Chapter 23 : Role of Phase and Antigenic Variation in Colonization

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Role of Phase and Antigenic Variation in Colonization, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817619/9781555813239_Chap23-1.gif /docserver/preview/fulltext/10.1128/9781555817619/9781555813239_Chap23-2.gif


Phase-variable expression of different versions of the same gene, as in the case of genes, or of genes that contribute to the structure of the same macromolecule, as occurs with lipooligosaccharide (LOS) biosynthesis genes, results in reversible changes in the antigenic makeup of the bacterial surface. Pilin antigenic variation, the result of new genetic information recombining into the pilin gene, is perhaps the most fascinating example of true antigenic variation in . Despite the experimental challenges inherent in studying this human-specific pathogen, evidence that variable expression of surface molecules plays a critical role in gonococcal pathogenesis is strong. The depth of variability created by the size of the pilin repertoire and the seemingly random manner by which cassettes are inserted make pilus antigenic variation one of the most fascinating stories of genetic diversity in bacterial pathogenesis. The purpose of pilus phase variation in bacterial pathogenesis is less intuitive than that of antigenic variation. Experimental infection of mice may be a useful tool for investigating the kinetics of gonococcal opacity (Opa) expression in vivo. Recovery of Opa-positive variants occurs following vaginal inoculation of mice with a predominantly Opa-negative inoculum. Acquisition of iron for growth and as a cofactor of several key enzymes in the low-iron environment of the host is important for successful colonization by most microbes.

Citation: Simms A, Jerse A. 2005. Role of Phase and Antigenic Variation in Colonization, p 327-350. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch23

Key Concept Ranking

Outer Membrane Proteins
Pelvic Inflammatory Disease
Type IV Pili
Transmission Electron Microscopy
Human Membrane Proteins
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Mechanisms of pilin antigenic variation and variation of pilus glycosylation. (A) Diagram of the pilin monomer, showing complete conservation at the N terminus and variability in the central and the C-terminal regions. Hypervariable (h-v) and semivariable (s-v) regions as defined by Hagblom et al. ( ) are shaded; conserved regions are represented in white. The presence of a hypervariable region flanked by two cystines, which form a disulfide bond, was predicted from both the primary amino acid ( ) and nucleotide ( ) sequences. This hypervariable loop is the immunodominant region of the pilin ( ), which suggests that immune pressure may have selected for the high degree of variation in this region. Posttranslational cleavage at amino acid 39 from the N terminus results in secreted (soluble) pilin (S pilin). (B) Schematic of the gene and a locus in and generation of a new gene via nonreciprocal recombination. The number of copies per silent locus varies, with six copies being present in of strain MS11 ( ). Each copy contains six variable regions (minicassettes), which, when translated, correspond to the semivariable and hypervariable regions in the pilin protein. The gene may receive a complete or partial copy (as shown here). Therefore, over time, repeated recombination events into the gene create a chimeric gene composed of sequences from multiple loci. The minicassettes are depicted here by shading, except for the ones within the gene and the silent copy shown to be undergoing recombination, which are patterned. (C) Phase variation of pilus glycosylation in . Phase-variable expression of pilus glycosyltransferase () can result in the presence or absence of galactose bound to an O-linked galactose -acetylglucosamine molecule linked to a surface-exposed serine at position 63. The glycosylation state is also dependent on the presence of a serine residue at this position and therefore is also controlled by pilin antigenic variation. Only 11 of 17 pilin copies in the loci of strain FA1019 encode a serine residue at this position ( ). This finding suggests that antigenic variation may be a significant source of changes in pilus glycosylation.

Citation: Simms A, Jerse A. 2005. Role of Phase and Antigenic Variation in Colonization, p 327-350. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Opa protein structure and function, and selection or induction of Opa protein expression during experimental murine genital tract infection. (A) Diagram of an gene showing the three regions of variability (SV, semivariable; HV, and HV, hypervariable regions 1 and 2) that define different alleles. The pentameric repeat responsible for phase variation is in the signal sequence-encoding region, with 7 to 28 copies present in different genes ( ). (B) Cartoon depicting Opa-mediated adherence to and invasion of epithelial cells and nonopsonic uptake by phagocytes. (C) Opa phenotypes of vaginal isolates from three mice that demonstrated an increased percentage of Opa-positive variants among vaginal isolates following inoculation with a predominantly Opa-negative population of strain FA1090. More than 50% of the vaginal isolates expressed at least one Opa protein within 24 h following inoculation into the lower genital tract. Different Opa proteins predominated in different mice, with OpaB being most highly represented in mouse 3 and OpaI being mostly highly represented in mice 1 and 2. OpaI of this strain is known to bind HSPG, which is likely to be present in mice. OpaB does not bind HSPG but does bind to human CEACAM receptors (Guyer et al., ). Gonococci that expressed more than one Opa protein simultaneously are represented by stripes.

Citation: Simms A, Jerse A. 2005. Role of Phase and Antigenic Variation in Colonization, p 327-350. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Prototype LOS molecule, showing points of structural variation that lead to diversity in function. The basic structure and corresponding glycosyltransferase genes are based on references 15 and 83. Phase variation of LOS structure occurs due to frameshifts in a poly(G) region within (also called lsi2 [ ]), , or ( ) or a poly(C) region within ( ). The synthesis of an alternative α chain, in which participates, occurs in only a minor population of gonococcal strains. Slippage of to an “off” position causes the production of a short-chain LOS species that confers high levels of serum resistance independent of growth in CMP-NANA ( ). Expression of or increases serum sensitivity ( ). In contrast, slippage of to an “on” position results in the formation of a highly bactericidal epitope on the β-chain ( ). The addition of CMP-NANA via the action of sialyltransferase to the terminal galactose residue of the lacto--tetraose moiety is shown, a modification that results in several adaptive advantages, as described in the text. Phase variation of or can influence LOS sialylation by controlling the presence of the target species or by blocking the target residue, respectively ( ). Sialylation blocks epithelial cell invasion mediated by interactions between the lacto-neotetraose moiety and the ASGP-R ( ). Lectin-like interactions with gonococcal Opa proteins also rely on this tetrasaccharide species and are blocked by sialic acid ( ).

Citation: Simms A, Jerse A. 2005. Role of Phase and Antigenic Variation in Colonization, p 327-350. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Genetic control of the gonococcal Hg receptor and selection of “on” phase variants under certain circumstances in vivo. (A) Diagram of the Hg receptor (HpuAB) operon as described by Chen et al. ( ), showing the poly(G) region in that is responsible for strand slippage during replication. The upper transcript is in frame; the lower transcript has lost a guanidine in the poly(G) tract and is out of frame. A putative Fur box is present upstream of the start site, which is likely to play a role in iron repression of transcription. (B) Representative graphs showing total recovery of gonococci versus recovery of Hg variants over time in a mouse with no influx of vaginal PMNs (top) versus a mouse that developed a PMN response during infection (bottom). The shaded area in the bottom graph corresponds to the period during which the frequency of Hg variants among vaginal isolates was significantly elevated over that of the inoculum. Numbers of vaginal PMNs were elevated during this period. Hg was detected on day 5 in vaginal washes from the mouse with inflammation; none was detected at any time point in mice without inflammation. (C) Cartoon depicting the circumstances during which Hg receptor expression may be advantageous. Selection for Hg variants by menstrual blood is supported by an analysis of endocervical isolates from women ( ); whether the presence of Hg as an additional iron source in the female genital tract leads to increased virulence is not known. Selection for Hg variants on the development of a PMN influx in the lower genital tract of mice suggests that gonococci may capitalize on the introduction of Hg, which exudes into the lumen with other serum components, during inflammation ( ). It is possible that Hg variants are also selected for during the bloodstream stage of disseminated infection; however, no evidence for this hypothesis has been reported.

Citation: Simms A, Jerse A. 2005. Role of Phase and Antigenic Variation in Colonization, p 327-350. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Achtman, M.,, M. Neibert,, B. A. Crowe,, W. Strittmatter,, B. Kusecek,, E. Weyse,, M. J. Walsh,, B. Slawig,, G. Morelli,, A. Moll, et al. 1988. Purification and characterization of eight class 5 outer membrane protein variants from a clone of Neisseria meningitidis serogroup A. J. Exp. Med. 168:507525.
2. Aho, E. L.,, J. A. Dempsey,, M. M. Hobbs,, D. G. Klapper,, and J. G. Cannon. 1991. Characterization of the opa (class 5) gene family of Neisseria meningitidis. Mol. Microbiol. 5:14291437.
3. Anderson, J. E.,, M. M. Hobbs,, G. D. Biswas,, and P. F. Sparling. 2003. Opposing selective forces for expression of the gonococcal lactoferrin receptor. Mol. Microbiol. 48:13251337.
4. Anderson, J. E.,, P. A. Leone,, W. C. Miller,, C. Chen,, M. M. Hobbs,, and P. F. Sparling. 2001. Selection for expression of the gonococcal hemoglobin receptor during menses. J. Infect. Dis. 184:16211623.
5. Apicella, M. A. 1974. Antigenically distinct populations of Neisseria gonorrhoeae: isolation and characterization of the responsible determinants. J. Infect. Dis. 130:619625.
6. Apicella, M. A. 1976. Serogrouping of Neisseria gonorrhoeae: identification of four immunologically distinct acidic polysaccharides. J. Infect. Dis. 134:377383.
7. Apicella, M. A.,, K. M. Bennett,, C. A. Hermerath,, and D. E. Roberts. 1981. Monoclonal antibody analysis of lipopolysaccharide from Neisseria gonorrhoeae and Neisseria meningitidis. Infect. Immun. 34:751756.
8. Apicella, M. A.,, and N. C. Gagliardi. 1979. Antigenic heterogeneity of the non-serogroup antigen structure of Neisseria gonorrhoeae lipopolysaccharides. Infect. Immun. 26:870874.
9. Apicella, M. A.,, R. E. Mandrell,, M. Shero,, M. E. Wilson,, J. M. Griffiss,, G. F. Brooks,, C. Lammel,, J. F. Breen,, and P. A. Rice. 1990. Modification by sialic acid of Neisseria gonorrhoeae lipooligosaccharide epitope expression in human urethral exudates: an immunoelectron microscopic analysis. J. Infect. Dis. 162:506512.
10. Apicella, M. A.,, M. Shero,, G. A. Jarvis,, J. M. Griffiss,, R. E. Mandrell,, and H. Schneider. 1987. Phenotypic variation in epitope expression of the Neisseria gonorrhoeae lipooligosaccharide. Infect. Immun. 55:17551761.
11. Archibald, F. S.,, and M. N. Duong. 1986. Superoxide dismutase and oxygen toxicity defenses in the genus Neisseria. Infect. Immun. 51:631641.
12. Ayala, B. P.,, B. Vasquez,, S. Clary,, J. A. Tainer,, K. Rodland,, and M. So. 2001. The pilus-induced Ca2+ flux triggers lysosome exocytosis and increases the amount of Lamp1 accessible to Neisseria IgA1 protease. Cell. Microbiol. 3:265275.
13. Banerjee, A.,, and S. K. Ghosh. 2003. The role of pilin glycan in neisserial pathogenesis. Mol. Cell. Biochem. 253:179190.
14. Banerjee, A.,, R. Wang,, S. L. Supernavage,, S. K. Ghosh,, J. Parker,, N. F. Ganesh,, P. G. Wang,, S. Gulati,, and P. A. Rice. 2002. Implications of phase variation of a gene (pgtA) encoding a pilin galactosyl transferase in gonococcal pathogenesis. J. Exp. Med. 196:147162.
15. Banerjee, A.,, R. Wang,, S. N. Uljon,, P. A. Rice,, E. C. Gotschlich,, and D. C. Stein. 1998. Identification of the gene (lgtG) encoding the lipooligosaccharide beta chain synthesizing glucosyl transferase from Neisseria gonorrhoeae. Proc. Natl. Acad. Sci. USA 95:1087210877.
16. Barritt, D. S.,, R. S. Schwalbe,, D. G. Klapper,, and J. G. Cannon. 1987. Antigenic and structural differences among six proteins II expressed by a single strain of Neisseria gonorrhoeae. Infect. Immun. 55:20262031.
17. Belland, R. J.,, T. Chen,, J. Swanson,, and S. H. Fischer. 1992. Human neutrophil response to recombinant neisserial Opa proteins. Mol. Microbiol. 6:17291737.
18. Belland, R. J.,, S. G. Morrison,, J. H. Carlson,, and D. M. Hogan. 1997. Promoter strength influences phase variation of neisserial opa genes. Mol. Microbiol. 23:123135.
19. Belland, R. J.,, S. G. Morrison,, P. van der Ley,, and J. Swanson. 1989. Expression and phase variation of gonococcal P.II genes in Escherichia coli involves ribosomal frameshifting and slipped-strand mispairing. Mol. Microbiol. 3:777786.
20. Bergstrom, S.,, K. Robbins,, J. M. Koomey,, and J. Swanson. 1986. Piliation control mechanisms in Neisseria gonorrhoeae. Proc. Natl. Acad. Sci. USA 83:38903894.
21. Bessen, D.,, and E. C. Gotschlich. 1986. Interactions of gonococci with HeLa cells: attachment, detachment, replication, penetration, and the role of protein II. Infect. Immun. 54: 154160.
22. Bhat, K. S.,, C. P. Gibbs,, O. Barrera,, S. G. Morrison,, F. Jahnig,, A. Stern,, E. M. Kupsch,, T. F. Meyer,, and J. Swanson. 1992. The opacity proteins of Neisseria gonorrhoeae strain MS11 are encoded by a family of 11 complete genes. Mol. Microbiol. 6:10731076.
23. Biro, F. M.,, S. L. Rosenthal,, and M. Kiniyalocts. 1995. Gonococcal and chlamydial genitourinary infections in symptomatic and asymptomatic adolescent women. Clin. Pediatr. 34:419423.
24. Black, W. J.,, R. S. Schwalbe,, I. Nachamkin,, and J. G. Cannon. 1984. Characterization of Neisseria gonorrhoeae protein II phase variation by use of monoclonal antibodies. Infect. Immun. 45:453457.
25. Blake, M. S.,, C. M. Blake,, M. A. Apicella,, and R. E. Mandrell. 1995. Gonococcal opacity: lectin-like interactions between Opa proteins and lipooligosaccharide. Infect. Immun. 63:14341439.
26. Bos, M. P.,, F. Grunert,, and R. J. Belland. 1997. Differential recognition of members of the carcinoembryonic antigen family by Opa variants of Neisseria gonorrhoeae. Infect. Immun. 65:23532361.
27. Bos, M. P.,, D. Hogan,, and R. J. Belland. 1997. Selection of Opa+ Neisseria gonorrhoeae by limited availability of normal human serum. Infect. Immun. 65:645650.
28. Bos, M. P.,, D. Kao,, D. M. Hogan,, C. C. Grant,, and R. J. Belland. 2002. Carcinoembryonic antigen family receptor recognition by gonococcal Opa proteins requires distinct combinations of hypervariable Opa protein domains. Infect. Immun. 70:17151723.
29. Boslego, J. W.,, E. C. Tramont,, R. C. Chung,, D. G. McChesney,, J. Ciak,, J. C. Sadoff,, M. V. Piziak,, J. D. Brown,, C. C. Brinton, Jr.,, S. W. Wood, et al. 1991. Efficacy trial of a parenteral gonococcal pilus vaccine in men. Vaccine 9:154162.
30. Boulton, I. C.,, and S. D. Gray-Owen. 2002. Neisserial binding to CEACAM1 arrests the activation and proliferation of CD4+ T lymphocytes. Nat. Immunol. 3:229236.
31. Braun, D. C.,, and D. C. Stein. 2004. The lgtABCDE gene cluster, involved in lipooligosaccharide biosynthesis in Neisseria gonorrhoeae, contains multiple promoter sequences. J. Bacteriol. 186:10381049.
32. Brinton, C. C.,, J. Bryan,, J.-A. Dillon,, N. Guernia,, L. J. Jackobson,, A. Labik,, S. Lee,, A. Levine,, S. Lim,, J. McMichael,, S. A. Polen,, K. Rogers,, A. C.-C. To,, and S. C.-M. To,. 1978. Use of pili in gonorrhoea control: role of bacterial pilin in disease, purification, and properties of gonococcal pili and progress in the development of a gonococcal pilus vaccine for gonorrhoea, p. 155178. In G. F. Brooks,, E. C. Gotschlich,, K. K. Holmes,, W. D. Sawyer,, and F. E. Young (ed.), Immunobiology of Neisseria gonorrhoeae. American Society for Microbiology, Washington, D.C.
33. Brinton, C. C.,, S. W. Wood,, and A. Brown. 1982. The development of a neisserial pilus vaccine for gonorrhea adn meningococcal meningitis. Semin. Infect. Dis. 1982:140159.
34. Bridgman, B. E.,, D. Klapper,, T. Svendsen,, and M. S. Cohen. 1988. Phagocyte-derived lactate stimulates oxygen consumption by Neisseria gonorrhoeae. An unrecognized aspect of the oxygen metabolism of phagocytosis. J. Clin. Investig. 81: 318324.
35. Bro-Jorgensen, A.,, and T. Jensen. 1973. Gonococcal pharyngeal infections. Report of 110 cases. Br. J. Vener. Dis. 49: 491499.
36. Brooks, G. F.,, and C. J. Lammel. 1989. Humoral immune response to gonococcal infections. Clin. Microbiol. Rev. 2(Suppl.):S5S10.
37. Brooks, G. F.,, L. Linger,, C. J. Lammel,, K. S. Bhat,, C. A. Colville,, M. L. Palmer,, J. S. Knapp,, and R. S. Stephens. 1991. Prevalence of gene sequences coding for hypervariable regions of Opa (protein II) in Neisseria gonorrhoeae. Mol. Microbiol. 5:30633072.
38. Brossay, L.,, G. Paradis,, R. Fox,, M. Koomey,, and J. Hebert. 1994. Identification, localization, and distribution of the PilT protein in Neisseria gonorrhoeae. Infect. Immun. 62:23022308.
39. Brown, W. J.,, and S. J. Kraus. 1974. Gonococcal colony types. JAMA 228:862.
40. Buchanan, T. M. 1975. Antigenic heterogeneity of gonococcal pili. J. Exp. Med. 141:14701475.
41. Buchanan, T. M.,, and R. J. Arko. 1977. Immunity to gonococcal infection induced by vaccination with isolated outer membranes of Neisseria gonorrhoeae in guinea pigs. J. Infect. Dis. 135:879887.
42. Buchanan, T. M.,, W. A. Pearce,, G. K. Schoolnik,, and R. J. Arko. 1977. Protection against infection with Neisseria gonorrhoeae by immunization with outer membrane protein complex and purified pili. J. Infect. Dis. 136(Suppl.):S132S137.
43. Burch, C. L.,, R. J. Danaher,, and D. C. Stein. 1997. Antigenic variation in Neisseria gonorrhoeae: production of multiple lipooligosaccharides. J. Bacteriol. 179:982986.
44. Carson, S. D.,, P. E. Klebba,, S. M. Newton,, and P. F. Sparling. 1999. Ferric enterobactin binding and utilization by Neisseria gonorrhoeae. J. Bacteriol. 181:28952901.
45. Carson, S. D.,, B. Stone,, M. Beucher,, J. Fu,, and P. F. Sparling. 2000. Phase variation of the gonococcal siderophore receptor FetA. Mol. Microbiol. 36:585593.
46. Chen, C. J.,, C. Elkins,, and P. F. Sparling. 1998. Phase variation of hemoglobin utilization in Neisseria gonorrhoeae. Infect. Immun. 66:987993.
47. Chen, C. J.,, P. F. Sparling,, L. A. Lewis,, D. W. Dyer,, and C. Elkins. 1996. Identification and purification of a hemoglobin- binding outer membrane protein from Neisseria gonorrhoeae. Infect. Immun. 64:50085014.
48. Chen, T.,, R. J. Belland,, J. Wilson,, and J. Swanson. 1995. Adherence of pilus- Opa+ gonococci to epithelial cells in vitro involves heparan sulfate. J. Exp. Med. 182:511517.
49. Chen, T.,, and E. C. Gotschlich. 1996. CGM1a antigen of neutrophils, a receptor of gonococcal opacity proteins. Proc. Natl. Acad. Sci. USA 93:1485114856.
50. Chen, T.,, F. Grunert,, A. Medina-Marino,, and E. C. Gotschlich. 1997. Several carcinoembryonic antigens (CD66) serve as receptors for gonococcal opacity proteins. J. Exp. Med. 185:15571564.
51. Cohen, M. S.,, and J. G. Cannon. 1999. Human experimentation with Neisseria gonorrhoeae: progress and goals. J. Infect. Dis. 179(Suppl. 2):S375S379.
52. Cohen, M. S.,, J. G. Cannon,, A. E. Jerse,, L. M. Charniga,, S. F. Isbey,, and L. G. Whicker. 1994. Human experimentation with Neisseria gonorrhoeae: rationale, methods, and implications for the biology of infection and vaccine development. J. Infect. Dis. 169:532537.
53. Cohen, M. S.,, and P. F. Sparling. 1992. Mucosal infection with Neisseria gonorrhoeae. Bacterial adaptation and mucosal defenses. J. Clin. Investig. 89:16991705.
54. Connell, T. D.,, D. Shaffer,, and J. G. Cannon. 1990. Characterization of the repertoire of hypervariable regions in the Protein II (opa) gene family of Neisseria gonorrhoeae. Mol. Microbiol. 4:439449.
55. Connelly, M. C.,, and P. Z. Allen. 1983. Antigenic specificity and heterogeneity of lipopolysaccharides from pyocin-sensitive and -resistant strains of Neisseria gonorrhoeae. Infect. Immun. 41:10461055.
56. Cornelissen, C. N.,, M. Kelley,, M. M. Hobbs,, J. E. Anderson,, J. G. Cannon,, M. S. Cohen,, and P. F. Sparling. 1998. The transferrin receptor expressed by gonococcal strain FA1090 is required for the experimental infection of human male volunteers. Mol. Microbiol. 27:611616.
57. Cornelissen, C. N.,, and P. F. Sparling. 1994. Iron piracy: acquisition of transferrin-bound iron by bacterial pathogens. Mol. Microbiol. 14:843850.
58. Danaher, R. J.,, J. C. Levin,, D. Arking,, C. L. Burch,, R. Sandlin,, and D. C. Stein. 1995. Genetic basis of Neisseria gonorrhoeae lipooligosaccharide antigenic variation. J. Bacteriol. 177:72757279.
59. Deheragoda, P. 1977. Diagnosis of rectal gonorrhoea by blind anorectal swabs compared with direct vision swabs taken via a proctoscope. Br. J. Vener. Dis. 53:311313.
60. Dehio, C.,, S. D. Gray-Owen,, and T. F. Meyer. 1998. The role of neisserial Opa proteins in interactions with host cells. Trends Microbiol. 6:489495.
61. de Jonge, M. I.,, M. P. Bos,, H. J. Hamstra,, W. Jiskoot,, P. van Ulsen,, J. Tommassen,, L. van Alphen,, and P. van der Ley. 2002. Conformational analysis of opacity proteins from Neisseria meningitidis. Eur. J. Biochem. 269:52155223.
62. de Jonge, M. I.,, H. J. Hamstra,, L. van Alphen,, J. Dankert,, and P. van der Ley. 2003. Mapping the binding domains on meningococcal Opa proteins for CEACAM1 and CEA receptors. Mol. Microbiol. 50:10051015.
63. de Jonge, M. I.,, G. Vidarsson,, H. H. van Dijken,, P. Hoogerhout,, L. van Alphen,, J. Dankert,, and P. van der Ley. 2003. Functional activity of antibodies against the recombinant OpaJ protein from Neisseria meningitidis. Infect. Immun. 71:23312340.
64. de la Paz, H.,, S. J. Cooke,, and J. E. Heckels. 1995. Effect of sialylation of lipopolysaccharide of Neisseria gonorrhoeae on recognition and complement-mediated killing by monoclonal antibodies directed against different outer-membrane antigens. Microbiology 141:913920.
65. Draper, D. L.,, J. F. James,, G. F. Brooks,, and R. L. Sweet. 1980. Comparison of virulence markers of peritoneal and fallopian tube isolates with endocervical Neisseria gonorrhoeae isolates from women with acute salpingitis. Infect. Immun. 27:882888.
66. Duensing, T. D.,, and J. P. van Putten. 1997. Vitronectin mediates internalization of Neisseria gonorrhoeae by Chinese hamster ovary cells. Infect. Immun. 65:964970.
67. Dyer, D. W.,, E. P. West,, and P. F. Sparling. 1987. Effects of serum carrier proteins on the growth of pathogenic neisseriae with heme-bound iron. Infect. Immun. 55:21712175.
68. Edwards, J. L.,, E. J. Brown,, K. A. Ault,, and M. A. Apicella. 2001. The role of complement receptor 3 (CR3) in Neisseria gonorrhoeae infection of human cervical epithelia. Cell. Microbiol. 3:611622.
69. Edwards, M.,, R. L. McDade,, G. Schoolnik,, J. B. Rothbard,, and E. C. Gotschlich. 1984. Antigenic analysis of gonococcal pili using monoclonal antibodies. J. Exp. Med. 160:17821791.
70. Elkins, C.,, N. H. Carbonetti,, V. A. Varela,, D. Stirewalt,, D. G. Klapper,, and P. F. Sparling. 1992. Antibodies to N-terminal peptides of gonococcal porin are bactericidal when gonococcal lipopolysaccharide is not sialylated. Mol. Microbiol. 6: 26172628.
71. Elkins, C.,, and R. F. Rest. 1990. Monoclonal antibodies to outer membrane protein P.II block interactions of Neisseria gonorrhoeae with human neutrophils. Infect. Immun. 58: 10781084.
72. Fischer, S. H.,, and R. F. Rest. 1988. Gonococci possessing only certain P.II outer membrane proteins interact with human neutrophils. Infect. Immun. 56:15741579.
73. Forest, K. T.,, S. A. Dunham,, M. Koomey,, and J. A. Tainer. 1999. Crystallographic structure reveals phosphorylated pilin from Neisseria: phosphoserine sites modify type IV pilus surface chemistry and fibre morphology. Mol. Microbiol. 31: 743752.
74. Forest, K. T.,, and J. A. Tainer. 1997. Type-4 pilus-structure: outside to inside and top to bottom—a minireview. Gene 192:165169.
75. Francioli, P.,, H. Shio,, R. B. Roberts,, and M. Muller. 1983. Phagocytosis and killing of Neisseria gonorrhoeae by Trichomonas vaginalis. J. Infect. Dis. 147:8794.
76. Frangipane, J. V.,, and R. F. Rest. 1993. Anaerobic growth and cytidine 5′-monophospho-N-acetylneuraminic acid act synergistically to induce high-level serum resistance in Neisseria gonorrhoeae. Infect. Immun. 61:16571666.
77. Fussenegger, M.,, T. Rudel,, R. Barten,, R. Ryll,, and T. F. Meyer. 1997. Transformation competence and type-4 pilus biogenesis in Neisseria gonorrhoeae—a review. Gene 192:125134.
78. Gilbert, M.,, D. C. Watson,, A. M. Cunningham,, M. P. Jennings,, N. M. Young,, and W. W. Wakarchuk. 1996. Cloning of the lipooligosaccharide alpha-2,3-sialyltransferase from the bacterial pathogens Neisseria meningitidis and Neisseria gonorrhoeae. J. Biol. Chem. 271:2827128276.
79. Gill, M. J.,, D. P. McQuillen,, J. P. van Putten,, L. M. Wetzler,, J. Bramley,, H. Crooke,, N. J. Parsons,, J. A. Cole,, and H. Smith. 1996. Functional characterization of a sialyltransferase- deficient mutant of Neisseria gonorrhoeae. Infect. Immun. 64:33743378.
80. Gomez-Duarte, O. G.,, M. Dehio,, C. A. Guzman,, G. S. Chhatwal,, C. Dehio,, and T. F. Meyer. 1997. Binding of vitronectin to opa-expressing Neisseria gonorrhoeae mediates invasion of HeLa cells. Infect. Immun. 65:38573866.
81. Gorby, G. L.,, A. F. Ehrhardt,, M. A. Apicella,, and C. Elkins. 2001. Invasion of human fallopian tube epithelium by Escherichia coli expressing combinations of a gonococcal porin, opacity-associated protein, and chimeric lipo-oligosaccharide. J. Infect. Dis. 184:460472.
82. Gorby, G. L.,, and G. B. Schaefer. 1992. Effect of attachment factors (pili plus Opa) on Neisseria gonorrhoeae invasion of human fallopian tube tissue in vitro: quantitation by computerized image analysis. Microb. Pathog. 13:93108.
83. Gotschlich, E. C. 1994. Genetic locus for the biosynthesis of the variable portion of Neisseria gonorrhoeae lipooligosaccharide. J. Exp. Med. 180:21812190.
84. Grant, C. C.,, M. P. Bos,, and R. J. Belland. 1999. Proteoglycan receptor binding by Neisseria gonorrhoeae MS11 is determined by the HV-1 region of OpaA. Mol. Microbiol. 32:233242.
85. Gray-Owen, S. D.,, C. Dehio,, A. Haude,, F. Grunert,, and T. F. Meyer. 1997. CD66 carcinoembryonic antigens mediate interactions between Opa-expressing Neisseria gonorrhoeae and human polymorphonuclear phagocytes. EMBO J. 16: 34353445.
86. Griffiss, J. M.,, G. A. Jarvis,, J. P. O’Brien,, M. M. Eads,, and H. Schneider. 1991. Lysis of Neisseria gonorrhoeae initiated by binding of normal human IgM to a hexosamine-containing lipooligosaccharide epitope(s) is augmented by strain-specific, properdin-binding-dependent alternative complement pathway activation. J. Immunol. 147:298305.
87. Griffiss, J. M.,, H. Schneider,, R. E. Mandrell,, R. Yamasaki,, G. A. Jarvis,, J. J. Kim,, B. W. Gibson,, R. Hamadeh,, and M. A. Apicella. 1988. Lipooligosaccharides: the principal glycolipids of the neisserial outer membrane. Rev. Infect. Dis. 10(Suppl. 2):S287S295.
88. Gubish, E. R., Jr.,, K. C. Chen,, and T. M. Buchanan. 1982. Attachment of gonococcal pili to lectin-resistant clones of Chinese hamster ovary cells. Infect. Immun. 37:189194.
89. Gulati, S.,, D. P. McQuillen,, R. E. Mandrell,, D. B. Jani,, and P. A. Rice. 1996. Immunogenicity of Neisseria gonorrhoeae lipooligosaccharide epitope 2C7, widely expressed in vivo with no immunochemical similarity to human glycosphingolipids. J. Infect. Dis. 174:12231237.
90. Gulati, S.,, D. P. McQuillen,, J. Sharon,, and P. A. Rice. 1996. Experimental immunization with a monoclonal anti-idiotope antibody that mimics the Neisseria gonorrhoeae lipooligosaccharide epitope 2C7. J. Infect. Dis. 174:12381248.
91. Haas, R.,, and T. F. Meyer. 1986. The repertoire of silent pilus genes in Neisseria gonorrhoeae: evidence for gene conversion. Cell 44:107115.
92. Haas, R.,, H. Schwarz,, and T. F. Meyer. 1987. Release of soluble pilin antigen coupled with gene conversion in Neisseria gonorrhoeae. Proc. Natl. Acad. Sci. USA 84:90799083.
93. Haas, R.,, S. Veit,, and T. F. Meyer. 1992. Silent pilin genes of Neisseria gonorrhoeae MS11 and the occurrence of related hypervariant sequences among other gonococcal isolates. Mol. Microbiol. 6:197208.
94. Hagblom, P.,, E. Segal,, E. Billyard,, and M. So. 1985. Intragenic recombination leads to pilus antigenic variation in Neisseria gonorrhoeae. Nature 315:156158.
95. Hagman, K. E.,, W. Pan,, B. G. Spratt,, J. T. Balthazar,, R. C. Judd,, and W. M. Shafer. 1995. Resistance of Neisseria gonorrhoeae to antimicrobial hydrophobic agents is modulated by the mtrRCDE efflux system. Microbiology 141:611622.
96. Hallet, B. 2001. Playing Dr Jekyll, and Mr Hyde: combined mechanisms of phase variation in bacteria. Curr. Opin. Microbiol. 4:570581.
97. Hamrick, T. S.,, J. A. Dempsey,, M. S. Cohen,, and J. G. Cannon. 2001. Antigenic variation of gonococcal pilin expression in vivo: analysis of the strain FA1090 pilin repertoire and identification of the pilS gene copies recombining with pilE during experimental human infection. Microbiology 147:839849.
98. Han, E.,, D. Phan,, P. Lo,, M. N. Poy,, R. Behringer,, S. M. Najjar,, and S. H. Lin. 2001. Differences in tissue-specific and embryonic expression of mouse Ceacam1 and Ceacam2 genes. Biochem. J. 355:417423.
99. Harvey, H. A.,, M. P. Jennings,, C. A. Campbell,, R. Williams,, and M. A. Apicella. 2001. Receptor-mediated endocytosis of Neisseria gonorrhoeae into primary human urethral epithelial cells: the role of the asialoglycoprotein receptor. Mol. Microbiol. 42:659672.
100. Harvey, H. A.,, N. Porat,, C. A. Campbell,, M. Jennings,, B. W. Gibson,, N. J. Phillips,, M. A. Apicella,, and M. S. Blake. 2000. Gonococcal lipooligosaccharide is a ligand for the asialoglycoprotein receptor on human sperm. Mol. Microbiol. 36: 10591070.
101. Harvey, H. A.,, W. E. Swords,, and M. A. Apicella. 2001. The mimicry of human glycolipids and glycosphingolipids by the lipooligosaccharides of pathogenic Neisseria and Haemophilus. J. Autoimmun. 16:257262.
102. Hassett, D. J.,, and M. S. Cohen. 1989. Bacterial adaptation to oxidative stress: implications for pathogenesis and interaction with phagocytic cells. FASEB J. 3:25742582.
103. Hauck, C. R.,, and T. F. Meyer. 2003. ‘Small’ talk: Opa proteins as mediators of Neisseria-host-cell communication. Curr. Opin. Microbiol. 6:4349.
104. Hitchcock, P. J.,, and T. M. Brown. 1983. Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels. J. Bacteriol. 154:269277.
105. Hobbs, M. M.,, A. Seiler,, M. Achtman,, and J. G. Cannon. 1994. Microevolution within a clonal population of pathogenic bacteria: recombination, gene duplication and horizontal genetic exchange in the opa gene family of Neisseria meningitidis. Mol. Microbiol. 12:171180.
106. Holmes, K. K.,, G. W. Counts,, and H. N. Beaty. 1971. Disseminated gonococcal infection. Ann. Intern. Med. 74:979993.
107. Hook, E.,, and H. Handsfield. 1999. Gonococcal infections in the adult, p. 451466. In (ed.), Sexually Transmitted Diseases, 3rd ed. McGraw-Hill Co. Inc., New York, N.Y.
108. Householder, T. C.,, W. A. Belli,, S. Lissenden,, J. A. Cole,, and V. L. Clark. 1999. cis- and trans-acting elements involved in regulation of aniA, the gene encoding the major anaerobically induced outer membrane protein in Neisseria gonorrhoeae. J. Bacteriol. 181:541551.
109. Ilver, D.,, H. Kallstrom,, S. Normark,, and A. B. Jonsson. 1998. Transcellular passage of Neisseria gonorrhoeae involves pilus phase variation. Infect. Immun. 66:469473.
110. James, J. F.,, and J. Swanson,. 1978. Color/opacity colonial variants of Neisseria gonorrhoeae and their relationship to the menstrual cycle, p. 338343. In G. F. Brooks,, E. C. Gotschlich,, K. K. Holmes,, W. D. Sawyer, and F. E. Young (ed.), Immunobiology of Neisseria gonorrhoeae. American Society for Microbiology, Washington, D.C.
111. James, J. F.,, and J. Swanson. 1978. Studies on gonococcus infection. XIII. Occurrence of color/opacity colonial variants in clinical cultures. Infect. Immun. 19:332340.
112. Jephcott, A. E.,, A. Reyn,, and A. Birch-Andersen. 1971. Neisseria gonorrhoeae. 3. Demonstration of presumed appendages to cells from different colony types. Acta Pathol. Microbiol. Scand. Ser. B 79:437439.
113. Jerse, A. E. 1999. Experimental gonococcal genital tract infection and opacity protein expression in estradiol-treated mice. Infect. Immun. 67:56995708.
114. Jerse, A. E.,, M. S. Cohen,, P. M. Drown,, L. G. Whicker,, S. F. Isbey,, H. S. Seifert,, and J. G. Cannon. 1994. Multiple gonococcal opacity proteins are expressed during experimental urethral infection in the male. J. Exp. Med. 179:911920.
115. Jerse, A. E.,, E. T. Crow,, A. N. Bordner,, I. Rahman,, C. N. Cornelissen,, T. R. Moench,, and K. Mehrazar. 2002. Growth of Neisseria gonorrhoeae in the female mouse genital tract does not require the gonococcal transferrin or hemoglobin receptors and may be enhanced by commensal lactobacilli. Infect. Immun. 70:25492558.
116. Jerse, A. E.,, N. D. Sharma,, A. N. Simms,, E. T. Crow,, L. A. Snyder,, and W. M. Shafer. 2003. A gonococcal efflux pump system enhances bacterial survival in a female mouse model of genital tract infection. Infect. Immun. 71:55765582.
117. Johansson, L.,, A. Rytkonen,, P. Bergman,, B. Albiger,, H. Kallstrom,, T. Hokfelt,, B. Agerberth,, R. Cattaneo,, and A. B. Jonsson. 2003. CD46 in meningococcal disease. Science 301: 373375.
118. John, C. M.,, J. M. Griffiss,, M. A. Apicella,, R. E. Mandrell,, and B. W. Gibson. 1991. The structural basis for pyocin resistance in Neisseria gonorrhoeae lipooligosaccharides. J. Biol. Chem. 266:1930319311.
119. Johnson, S. R.,, B. M. Steiner,, D. D. Cruce,, G. H. Perkins,, and R. J. Arko. 1993. Characterization of a catalase-deficient strain of Neisseria gonorrhoeae: evidence for the significance of catalase in the biology of N. gonorrhoeae. Infect. Immun. 61:12321238.
120. Jones, R. B.,, J. C. Newland,, D. A. Olsen,, and T. M. Buchanan. 1980. Immune-enhanced phagocytosis of Neisseria gonorrhoeae by macrophages: characterization of the major antigens to which opsonins are directed. J. Gen. Microbiol. 121:365372.
121. Jonsson, A. B.,, D. Ilver,, P. Falk,, J. Pepose,, and S. Normark. 1994. Sequence changes in the pilus subunit lead to tropism variation of Neisseria gonorrhoeae to human tissue. Mol. Microbiol. 13:403416.
122. Jonsson, A. B.,, G. Nyberg,, and S. Normark. 1991. Phase variation of gonococcal pili by frameshift mutation in pilC, a novel gene for pilus assembly. EMBO J. 10:477488.
123. Jonsson, A. B.,, J. Pfeifer,, and S. Normark. 1992. Neisseria gonorrhoeae PilC expression provides a selective mechanism for structural diversity of pili. Proc. Natl. Acad. Sci. USA 89:32043208.
124. Jordan, P.,, L. A. Snyder,, and N. J. Saunders. 2003. Diversity in coding tandem repeats in related Neisseria spp. BMC Microbiol. 3:23.
125. Kallstrom, H.,, D. Blackmer Gill,, B. Albiger,, M. K. Liszewski,, J. P. Atkinson,, and A. B. Jonsson. 2001. Attachment of Neisseria gonorrhoeae to the cellular pilus receptor CD46:identification of domains important for bacterial adherence. Cell. Microbiol. 3:133143.
126. Kallstrom, H.,, M. S. Islam,, P. O. Berggren,, and A. B. Jonsson. 1998. Cell signaling by the type IV pili of pathogenic Neisseria. J. Biol. Chem. 273:2177721782.
127. Kallstrom, H.,, M. K. Liszewski,, J. P. Atkinson,, and A. B. Jonsson. 1997. Membrane cofactor protein (MCP or CD46) is a cellular pilus receptor for pathogenic Neisseria. Mol. Microbiol. 25:639647.
128. Kellogg, D. S., Jr.,, I. R. Cohen,, L. C. Norins,, A. L. Schroeter,, and G. Reising. 1968. Neisseria gonorrhoeae. II. Colonial variation and pathogenicity during 35 months in vitro. J. Bacteriol. 96:596605.
129. Kellogg, D. S., Jr.,, W. L. Peacock, Jr.,, W. E. Deacon,, L. Brown,, and D. I. Pirkle. 1963. Neisseria gonorrhoeae. I. Virulence genetically linked to clonal variation. J. Bacteriol. 85:12741279.
130. Kim, J. J.,, D. Zhou,, R. E. Mandrell,, and J. M. Griffiss. 1992. Effect of exogenous sialylation of the lipooligosaccharide of Neisseria gonorrhoeae on opsonophagocytosis. Infect. Immun. 60:44394442.
131. Klimpel, K. W.,, S. A. Lesley,, and V. L. Clark. 1989. Identification of subunits of gonococcal RNA polymerase by immunoblot analysis: evidence for multiple sigma factors. J. Bacteriol. 171:37133718.
132. Kline, K. A.,, E. V. Sechman,, E. P. Skaar,, and H. S. Seifert. 2003. Recombination, repair and replication in the pathogenic neisseriae: the 3 R’s of molecular genetics of two human-specific bacterial pathogens. Mol. Microbiol. 50:313.
133. Knepper, B.,, I. Heuer,, T. F. Meyer,, and J. P. van Putten. 1997. Differential response of human monocytes to Neisseria gonorrhoeae variants expressing pili and opacity proteins. Infect. Immun. 65:41224129.
134. Kolberg, J.,, E. A. Hoiby,, and E. Jantzen. 1997. Detection of the phosphorylcholine epitope in streptococci, Haemophilus and pathogenic neisseriae by immunoblotting. Microb. Pathog. 22:321329.
135. Koomey, M.,, E. C. Gotschlich,, K. Robbins,, S. Bergstrom,, and J. Swanson. 1987. Effects of recA mutations on pilus antigenic variation and phase transitions in Neisseria gonorrhoeae. Genetics 117:391398.
136. Kupsch, E. M.,, B. Knepper,, T. Kuroki,, I. Heuer,, and T. F. Meyer. 1993. Variable opacity (Opa) outer membrane proteins account for the cell tropisms displayed by Neisseria gonorrhoeae for human leukocytes and epithelial cells. EMBO J. 12:641650.
137. Lambden, P. R.,, J. E. Heckels,, L. T. James,, and P. J. Watt. 1979. Variations in surface protein composition associated with virulence properties in opacity types of Neisseria gonorrhoeae. J. Gen. Microbiol. 114:305312.
138. Lambden, P. R.,, J. N. Robertson,, and P. J. Watt. 1980. Biological properties of two distinct pilus types produced by isogenic variants of Neisseria gonorrhoeae P9. J. Bacteriol. 141:393396.
139. Laskos, L.,, J. P. Dillard,, H. S. Seifert,, J. A. Fyfe,, and J. K. Davies. 1998. The pathogenic neisseriae contain an inactive rpoN gene and do not utilize the pilE sigma54 promoter. Gene 208:95102.
140. Lebedeff, D. A.,, and E. B. Hochman. 1980. Rectal gonorrhea in men: diagnosis and treatment. Ann. Intern. Med. 92:463466.
141. Lee, S. W.,, R. A. Bonnah,, D. L. Higashi,, J. P. Atkinson,, S. L. Milgram,, and M. So. 2002. CD46 is phosphorylated at tyrosine 354 upon infection of epithelial cells by Neisseria gonorrhoeae. J. Cell Biol. 156:951957.
142. Levinson, G.,, and G. A. Gutman. 1987. Slipped-strand mis-pairing: a major mechanism for DNA sequence evolution. Mol. Biol. Evol. 4:203221.
143. Lewis, L. A.,, E. Gray,, Y. P. Wang,, B. A. Roe,, and D. W. Dyer. 1997. Molecular characterization of hpuAB, the haemoglobin- haptoglobin-utilization operon of Neisseria meningitidis. Mol. Microbiol. 23:737749.
144. Long, C. D.,, S. F. Hayes,, J. P. van Putten,, H. A. Harvey,, M. A. Apicella,, and H. S. Seifert. 2001. Modulation of gonococcal piliation by regulatable transcription of pilE. J. Bacteriol. 183:16001609.
145. Long, C. D.,, R. N. Madraswala,, and H. S. Seifert. 1998. Comparisons between colony phase variation of Neisseria gonorrhoeae FA1090 and pilus, pilin, and S-pilin expression. Infect. Immun. 66:19181927.
146. Long, C. D.,, D. M. Tobiason,, M. P. Lazio,, K. A. Kline,, and H. S. Seifert. 2003. Low-level pilin expression allows for substantial DNA transformation competence in Neisseria gonorrhoeae. Infect. Immun. 71:62796291.
147. Lorenzen, D. R.,, D. Gunther,, J. Pandit,, T. Rudel,, E. Brandt,, and T. F. Meyer. 2000. Neisseria gonorrhoeae porin modifies the oxidative burst of human professional phagocytes. Infect. Immun. 68:62156222.
148. Makino, S.,, J. P. van Putten,, and T. F. Meyer. 1991. Phase variation of the opacity outer membrane protein controls invasion by Neisseria gonorrhoeae into human epithelial cells. EMBO J. 10:13071315.
149. Malorny, B.,, G. Morelli,, B. Kusecek,, J. Kolberg,, and M. Achtman. 1998. Sequence diversity, predicted two-dimensional protein structure, and epitope mapping of neisserial Opa proteins. J. Bacteriol. 180:13231330.
150. Mandrell, R.,, H. Schneider,, M. Apicella,, W. Zollinger,, P. A. Rice,, and J. M. Griffiss. 1986. Antigenic and physical diversity of Neisseria gonorrhoeae lipooligosaccharides. Infect. Immun. 54:6369.
151. Mandrell, R. E.,, H. Smith,, G. A. Jarvis,, J. M. Griffiss,, and J. A. Cole. 1993. Detection and some properties of the sialyl-transferase implicated in the sialylation of lipopolysaccharide of Neisseria gonorrhoeae. Microb. Pathog. 14:307313.
152. Manning, P. A.,, A. Kaufmann,, U. Roll,, J. Pohlner,, T. F. Meyer,, and R. Haas. 1991. L-pilin variants of Neisseria gonorrhoeae MS11. Mol. Microbiol. 5:917926.
153. Marceau, M.,, and X. Nassif. 1999. Role of glycosylation at Ser63 in production of soluble pilin in pathogenic Neisseria. J. Bacteriol. 181:656661.
154. Mayer, L. W. 1982. Rates in vitro changes of gonococcal colony opacity phenotypes. Infect. Immun. 37:481485.
155. McCormack, W. M.,, R. J. Stumacher,, K. Johnson,, and A. Donner. 1977. Clinical spectrum of gonococcal infection in women. Lancet i:11821185.
156. McQuillen, D. P.,, S. Gulati,, S. Ram,, A. K. Turner,, D. B. Jani,, T. C. Heeren,, and P. A. Rice. 1999. Complement processing and immunoglobulin binding to Neisseria gonorrhoeae determined in vitro simulates in vivo effects. J. Infect. Dis. 179: 124135.
157. Mehr, I. J.,, and H. S. Seifert. 1998. Differential roles of homologous recombination pathways in Neisseria gonorrhoeae pilin antigenic variation, DNA transformation and DNA repair. Mol. Microbiol. 30:697710.
158. Merz, A. J.,, C. A. Enns,, and M. So. 1999. Type IV pili of pathogenic neisseriae elicit cortical plaque formation in epithelial cells. Mol. Microbiol. 32:13161332.
159. Merz, A. J.,, and M. So. 2000. Interactions of pathogenic neisseriae with epithelial cell membranes. Annu. Rev. Cell Dev. Biol. 16:423457.
160. Merz, A. J.,, M. So,, and M. P. Sheetz. 2000. Pilus retraction powers bacterial twitching motility. Nature 407:98102.
161. Meyer, T. F.,, E. Billyard,, R. Haas,, S. Storzbach,, and M. So. 1984. Pilus genes of Neisseria gonorrheae: chromosomal organization and DNA sequence. Proc. Natl. Acad. Sci. USA 81:61106114.
162. Meyer, T. F.,, N. Mlawer,, and M. So. 1982. Pilus expression in Neisseria gonorrhoeae involves chromosomal rearrangement. Cell 30:4552.
163. Mickelsen, P. A.,, and P. F. Sparling. 1981. Ability of Neisseria gonorrhoeae, Neisseria meningitidis, and commensal Neisseria species to obtain iron from transferrin and iron compounds. Infect. Immun. 33:555564.
164. Morand, P. C.,, P. Tattevin,, E. Eugene,, J. L. Beretti,, and X. Nassif. 2001. The adhesive property of the type IV pilus-associated component PilC1 of pathogenic Neisseria is supported by the conformational structure of the N-terminal part of the molecule. Mol. Microbiol. 40:846856.
165. Morelli, G.,, B. Malorny,, K. Muller,, A. Seiler,, J. F. Wang,, J. del Valle,, and M. Achtman. 1997. Clonal descent and microevolution of Neisseria meningitidis during 30 years of epidemic spread. Mol. Microbiol. 25:10471064.
166. Morse, S. A.,, and M. A. Apicella. 1982. Isolation of a lipopolysaccharide mutant of Neisseria gonorrhoeae: an analysis of the antigenic and biologic difference. J. Infect. Dis. 145:206216.
167. Mosleh, I. M.,, H. J. Boxberger,, M. J. Sessler,, and T. F. Meyer. 1997. Experimental infection of native human ureteral tissue with Neisseria gonorrhoeae: adhesion, invasion, intracellular fate, exocytosis, and passage through a stratified epithelium. Infect. Immun. 65:33913398.
168. Muenzner, P.,, O. Billker,, T. F. Meyer,, and M. Naumann. 2002. Nuclear factor-kappa B directs carcinoembryonic antigen- related cellular adhesion molecule 1 receptor expression in Neisseria gonorrhoeae-infected epithelial cells. J. Biol. Chem. 277:74387446.
169. Muenzner, P.,, M. Naumann,, T. F. Meyer,, and S. D. Gray- Owen. 2001. Pathogenic Neisseria trigger expression of their carcinoembryonic antigen-related cellular adhesion molecule 1 (CEACAM1; previously CD66a) receptor on primary endothelial cells by activating the immediate early response transcription factor, nuclear factor-kappaB. J. Biol. Chem. 276:2433124340.
170. Murphy, G. L.,, T. D. Connell,, D. S. Barritt,, M. Koomey,, and J. G. Cannon. 1989. Phase variation of gonococcal protein II: regulation of gene expression by slipped-strand mispairing of a repetitive DNA sequence. Cell 56:539547.
171. Naids, F. L.,, and R. F. Rest. 1991. Stimulation of human neutrophil oxidative metabolism by nonopsonized Neisseria gonorrhoeae. Infect. Immun. 59:43834390.
172. Nairn, C. A.,, J. A. Cole,, P. V. Patel,, N. J. Parsons,, J. E. Fox,, and H. Smith. 1988. Cytidine 5′-monophospho-N-acetylneuraminic acid or a related compound is the lowMr factor from human red blood cells which induces gonococcal resistance to killing by human serum. J. Gen. Microbiol. 134:32953306.
173. Nassif, X.,, J. L. Beretti,, J. Lowy,, P. Stenberg,, P. O’Gaora,, J. Pfeifer,, S. Normark,, and M. So. 1994. Roles of pilin and PilC in adhesion of Neisseria meningitidis to human epithelial and endothelial cells. Proc. Natl. Acad. Sci. USA 91: 37693773.
174. Nicolson, I. J.,, A. C. Perry,, M. Virji,, J. E. Heckels,, and J. R. Saunders. 1987. Localization of antibody-binding sites by sequence analysis of cloned pilin genes from Neisseria gonorrhoeae. J. Gen. Microbiol. 133:825833.
175. Palmer, L.,, G. F. Brooks,, and S. Falkow. 1989. Expression of gonococcal protein II in Escherichia coli by translational fusion. Mol. Microbiol. 3:663671.
176. Pangburn, M. K.,, and H. J. Muller-Eberhard. 1978. Complement C3 convertase: cell surface restriction of β1H control and generation of restriction on neuraminidase-treated cells. Proc. Natl. Acad. Sci. USA 75:24162420.
177. Pangburn, M. K.,, R. D. Schreiber,, and H. J. Muller-Eberhard. 1977. Human complement C3b inactivator: isolation, characterization, and demonstration of an absolute requirement for the serum protein β1H for cleavage of C3b and C4b in solution. J. Exp. Med. 146:257270.
178. Parge, H. E.,, K. T. Forest,, M. J. Hickey,, D. A. Christensen,, E. D. Getzoff,, and J. A. Tainer. 1995. Structure of the fibre-forming protein pilin at 2.6 A resolution. Nature 378:3238.
179. Park, H. S.,, M. Wolfgang,, J. P. van Putten,, D. Dorward,, S. F. Hayes,, and M. Koomey. 2001. Structural alterations in a type IV pilus subunit protein result in concurrent defects in multicellular behaviour and adherence to host tissue. Mol. Microbiol. 42:293307.
180. Parsons, N. J.,, J. R. Andrade,, P. V. Patel,, J. A. Cole,, and H. Smith. 1989. Sialylation of lipopolysaccharide and loss of absorption of bactericidal antibody during conversion of gonococci to serum resistance by cytidine 5′-monophospho- N-acetyl neuraminic acid. Microb. Pathog. 7:6372.
181. Pearce, W. A.,, and T. M. Buchanan. 1978. Attachment role of gonococcal pili. Optimum conditions and quantitation of adherence of isolated pili to human cells in vitro. J. Clin. Investig. 61:931943.
182. Perry, M. B.,, and V. Daoust. 1975. The lipopolysaccharides of Neisseria gonorrhoeae colony types 1 and 4. Can. J. Biochem. 53:623629.
183. Petricoin, E. F., III,, R. J. Danaher,, and D. C. Stein. 1991. Analysis of the lsi region involved in lipooligosaccharide biosynthesis in Neisseria gonorrhoeae. J. Bacteriol. 173: 78967902.
184. Phillips, R. S.,, P. A. Hanff,, A. Wertheimer,, and M. D. Aronson. 1988. Gonorrhea in women seen for routine gynecologic care: criteria for testing. Am. J. Med. 85:177182.
185. Platt, R.,, P. A. Rice,, and W. M. McCormack. 1983. Risk of acquiring gonorrhea and prevalence of abnormal adnexal findings among women recently exposed to gonorrhea. JAMA 250:32053209.
186. Plummer, F. A.,, H. Chubb,, J. N. Simonsen,, M. Bosire,, L. Slaney,, N. J. Nagelkerke,, I. Maclean,, J. O. Ndinya-Achola,, P. Waiyaki,, and R. C. Brunham. 1994. Antibodies to opacity proteins (Opa) correlate with a reduced risk of gonococcal salpingitis. J. Clin. Investig. 93:17481755.
187. Porat, N.,, M. A. Apicella,, and M. S. Blake. 1995. Neisseria gonorrhoeae utilizes and enhances the biosynthesis of the asialoglycoprotein receptor expressed on the surface of the hepatic HepG2 cell line. Infect. Immun. 63:14981506.
188. Power, P. M.,, and M. P. Jennings. 2003. The genetics of glycosylation in gram-negative bacteria. FEMS Microbiol. Lett. 218:211222.
189. Power, P. M.,, L. F. Roddam,, K. Rutter,, S. Z. Fitzpatrick,, Y. N. Srikhanta,, and M. P. Jennings. 2003. Genetic characterization of pilin glycosylation and phase variation in Neisseria meningitidis. Mol. Microbiol. 49:833847.
190. Punsalang, A. P., Jr.,, and W. D. Sawyer. 1973. Role of pili in the virulence of Neisseria gonorrhoeae. Infect. Immun. 8:255263.
191. Quinn, T. C.,, W. E. Stamm,, S. E. Goodell,, E. Mkrtichian,, J. Benedetti,, L. Corey,, M. D. Schuffler,, and K. K. Holmes. 1983. The polymicrobial origin of intestinal infections in homosexual men. N. Engl. J. Med. 309:576582.
192. Rahman, M.,, H. Kallstrom,, S. Normark,, and A. B. Jonsson. 1997. PilC of pathogenic Neisseria is associated with the bacterial cell surface. Mol. Microbiol. 25:1125.
193. Ram, S.,, M. Cullinane,, A. M. Blom,, S. Gulati,, D. P. McQuillen,, B. G. Monks,, C. O’Connell,, R. Boden,, C. Elkins,, M. K. Pangburn,, B. Dahlback,, and P. A. Rice. 2001. Binding of C4b-binding protein to porin: a molecular mechanism of serum resistance of Neisseria gonorrhoeae. J. Exp. Med. 193: 281295.
194. Ram, S.,, F. G. Mackinnon,, S. Gulati,, D. P. McQuillen,, U. Vogel,, M. Frosch,, C. Elkins,, H. K. Guttormsen,, L. M. Wetzler,, M. Oppermann,, M. K. Pangburn,, and P. A. Rice. 1999. The contrasting mechanisms of serum resistance of Neisseria gonorrhoeae and group B Neisseria meningitidis. Mol. Immunol. 36:915928.
195. Ram, S.,, A. K. Sharma,, S. D. Simpson,, S. Gulati,, D. P. Mc- Quillen,, M. K. Pangburn,, and P. A. Rice. 1998. A novel sialic acid binding site on factor H mediates serum resistance of sialylated Neisseria gonorrhoeae. J. Exp. Med. 187:743752.
196. Rest, R. F.,, S. H. Fischer,, Z. Z. Ingham,, and J. F. Jones. 1982. Interactions of Neisseria gonorrhoeae with human neutrophils: effects of serum and gonococcal opacity on phagocyte killing and chemiluminescence. Infect. Immun. 36:737744.
197. Rest, R. F.,, and J. V. Frangipane. 1992. Growth of Neisseria gonorrhoeae in CMP-N-acetylneuraminic acid inhibits nonopsonic (opacity-associated outer membrane protein-mediated) interactions with human neutrophils. Infect. Immun. 60:989997.
198. Rice, P. A. 1989. Molecular basis for serum resistance in Neisseria gonorrhoeae. Clin. Microbiol. Rev. 2(Suppl.):S112S117.
199. Rothbard, J. B.,, R. Fernandez,, L. Wang,, N. N. Teng,, and G. K. Schoolnik. 1985. Antibodies to peptides corresponding to a conserved sequence of gonococcal pilins block bacterial adhesion. Proc. Natl. Acad. Sci. USA 82:915919.
200. Rudel, T.,, H. J. Boxberger,, and T. F. Meyer. 1995. Pilus biogenesis and epithelial cell adherence of Neisseria gonorrhoeae pilC double knock-out mutants. Mol. Microbiol. 17:10571071.
201. Rudel, T.,, D. Facius,, R. Barten,, I. Scheuerpflug,, E. Nonnenmacher,, and T. F. Meyer. 1995. Role of pili and the phase-variable PilC protein in natural competence for transformation of Neisseria gonorrhoeae. Proc. Natl. Acad. Sci. USA 92:79867990.
202. Rudel, T.,, I. Scheurerpflug,, and T. F. Meyer. 1995. Neisseria PilC protein identified as type-4 pilus tip-located adhesin. Nature 373:357359.
203. Rudel, T.,, J. P. van Putten,, C. P. Gibbs,, R. Haas,, and T. F. Meyer. 1992. Interaction of two variable proteins (PilE and PilC) required for pilus-mediated adherence of Neisseria gonorrhoeae to human epithelial cells. Mol. Microbiol. 6:34393450.
204. Rytkonen, A.,, L. Johansson,, V. Asp,, B. Albiger,, and A. B. Jonsson. 2001. Soluble pilin of Neisseria gonorrhoeae interacts with human target cells and tissue. Infect. Immun. 69: 64196426.
205. Salit, I. E. 1982. The differential susceptibility of gonococcal opacity variants to sex hormones. Can. J. Microbiol. 28:301306.
206. Salit, I. E.,, M. Blake,, and E. C. Gotschlich. 1980. Intra-strain heterogeneity of gonococcal pili is related to opacity colony variance. J. Exp. Med. 151:716725.
207. Salit, I. E.,, and E. C. Gotschlich. 1978. Gonococcal color and opacity variants: virulence for chicken embryos. Infect. Immun. 22:359364.
208. Sandlin, R. C.,, and D. C. Stein. 1994. Role of phosphoglucomutase in lipooligosaccharide biosynthesis in Neisseria gonorrhoeae. J. Bacteriol. 176:29302937.
209. Scheuerpflug, I.,, T. Rudel,, R. Ryll,, J. Pandit,, and T. F. Meyer. 1999. Roles of PilC and PilE proteins in pilus-mediated adherence of Neisseria gonorrhoeae and Neisseria meningitidis to human erythrocytes and endothelial and epithelial cells. Infect. Immun. 67:834843.
210. Schmidt, K. A.,, C. D. Deal,, M. Kwan,, E. Thattassery,, and H. Schneider. 2000. Neisseria gonorrhoeae MS11mkC opacity protein expression in vitro and during human volunteer infectivity studies. Sex. Transm. Dis. 27:278283.
211. Schneider, H.,, J. M. Griffiss,, J. W. Boslego,, P. J. Hitchcock,, K. M. Zahos,, and M. A. Apicella. 1991. Expression of paragloboside- like lipooligosaccharides may be a necessary component of gonococcal pathogenesis in men. J. Exp. Med. 174: 16011605.
212. Schneider, H.,, J. M. Griffiss,, R. E. Mandrell,, and G. A. Jarvis. 1985. Elaboration of a 3.6-kilodalton lipooligosaccharide, antibody against which is absent from human sera, is associated with serum resistance of Neisseria gonorrhoeae. Infect. Immun. 50:672677.
213. Schneider, H.,, T. L. Hale,, W. D. Zollinger,, R. C. Seid, Jr.,, C. A. Hammack,, and J. M. Griffiss. 1984. Heterogeneity of molecular size and antigenic expression within lipooligosaccharides of individual strains of Neisseria gonorrhoeae and Neisseria meningitidis. Infect. Immun. 45:544549.
214. Schneider, H.,, C. A. Hammack,, M. A. Apicella,, and J. M. Griffiss. 1988. Instability of expression of lipooligosaccharides and their epitopes in Neisseria gonorrhoeae. Infect. Immun. 56:942946.
215. Schneider, H.,, K. A. Schmidt,, D. R. Skillman,, L. Van De Verg,, R. L. Warren,, H. J. Wylie,, J. C. Sadoff,, C. D. Deal,, and A. S. Cross. 1996. Sialylation lessens the infectivity of Neisseria gonorrhoeae MS11mkC. J. Infect. Dis. 173:14221427.
216. Schoolnik, G. K.,, R. Fernandez,, J. Y. Tai,, J. Rothbard,, and E. C. Gotschlich. 1984. Gonococcal pili. Primary structure and receptor binding domain. J. Exp. Med. 159:13511370.
217. Schwan, E. T.,, B. D. Robertson,, H. Brade,, and J. P. van Putten. 1995. Gonococcal rfaF mutants express Rd2 chemotype LPS and do not enter epithelial host cells. Mol. Microbiol. 15:267275.
218. Seifert, H. S. 1992. Molecular mechanisms of antigenic variation in Neisseria gonorrhoeae. Mol. Cell. Biol. Hum. Dis. Ser. 1:122.
219. Seifert, H. S. 1996. Questions about gonococcal pilus phase and antigenic variation. Mol. Microbiol. 21:433440.
220. Seifert, H. S. 1997. Insertionally inactivated and inducible recA alleles for use in Neisseria. Gene 188:215220.
221. Seifert, H. S.,, R. S. Ajioka,, D. Paruchuri,, F. Heffron,, and M. So. 1990. Shuttle mutagenesis of Neisseria gonorrhoeae: pilin null mutations lower DNA transformation competence. J. Bacteriol. 172:4046.
222. Seifert, H. S.,, and M. So. 1988. Genetic mechanisms of bacterial antigenic variation. Microbiol. Rev. 52:327336.