,, R. Escudero,, H. Gil,, I. Rodriguez,, E. Chaparro,, E. Perez-Pastrana,, A. Vivo,, and P. Anda. 2002. In vitro culture of Borrelia garinii results in loss of flagella and decreased invasiveness. Infect. Immun. 70: 4851 4858.
137. Sheikh J,, S. Hicks,, M. Dall’Agnol,, A. D. Phillips,, and J. P. Nataro. 2001 Roles for Fis and YafK in biofilm formation by enteroaggregative Escherichia coli. Mol. Microbiol. 5: 983 997.
138. Sierro, F.,, B. Dubois,, A. Coste,, D. Kaiserlian, Kraehenbuhl, and J. Sirard. 2001. Flagellin stimulation of intestinal epithelial cells triggers CCL20 mediated migration of dendritic cells. Proc. Natl. Acad. Sci. USA 98: 13722 13727.
139. Smith, K. D.,, and A. Ozinsky. 2002. Toll-like receptor-5 and the innate immune response to bacterial flagellin. Curr. Top. Microbiol. Immunol. 270: 93 108.
140. Smith, M. F.,, A. Mitchell,, G. Li,, S. Ding,, A. M. Fitzmaurice,, K. Ryan,, S. Crowe,, and J. R. Goldberg. 2003. Toll-like receptor (TLR) 2 and TLR5 but not TLR4, are required for Helicobacter pylori-induced NF- κB activation and chemokine expression by epithelial cells. J. Biol. Chem. 278: 32552 32560.
141. Smith, K. D.,, E. Andersen-Nissen,, F. Hayashi,, K. Strobe,, M. A. Bergman,, S. L. Rassoulian Barrret,, B. T. Cookson, and A. Aderem. 2003. Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility. Nat. Immunol. 4: 1247 1253.
142. Sperandio, V.,, A. G. Torres,, J. A. Girón,, and J. B. Kaper. 2001. Quorum sensing is a global regulatory mechanism in enterohemorrhagic Escherichia coli O157:H7. J. Bacteriol. 183: 5187 5197.
143. Steiner, T. S.,, A. A. Lima,, J. P. Nataro,, and R. L. Guerrant. 1998. Enteroaggregative Escherichia coli produce intestinal inflammation and growth impairment and cause interleukin- 8 release from intestinal epithelial cells. J. Infect. Dis. 177: 88 96.
144. Steiner, T. S.,, J. P. Nataro,, C. E. Poteet-Smith,, J. A. Smith,, and R. L. Guerrant. 2000. Enteroaggregative Escherichia coli expresses a novel flagellin that causes IL-8 release from intestinal epithelial cells. J. Clin. Investig. 105: 1769 1777.
145. Szymanski, C. M.,, M. King,, M. Haardt,, and G. D. Armstrong. 1995. Campylobacter jejuni motility and invasion of Caco-2 cells. Infect. Immun. 3: 4295 4300.
146. Takahashi, A.,, A. Wada,, K. Ogushi,, K. Maeda,, T. Kawahara,, K. Mawatari,, H. Kurazono,, J. Moss,, T. Hirayama,, and Y. Nakaya. 2001. Production of β-defensin-2 by human colonic epithelial cells induced by Salmonella enteritidis flagella filament structural protein. FEBS Lett. 508: 484 488.
147. Tasteyre, A.,, M. Barc,, A. Collignon,, H. Boureau,, and T. Karjalainen. 2001. Role of FliC and FliD flagellar proteins of Clostridium difficile in adherence and gut colonization. Infect. Immun. 69: 7937 7940.
148. Teppema, J. S.,, P. A. M. Guinée,, A. A. Abrahim,, M. Páques,, and E. J. Ruitenberg. 1987. In vivo adherence and colonization of Vibrio cholerae strains that differ in hemagglutinating activity and motility. Infect. Immun. 55: 2093 2102.
149. Tomich, M.,, C. A. Herfst,, J. W. Golden,, and C. D. Mohr. 2002. Role of flagella in host cell invasion by Burkholderia cepacia. Infect. Immun. 70: 1799 1806.
150. Underhill, D. M.,, and A. Ozinsky. 2002. Toll-like receptors: key mediators of microbe detection. Curr. Opin. Immunol. 14: 103 110.
151. Van Asten F. J. A. M.,, H. G. C. J. M. Hendriks,, J. F. J. G. Koninkx,, B. A. M. Van der Zeijst,, and W. Gaastra. 2000. Inactivation of the flagellin gene of Salmonella enterica serotype Enteritidis strongly reduces invasion into differentiated caco-2 cells. FEMS Microbiol. Lett. 185: 175 179.
152. Walker, S. L.,, M. Sojka,, M. Dibb-Fuller,, and M. J. Woodward. 1999. Effect of pH, temperature and surface contact on the elaboration of fimbriae and flagella by Salmonella serotype Enteritidis. J. Med. Microbiol. 48: 253 261.
153. Watnick, P. I.,, C. M. Lauriano,, K. E. Klose,, L. Croal,, and R. Kolter. 2001. The absence of a flagellum leads to altered colony morphology, biofilm development and virulence in Vibrio cholerae O139. Mol. Microbiol. 39: 223 235.
154. Watnick, P. I.,, and R. Kolter. 1999. Steps in the development of a Vibrio cholerae El Tor biofilm. Mol. Microbiol. 34: 586 595.
155. Way, S. S.,, L. J. Thompson,, J. E. Lopes,, A. M. Hajjar,, T. R. Kollmann,, N. E. Freitag,, and C. B. Wilson. 2004. Characterization of flagellin expression and its role in Listeria monocytogenes infection and immunity. Cell. Microbiol. 6: 235 242.
156. Weinstein, D. L.,, M. Carsiotis,, C. R. Lissner,, and A. D. O’Brien. 1984. Flagella help Salmonella typhimurium survive within murine macrophages. Infect. Immun. 46: 819 825.
157. Wyant, T. L.,, M. K. Tanner,, and M. B. Sztein. 1999. Salmonella typhi flagella are potent inducers of proinflammatory cytokine secretion by human monocytes. Infect. Immun. 67: 3619 3624.
158. Wyant, T. L.,, M. K. Tanner,, and M. B. Sztein. 1999. Potent immunoregulatory effects of Salmonella typhi flagella on antigenic stimulation of human peripheral blood mononuclear cells. Infect. Immun. 67: 1338 1346.
159. Yancey, R. J.,, D. L. Willis,, and L. J. Berry. 1978. Role of motility in experimental cholera in adult rabbits. Infect. Immun. 22: 387 392.
160. Yao, R.,, D. H. Burr,, P. Doig,, T. J. Trust,, H. Niu,, and P. Guerry. Isolation of motile and non-motile insertional mutants of Campylobacter jejuni: the role of motility in adherence and invasion of eukaryotic cells. Mol. Microbiol. 14: 883 893.
161. Yonekura, K.,, S. Maki,, D. G. Morgan,, D. J. DeRosier,, F. Vonderviszt,, K. Imada,, and K. Namba. 2000. The bacterial flagellar cap as the rotary promoter of flagellin self-assembly. Science 290: 2148 2152.
162. Yonekura, K.,, S. Yonekura,, and K. Namba. 2002. Growth mechanism of the bacterial flagellar filament. Res. Microbiol. 153: 191 197.
163. Yonekura, K.,, S. Yonekura,, and K. Namba. 2003. Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy. Nature 424: 643 650.
164. Young, G. M.,, M. J. Smith,, S. A. Minnich,, and V. L. Miller. 1999. The Yersinia enterocolitica motility master regulatory operon, fihDC, is required for flagellin production, swimming motility and swarming motility. J. Bacteriol. 181: 2823 2833.
165. Young, G. M.,, D. H. Schmiel,, and V. L. Miller. 1999. A new pathway for the secretion of virulence factors by bacteria: the flagellar export apparatus functions as a protein secretion system. Proc. Natl. Acad. Sci. USA 96: 6456 6461.
166. Young, G. M.,, J. L. Badger,, and V. L. Miller. 2000. Motility is required to initiate host cell invasion by Yersinia enterocolitica. Infect. Immun. 68: 4323 4326.
167. Young, B. M.,, and G. M. Young. 2002. Yp1A is exported by the Ysc, Ysa and flagellar type III secretion systems of Yersinia enterocolitica. J. Bacteriol. 184: 1324 1334.
168. Zeng, H.,, A. Q. Carlson,, Y. Guo,, Y. Yu,, L. S. Collier-Hyams,, J. L. Madara,, A. T. Gewirtz,, and A.S. Neish. 2003. Flagellin is the major proinflammatory determinant of enteropathogenic Salmonella. J. Immunol. 171: 3668 3674.
169. Zhang, J,, K. Xu,, B. Ambati,, and F-S. X. Yu. 2003. Toll-like receptor-5 mediated corneal epithelial inflammatory responses to Pseudomonas aeruginosa flagellin. Investig. Ophthalmol. Visual Sci. 44: 4247 4254.
170. Zhou, X.,, J. A. Girón,, A. G. Torres,, J. A. Crawford,, E. Negrete,, S. N. Vogel,, and J. B. Kaper. 2003. Flagellin of enteropathogenic Escherichia coli stimulates interleukin-8 production in T84 cells. Infect. Immun. 71: 2120 2129.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error