1887

Chapter 23 : Role of Phase and Antigenic Variation in Colonization

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Role of Phase and Antigenic Variation in Colonization, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817619/9781555813239_Chap23-1.gif /docserver/preview/fulltext/10.1128/9781555817619/9781555813239_Chap23-2.gif

Abstract:

Phase-variable expression of different versions of the same gene, as in the case of genes, or of genes that contribute to the structure of the same macromolecule, as occurs with lipooligosaccharide (LOS) biosynthesis genes, results in reversible changes in the antigenic makeup of the bacterial surface. Pilin antigenic variation, the result of new genetic information recombining into the pilin gene, is perhaps the most fascinating example of true antigenic variation in . Despite the experimental challenges inherent in studying this human-specific pathogen, evidence that variable expression of surface molecules plays a critical role in gonococcal pathogenesis is strong. The depth of variability created by the size of the pilin repertoire and the seemingly random manner by which cassettes are inserted make pilus antigenic variation one of the most fascinating stories of genetic diversity in bacterial pathogenesis. The purpose of pilus phase variation in bacterial pathogenesis is less intuitive than that of antigenic variation. Experimental infection of mice may be a useful tool for investigating the kinetics of gonococcal opacity (Opa) expression in vivo. Recovery of Opa-positive variants occurs following vaginal inoculation of mice with a predominantly Opa-negative inoculum. Acquisition of iron for growth and as a cofactor of several key enzymes in the low-iron environment of the host is important for successful colonization by most microbes.

Citation: Simms A, Jerse A. 2005. Role of Phase and Antigenic Variation in Colonization, p 327-350. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch23

Key Concept Ranking

Outer Membrane Proteins
0.49384478
Pelvic Inflammatory Disease
0.44794956
Type IV Pili
0.43233326
Transmission Electron Microscopy
0.42579818
Human Membrane Proteins
0.41789407
0.49384478
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Mechanisms of pilin antigenic variation and variation of pilus glycosylation. (A) Diagram of the pilin monomer, showing complete conservation at the N terminus and variability in the central and the C-terminal regions. Hypervariable (h-v) and semivariable (s-v) regions as defined by Hagblom et al. ( ) are shaded; conserved regions are represented in white. The presence of a hypervariable region flanked by two cystines, which form a disulfide bond, was predicted from both the primary amino acid ( ) and nucleotide ( ) sequences. This hypervariable loop is the immunodominant region of the pilin ( ), which suggests that immune pressure may have selected for the high degree of variation in this region. Posttranslational cleavage at amino acid 39 from the N terminus results in secreted (soluble) pilin (S pilin). (B) Schematic of the gene and a locus in and generation of a new gene via nonreciprocal recombination. The number of copies per silent locus varies, with six copies being present in of strain MS11 ( ). Each copy contains six variable regions (minicassettes), which, when translated, correspond to the semivariable and hypervariable regions in the pilin protein. The gene may receive a complete or partial copy (as shown here). Therefore, over time, repeated recombination events into the gene create a chimeric gene composed of sequences from multiple loci. The minicassettes are depicted here by shading, except for the ones within the gene and the silent copy shown to be undergoing recombination, which are patterned. (C) Phase variation of pilus glycosylation in . Phase-variable expression of pilus glycosyltransferase () can result in the presence or absence of galactose bound to an O-linked galactose -acetylglucosamine molecule linked to a surface-exposed serine at position 63. The glycosylation state is also dependent on the presence of a serine residue at this position and therefore is also controlled by pilin antigenic variation. Only 11 of 17 pilin copies in the loci of strain FA1019 encode a serine residue at this position ( ). This finding suggests that antigenic variation may be a significant source of changes in pilus glycosylation.

Citation: Simms A, Jerse A. 2005. Role of Phase and Antigenic Variation in Colonization, p 327-350. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Opa protein structure and function, and selection or induction of Opa protein expression during experimental murine genital tract infection. (A) Diagram of an gene showing the three regions of variability (SV, semivariable; HV, and HV, hypervariable regions 1 and 2) that define different alleles. The pentameric repeat responsible for phase variation is in the signal sequence-encoding region, with 7 to 28 copies present in different genes ( ). (B) Cartoon depicting Opa-mediated adherence to and invasion of epithelial cells and nonopsonic uptake by phagocytes. (C) Opa phenotypes of vaginal isolates from three mice that demonstrated an increased percentage of Opa-positive variants among vaginal isolates following inoculation with a predominantly Opa-negative population of strain FA1090. More than 50% of the vaginal isolates expressed at least one Opa protein within 24 h following inoculation into the lower genital tract. Different Opa proteins predominated in different mice, with OpaB being most highly represented in mouse 3 and OpaI being mostly highly represented in mice 1 and 2. OpaI of this strain is known to bind HSPG, which is likely to be present in mice. OpaB does not bind HSPG but does bind to human CEACAM receptors (Guyer et al., ). Gonococci that expressed more than one Opa protein simultaneously are represented by stripes.

Citation: Simms A, Jerse A. 2005. Role of Phase and Antigenic Variation in Colonization, p 327-350. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Prototype LOS molecule, showing points of structural variation that lead to diversity in function. The basic structure and corresponding glycosyltransferase genes are based on references 15 and 83. Phase variation of LOS structure occurs due to frameshifts in a poly(G) region within (also called lsi2 [ ]), , or ( ) or a poly(C) region within ( ). The synthesis of an alternative α chain, in which participates, occurs in only a minor population of gonococcal strains. Slippage of to an “off” position causes the production of a short-chain LOS species that confers high levels of serum resistance independent of growth in CMP-NANA ( ). Expression of or increases serum sensitivity ( ). In contrast, slippage of to an “on” position results in the formation of a highly bactericidal epitope on the β-chain ( ). The addition of CMP-NANA via the action of sialyltransferase to the terminal galactose residue of the lacto--tetraose moiety is shown, a modification that results in several adaptive advantages, as described in the text. Phase variation of or can influence LOS sialylation by controlling the presence of the target species or by blocking the target residue, respectively ( ). Sialylation blocks epithelial cell invasion mediated by interactions between the lacto-neotetraose moiety and the ASGP-R ( ). Lectin-like interactions with gonococcal Opa proteins also rely on this tetrasaccharide species and are blocked by sialic acid ( ).

Citation: Simms A, Jerse A. 2005. Role of Phase and Antigenic Variation in Colonization, p 327-350. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Genetic control of the gonococcal Hg receptor and selection of “on” phase variants under certain circumstances in vivo. (A) Diagram of the Hg receptor (HpuAB) operon as described by Chen et al. ( ), showing the poly(G) region in that is responsible for strand slippage during replication. The upper transcript is in frame; the lower transcript has lost a guanidine in the poly(G) tract and is out of frame. A putative Fur box is present upstream of the start site, which is likely to play a role in iron repression of transcription. (B) Representative graphs showing total recovery of gonococci versus recovery of Hg variants over time in a mouse with no influx of vaginal PMNs (top) versus a mouse that developed a PMN response during infection (bottom). The shaded area in the bottom graph corresponds to the period during which the frequency of Hg variants among vaginal isolates was significantly elevated over that of the inoculum. Numbers of vaginal PMNs were elevated during this period. Hg was detected on day 5 in vaginal washes from the mouse with inflammation; none was detected at any time point in mice without inflammation. (C) Cartoon depicting the circumstances during which Hg receptor expression may be advantageous. Selection for Hg variants by menstrual blood is supported by an analysis of endocervical isolates from women ( ); whether the presence of Hg as an additional iron source in the female genital tract leads to increased virulence is not known. Selection for Hg variants on the development of a PMN influx in the lower genital tract of mice suggests that gonococci may capitalize on the introduction of Hg, which exudes into the lumen with other serum components, during inflammation ( ). It is possible that Hg variants are also selected for during the bloodstream stage of disseminated infection; however, no evidence for this hypothesis has been reported.

Citation: Simms A, Jerse A. 2005. Role of Phase and Antigenic Variation in Colonization, p 327-350. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817619.chap23
1. Achtman, M.,, M. Neibert,, B. A. Crowe,, W. Strittmatter,, B. Kusecek,, E. Weyse,, M. J. Walsh,, B. Slawig,, G. Morelli,, A. Moll, et al. 1988. Purification and characterization of eight class 5 outer membrane protein variants from a clone of Neisseria meningitidis serogroup A. J. Exp. Med. 168: 507 525.
2. Aho, E. L.,, J. A. Dempsey,, M. M. Hobbs,, D. G. Klapper,, and J. G. Cannon. 1991. Characterization of the opa (class 5) gene family of Neisseria meningitidis. Mol. Microbiol. 5: 1429 1437.
3. Anderson, J. E.,, M. M. Hobbs,, G. D. Biswas,, and P. F. Sparling. 2003. Opposing selective forces for expression of the gonococcal lactoferrin receptor. Mol. Microbiol. 48: 1325 1337.
4. Anderson, J. E.,, P. A. Leone,, W. C. Miller,, C. Chen,, M. M. Hobbs,, and P. F. Sparling. 2001. Selection for expression of the gonococcal hemoglobin receptor during menses. J. Infect. Dis. 184: 1621 1623.
5. Apicella, M. A. 1974. Antigenically distinct populations of Neisseria gonorrhoeae: isolation and characterization of the responsible determinants. J. Infect. Dis. 130: 619 625.
6. Apicella, M. A. 1976. Serogrouping of Neisseria gonorrhoeae: identification of four immunologically distinct acidic polysaccharides. J. Infect. Dis. 134: 377 383.
7. Apicella, M. A.,, K. M. Bennett,, C. A. Hermerath,, and D. E. Roberts. 1981. Monoclonal antibody analysis of lipopolysaccharide from Neisseria gonorrhoeae and Neisseria meningitidis. Infect. Immun. 34: 751 756.
8. Apicella, M. A.,, and N. C. Gagliardi. 1979. Antigenic heterogeneity of the non-serogroup antigen structure of Neisseria gonorrhoeae lipopolysaccharides. Infect. Immun. 26: 870 874.
9. Apicella, M. A.,, R. E. Mandrell,, M. Shero,, M. E. Wilson,, J. M. Griffiss,, G. F. Brooks,, C. Lammel,, J. F. Breen,, and P. A. Rice. 1990. Modification by sialic acid of Neisseria gonorrhoeae lipooligosaccharide epitope expression in human urethral exudates: an immunoelectron microscopic analysis. J. Infect. Dis. 162: 506 512.
10. Apicella, M. A.,, M. Shero,, G. A. Jarvis,, J. M. Griffiss,, R. E. Mandrell,, and H. Schneider. 1987. Phenotypic variation in epitope expression of the Neisseria gonorrhoeae lipooligosaccharide. Infect. Immun. 55: 1755 1761.
11. Archibald, F. S.,, and M. N. Duong. 1986. Superoxide dismutase and oxygen toxicity defenses in the genus Neisseria. Infect. Immun. 51: 631 641.
12. Ayala, B. P.,, B. Vasquez,, S. Clary,, J. A. Tainer,, K. Rodland,, and M. So. 2001. The pilus-induced Ca 2+ flux triggers lysosome exocytosis and increases the amount of Lamp1 accessible to Neisseria IgA1 protease. Cell. Microbiol. 3: 265 275.
13. Banerjee, A.,, and S. K. Ghosh. 2003. The role of pilin glycan in neisserial pathogenesis. Mol. Cell. Biochem. 253: 179 190.
14. Banerjee, A.,, R. Wang,, S. L. Supernavage,, S. K. Ghosh,, J. Parker,, N. F. Ganesh,, P. G. Wang,, S. Gulati,, and P. A. Rice. 2002. Implications of phase variation of a gene ( pgtA) encoding a pilin galactosyl transferase in gonococcal pathogenesis. J. Exp. Med. 196: 147 162.
15. Banerjee, A.,, R. Wang,, S. N. Uljon,, P. A. Rice,, E. C. Gotschlich,, and D. C. Stein. 1998. Identification of the gene ( lgtG) encoding the lipooligosaccharide beta chain synthesizing glucosyl transferase from Neisseria gonorrhoeae. Proc. Natl. Acad. Sci. USA 95: 10872 10877.
16. Barritt, D. S.,, R. S. Schwalbe,, D. G. Klapper,, and J. G. Cannon. 1987. Antigenic and structural differences among six proteins II expressed by a single strain of Neisseria gonorrhoeae. Infect. Immun. 55: 2026 2031.
17. Belland, R. J.,, T. Chen,, J. Swanson,, and S. H. Fischer. 1992. Human neutrophil response to recombinant neisserial Opa proteins. Mol. Microbiol. 6: 1729 1737.
18. Belland, R. J.,, S. G. Morrison,, J. H. Carlson,, and D. M. Hogan. 1997. Promoter strength influences phase variation of neisserial opa genes. Mol. Microbiol. 23: 123 135.
19. Belland, R. J.,, S. G. Morrison,, P. van der Ley,, and J. Swanson. 1989. Expression and phase variation of gonococcal P.II genes in Escherichia coli involves ribosomal frameshifting and slipped-strand mispairing. Mol. Microbiol. 3: 777 786.
20. Bergstrom, S.,, K. Robbins,, J. M. Koomey,, and J. Swanson. 1986. Piliation control mechanisms in Neisseria gonorrhoeae. Proc. Natl. Acad. Sci. USA 83: 3890 3894.
21. Bessen, D.,, and E. C. Gotschlich. 1986. Interactions of gonococci with HeLa cells: attachment, detachment, replication, penetration, and the role of protein II. Infect. Immun. 54: 154 160.
22. Bhat, K. S.,, C. P. Gibbs,, O. Barrera,, S. G. Morrison,, F. Jahnig,, A. Stern,, E. M. Kupsch,, T. F. Meyer,, and J. Swanson. 1992. The opacity proteins of Neisseria gonorrhoeae strain MS11 are encoded by a family of 11 complete genes. Mol. Microbiol. 6: 1073 1076.
23. Biro, F. M.,, S. L. Rosenthal,, and M. Kiniyalocts. 1995. Gonococcal and chlamydial genitourinary infections in symptomatic and asymptomatic adolescent women. Clin. Pediatr. 34: 419 423.
24. Black, W. J.,, R. S. Schwalbe,, I. Nachamkin,, and J. G. Cannon. 1984. Characterization of Neisseria gonorrhoeae protein II phase variation by use of monoclonal antibodies. Infect. Immun. 45: 453 457.
25. Blake, M. S.,, C. M. Blake,, M. A. Apicella,, and R. E. Mandrell. 1995. Gonococcal opacity: lectin-like interactions between Opa proteins and lipooligosaccharide. Infect. Immun. 63: 1434 1439.
26. Bos, M. P.,, F. Grunert,, and R. J. Belland. 1997. Differential recognition of members of the carcinoembryonic antigen family by Opa variants of Neisseria gonorrhoeae. Infect. Immun. 65: 2353 2361.
27. Bos, M. P.,, D. Hogan,, and R. J. Belland. 1997. Selection of Opa + Neisseria gonorrhoeae by limited availability of normal human serum. Infect. Immun. 65: 645 650.
28. Bos, M. P.,, D. Kao,, D. M. Hogan,, C. C. Grant,, and R. J. Belland. 2002. Carcinoembryonic antigen family receptor recognition by gonococcal Opa proteins requires distinct combinations of hypervariable Opa protein domains. Infect. Immun. 70: 1715 1723.
29. Boslego, J. W.,, E. C. Tramont,, R. C. Chung,, D. G. McChesney,, J. Ciak,, J. C. Sadoff,, M. V. Piziak,, J. D. Brown,, C. C. Brinton, Jr.,, S. W. Wood, et al. 1991. Efficacy trial of a parenteral gonococcal pilus vaccine in men. Vaccine 9: 154 162.
30. Boulton, I. C.,, and S. D. Gray-Owen. 2002. Neisserial binding to CEACAM1 arrests the activation and proliferation of CD4 + T lymphocytes. Nat. Immunol. 3: 229 236.
31. Braun, D. C.,, and D. C. Stein. 2004. The lgtABCDE gene cluster, involved in lipooligosaccharide biosynthesis in Neisseria gonorrhoeae, contains multiple promoter sequences. J. Bacteriol. 186: 1038 1049.
32. Brinton, C. C.,, J. Bryan,, J.-A. Dillon,, N. Guernia,, L. J. Jackobson,, A. Labik,, S. Lee,, A. Levine,, S. Lim,, J. McMichael,, S. A. Polen,, K. Rogers,, A. C.-C. To,, and S. C.-M. To,. 1978. Use of pili in gonorrhoea control: role of bacterial pilin in disease, purification, and properties of gonococcal pili and progress in the development of a gonococcal pilus vaccine for gonorrhoea, p. 155 178. In G. F. Brooks,, E. C. Gotschlich,, K. K. Holmes,, W. D. Sawyer,, and F. E. Young (ed.), Immunobiology of Neisseria gonorrhoeae. American Society for Microbiology, Washington, D.C.
33. Brinton, C. C.,, S. W. Wood,, and A. Brown. 1982. The development of a neisserial pilus vaccine for gonorrhea adn meningococcal meningitis. Semin. Infect. Dis. 1982: 140 159.
34. Bridgman, B. E.,, D. Klapper,, T. Svendsen,, and M. S. Cohen. 1988. Phagocyte-derived lactate stimulates oxygen consumption by Neisseria gonorrhoeae. An unrecognized aspect of the oxygen metabolism of phagocytosis. J. Clin. Investig. 81: 318 324.
35. Bro-Jorgensen, A.,, and T. Jensen. 1973. Gonococcal pharyngeal infections. Report of 110 cases. Br. J. Vener. Dis. 49: 491 499.
36. Brooks, G. F.,, and C. J. Lammel. 1989. Humoral immune response to gonococcal infections. Clin. Microbiol. Rev. 2(Suppl.): S5 S10.
37. Brooks, G. F.,, L. Linger,, C. J. Lammel,, K. S. Bhat,, C. A. Colville,, M. L. Palmer,, J. S. Knapp,, and R. S. Stephens. 1991. Prevalence of gene sequences coding for hypervariable regions of Opa (protein II) in Neisseria gonorrhoeae. Mol. Microbiol. 5: 3063 3072.
38. Brossay, L.,, G. Paradis,, R. Fox,, M. Koomey,, and J. Hebert. 1994. Identification, localization, and distribution of the PilT protein in Neisseria gonorrhoeae. Infect. Immun. 62: 2302 2308.
39. Brown, W. J.,, and S. J. Kraus. 1974. Gonococcal colony types. JAMA 228: 862.
40. Buchanan, T. M. 1975. Antigenic heterogeneity of gonococcal pili. J. Exp. Med. 141: 1470 1475.
41. Buchanan, T. M.,, and R. J. Arko. 1977. Immunity to gonococcal infection induced by vaccination with isolated outer membranes of Neisseria gonorrhoeae in guinea pigs. J. Infect. Dis. 135: 879 887.
42. Buchanan, T. M.,, W. A. Pearce,, G. K. Schoolnik,, and R. J. Arko. 1977. Protection against infection with Neisseria gonorrhoeae by immunization with outer membrane protein complex and purified pili. J. Infect. Dis. 136(Suppl.): S132 S137.
43. Burch, C. L.,, R. J. Danaher,, and D. C. Stein. 1997. Antigenic variation in Neisseria gonorrhoeae: production of multiple lipooligosaccharides. J. Bacteriol. 179: 982 986.
44. Carson, S. D.,, P. E. Klebba,, S. M. Newton,, and P. F. Sparling. 1999. Ferric enterobactin binding and utilization by Neisseria gonorrhoeae. J. Bacteriol. 181: 2895 2901.
45. Carson, S. D.,, B. Stone,, M. Beucher,, J. Fu,, and P. F. Sparling. 2000. Phase variation of the gonococcal siderophore receptor FetA. Mol. Microbiol. 36: 585 593.
46. Chen, C. J.,, C. Elkins,, and P. F. Sparling. 1998. Phase variation of hemoglobin utilization in Neisseria gonorrhoeae. Infect. Immun. 66: 987 993.
47. Chen, C. J.,, P. F. Sparling,, L. A. Lewis,, D. W. Dyer,, and C. Elkins. 1996. Identification and purification of a hemoglobin- binding outer membrane protein from Neisseria gonorrhoeae. Infect. Immun. 64: 5008 5014.
48. Chen, T.,, R. J. Belland,, J. Wilson,, and J. Swanson. 1995. Adherence of pilus - Opa + gonococci to epithelial cells in vitro involves heparan sulfate. J. Exp. Med. 182: 511 517.
49. Chen, T.,, and E. C. Gotschlich. 1996. CGM1a antigen of neutrophils, a receptor of gonococcal opacity proteins. Proc. Natl. Acad. Sci. USA 93: 14851 14856.
50. Chen, T.,, F. Grunert,, A. Medina-Marino,, and E. C. Gotschlich. 1997. Several carcinoembryonic antigens (CD66) serve as receptors for gonococcal opacity proteins. J. Exp. Med. 185: 1557 1564.
51. Cohen, M. S.,, and J. G. Cannon. 1999. Human experimentation with Neisseria gonorrhoeae: progress and goals. J. Infect. Dis. 179( Suppl. 2): S375 S379.
52. Cohen, M. S.,, J. G. Cannon,, A. E. Jerse,, L. M. Charniga,, S. F. Isbey,, and L. G. Whicker. 1994. Human experimentation with Neisseria gonorrhoeae: rationale, methods, and implications for the biology of infection and vaccine development. J. Infect. Dis. 169: 532 537.
53. Cohen, M. S.,, and P. F. Sparling. 1992. Mucosal infection with Neisseria gonorrhoeae. Bacterial adaptation and mucosal defenses. J. Clin. Investig. 89: 1699 1705.
54. Connell, T. D.,, D. Shaffer,, and J. G. Cannon. 1990. Characterization of the repertoire of hypervariable regions in the Protein II (opa) gene family of Neisseria gonorrhoeae. Mol. Microbiol. 4: 439 449.
55. Connelly, M. C.,, and P. Z. Allen. 1983. Antigenic specificity and heterogeneity of lipopolysaccharides from pyocin-sensitive and -resistant strains of Neisseria gonorrhoeae. Infect. Immun. 41: 1046 1055.
56. Cornelissen, C. N.,, M. Kelley,, M. M. Hobbs,, J. E. Anderson,, J. G. Cannon,, M. S. Cohen,, and P. F. Sparling. 1998. The transferrin receptor expressed by gonococcal strain FA1090 is required for the experimental infection of human male volunteers. Mol. Microbiol. 27: 611 616.
57. Cornelissen, C. N.,, and P. F. Sparling. 1994. Iron piracy: acquisition of transferrin-bound iron by bacterial pathogens. Mol. Microbiol. 14: 843 850.
58. Danaher, R. J.,, J. C. Levin,, D. Arking,, C. L. Burch,, R. Sandlin,, and D. C. Stein. 1995. Genetic basis of Neisseria gonorrhoeae lipooligosaccharide antigenic variation. J. Bacteriol. 177: 7275 7279.
59. Deheragoda, P. 1977. Diagnosis of rectal gonorrhoea by blind anorectal swabs compared with direct vision swabs taken via a proctoscope. Br. J. Vener. Dis. 53: 311 313.
60. Dehio, C.,, S. D. Gray-Owen,, and T. F. Meyer. 1998. The role of neisserial Opa proteins in interactions with host cells. Trends Microbiol. 6: 489 495.
61. de Jonge, M. I.,, M. P. Bos,, H. J. Hamstra,, W. Jiskoot,, P. van Ulsen,, J. Tommassen,, L. van Alphen,, and P. van der Ley. 2002. Conformational analysis of opacity proteins from Neisseria meningitidis. Eur. J. Biochem. 269: 5215 5223.
62. de Jonge, M. I.,, H. J. Hamstra,, L. van Alphen,, J. Dankert,, and P. van der Ley. 2003. Mapping the binding domains on meningococcal Opa proteins for CEACAM1 and CEA receptors. Mol. Microbiol. 50: 1005 1015.
63. de Jonge, M. I.,, G. Vidarsson,, H. H. van Dijken,, P. Hoogerhout,, L. van Alphen,, J. Dankert,, and P. van der Ley. 2003. Functional activity of antibodies against the recombinant OpaJ protein from Neisseria meningitidis. Infect. Immun. 71: 2331 2340.
64. de la Paz, H.,, S. J. Cooke,, and J. E. Heckels. 1995. Effect of sialylation of lipopolysaccharide of Neisseria gonorrhoeae on recognition and complement-mediated killing by monoclonal antibodies directed against different outer-membrane antigens. Microbiology 141: 913 920.
65. Draper, D. L.,, J. F. James,, G. F. Brooks,, and R. L. Sweet. 1980. Comparison of virulence markers of peritoneal and fallopian tube isolates with endocervical Neisseria gonorrhoeae isolates from women with acute salpingitis. Infect. Immun. 27: 882 888.
66. Duensing, T. D.,, and J. P. van Putten. 1997. Vitronectin mediates internalization of Neisseria gonorrhoeae by Chinese hamster ovary cells. Infect. Immun. 65: 964 970.
67. Dyer, D. W.,, E. P. West,, and P. F. Sparling. 1987. Effects of serum carrier proteins on the growth of pathogenic neisseriae with heme-bound iron. Infect. Immun. 55: 2171 2175.
68. Edwards, J. L.,, E. J. Brown,, K. A. Ault,, and M. A. Apicella. 2001. The role of complement receptor 3 (CR3) in Neisseria gonorrhoeae infection of human cervical epithelia. Cell. Microbiol. 3: 611 622.
69. Edwards, M.,, R. L. McDade,, G. Schoolnik,, J. B. Rothbard,, and E. C. Gotschlich. 1984. Antigenic analysis of gonococcal pili using monoclonal antibodies. J. Exp. Med. 160: 1782 1791.
70. Elkins, C.,, N. H. Carbonetti,, V. A. Varela,, D. Stirewalt,, D. G. Klapper,, and P. F. Sparling. 1992. Antibodies to N-terminal peptides of gonococcal porin are bactericidal when gonococcal lipopolysaccharide is not sialylated. Mol. Microbiol. 6: 2617 2628.
71. Elkins, C.,, and R. F. Rest. 1990. Monoclonal antibodies to outer membrane protein P.II block interactions of Neisseria gonorrhoeae with human neutrophils. Infect. Immun. 58: 1078 1084.
72. Fischer, S. H.,, and R. F. Rest. 1988. Gonococci possessing only certain P.II outer membrane proteins interact with human neutrophils. Infect. Immun. 56: 1574 1579.
73. Forest, K. T.,, S. A. Dunham,, M. Koomey,, and J. A. Tainer. 1999. Crystallographic structure reveals phosphorylated pilin from Neisseria: phosphoserine sites modify type IV pilus surface chemistry and fibre morphology. Mol. Microbiol. 31: 743 752.
74. Forest, K. T.,, and J. A. Tainer. 1997. Type-4 pilus-structure: outside to inside and top to bottom—a minireview. Gene 192: 165 169.
75. Francioli, P.,, H. Shio,, R. B. Roberts,, and M. Muller. 1983. Phagocytosis and killing of Neisseria gonorrhoeae by Trichomonas vaginalis. J. Infect. Dis. 147: 87 94.
76. Frangipane, J. V.,, and R. F. Rest. 1993. Anaerobic growth and cytidine 5′-monophospho- N-acetylneuraminic acid act synergistically to induce high-level serum resistance in Neisseria gonorrhoeae. Infect. Immun. 61: 1657 1666.
77. Fussenegger, M.,, T. Rudel,, R. Barten,, R. Ryll,, and T. F. Meyer. 1997. Transformation competence and type-4 pilus biogenesis in Neisseria gonorrhoeae—a review. Gene 192: 125 134.
78. Gilbert, M.,, D. C. Watson,, A. M. Cunningham,, M. P. Jennings,, N. M. Young,, and W. W. Wakarchuk. 1996. Cloning of the lipooligosaccharide alpha-2,3-sialyltransferase from the bacterial pathogens Neisseria meningitidis and Neisseria gonorrhoeae. J. Biol. Chem. 271: 28271 28276.
79. Gill, M. J.,, D. P. McQuillen,, J. P. van Putten,, L. M. Wetzler,, J. Bramley,, H. Crooke,, N. J. Parsons,, J. A. Cole,, and H. Smith. 1996. Functional characterization of a sialyltransferase- deficient mutant of Neisseria gonorrhoeae. Infect. Immun. 64: 3374 3378.
80. Gomez-Duarte, O. G.,, M. Dehio,, C. A. Guzman,, G. S. Chhatwal,, C. Dehio,, and T. F. Meyer. 1997. Binding of vitronectin to opa-expressing Neisseria gonorrhoeae mediates invasion of HeLa cells. Infect. Immun. 65: 3857 3866.
81. Gorby, G. L.,, A. F. Ehrhardt,, M. A. Apicella,, and C. Elkins. 2001. Invasion of human fallopian tube epithelium by Escherichia coli expressing combinations of a gonococcal porin, opacity-associated protein, and chimeric lipo-oligosaccharide. J. Infect. Dis. 184: 460 472.
82. Gorby, G. L.,, and G. B. Schaefer. 1992. Effect of attachment factors (pili plus Opa) on Neisseria gonorrhoeae invasion of human fallopian tube tissue in vitro: quantitation by computerized image analysis. Microb. Pathog. 13: 93 108.
83. Gotschlich, E. C. 1994. Genetic locus for the biosynthesis of the variable portion of Neisseria gonorrhoeae lipooligosaccharide. J. Exp. Med. 180: 2181 2190.
84. Grant, C. C.,, M. P. Bos,, and R. J. Belland. 1999. Proteoglycan receptor binding by Neisseria gonorrhoeae MS11 is determined by the HV-1 region of OpaA. Mol. Microbiol. 32: 233 242.
85. Gray-Owen, S. D.,, C. Dehio,, A. Haude,, F. Grunert,, and T. F. Meyer. 1997. CD66 carcinoembryonic antigens mediate interactions between Opa-expressing Neisseria gonorrhoeae and human polymorphonuclear phagocytes. EMBO J. 16: 3435 3445.
86. Griffiss, J. M.,, G. A. Jarvis,, J. P. O’Brien,, M. M. Eads,, and H. Schneider. 1991. Lysis of Neisseria gonorrhoeae initiated by binding of normal human IgM to a hexosamine-containing lipooligosaccharide epitope(s) is augmented by strain-specific, properdin-binding-dependent alternative complement pathway activation. J. Immunol. 147: 298 305.
87. Griffiss, J. M.,, H. Schneider,, R. E. Mandrell,, R. Yamasaki,, G. A. Jarvis,, J. J. Kim,, B. W. Gibson,, R. Hamadeh,, and M. A. Apicella. 1988. Lipooligosaccharides: the principal glycolipids of the neisserial outer membrane. Rev. Infect. Dis. 10( Suppl. 2): S287 S295.
88. Gubish, E. R., Jr.,, K. C. Chen,, and T. M. Buchanan. 1982. Attachment of gonococcal pili to lectin-resistant clones of Chinese hamster ovary cells. Infect. Immun. 37: 189 194.
89. Gulati, S.,, D. P. McQuillen,, R. E. Mandrell,, D. B. Jani,, and P. A. Rice. 1996. Immunogenicity of Neisseria gonorrhoeae lipooligosaccharide epitope 2C7, widely expressed in vivo with no immunochemical similarity to human glycosphingolipids. J. Infect. Dis. 174: 1223 1237.
90. Gulati, S.,, D. P. McQuillen,, J. Sharon,, and P. A. Rice. 1996. Experimental immunization with a monoclonal anti-idiotope antibody that mimics the Neisseria gonorrhoeae lipooligosaccharide epitope 2C7. J. Infect. Dis. 174: 1238 1248.
91. Haas, R.,, and T. F. Meyer. 1986. The repertoire of silent pilus genes in Neisseria gonorrhoeae: evidence for gene conversion. Cell 44: 107 115.
92. Haas, R.,, H. Schwarz,, and T. F. Meyer. 1987. Release of soluble pilin antigen coupled with gene conversion in Neisseria gonorrhoeae. Proc. Natl. Acad. Sci. USA 84: 9079 9083.
93. Haas, R.,, S. Veit,, and T. F. Meyer. 1992. Silent pilin genes of Neisseria gonorrhoeae MS11 and the occurrence of related hypervariant sequences among other gonococcal isolates. Mol. Microbiol. 6: 197 208.
94. Hagblom, P.,, E. Segal,, E. Billyard,, and M. So. 1985. Intragenic recombination leads to pilus antigenic variation in Neisseria gonorrhoeae. Nature 315: 156 158.
95. Hagman, K. E.,, W. Pan,, B. G. Spratt,, J. T. Balthazar,, R. C. Judd,, and W. M. Shafer. 1995. Resistance of Neisseria gonorrhoeae to antimicrobial hydrophobic agents is modulated by the mtrRCDE efflux system. Microbiology 141: 611 622.
96. Hallet, B. 2001. Playing Dr Jekyll, and Mr Hyde: combined mechanisms of phase variation in bacteria. Curr. Opin. Microbiol. 4: 570 581.
97. Hamrick, T. S.,, J. A. Dempsey,, M. S. Cohen,, and J. G. Cannon. 2001. Antigenic variation of gonococcal pilin expression in vivo: analysis of the strain FA1090 pilin repertoire and identification of the pilS gene copies recombining with pilE during experimental human infection. Microbiology 147: 839 849.
98. Han, E.,, D. Phan,, P. Lo,, M. N. Poy,, R. Behringer,, S. M. Najjar,, and S. H. Lin. 2001. Differences in tissue-specific and embryonic expression of mouse Ceacam1 and Ceacam2 genes. Biochem. J. 355: 417 423.
99. Harvey, H. A.,, M. P. Jennings,, C. A. Campbell,, R. Williams,, and M. A. Apicella. 2001. Receptor-mediated endocytosis of Neisseria gonorrhoeae into primary human urethral epithelial cells: the role of the asialoglycoprotein receptor. Mol. Microbiol. 42: 659 672.
100. Harvey, H. A.,, N. Porat,, C. A. Campbell,, M. Jennings,, B. W. Gibson,, N. J. Phillips,, M. A. Apicella,, and M. S. Blake. 2000. Gonococcal lipooligosaccharide is a ligand for the asialoglycoprotein receptor on human sperm. Mol. Microbiol. 36: 1059 1070.
101. Harvey, H. A.,, W. E. Swords,, and M. A. Apicella. 2001. The mimicry of human glycolipids and glycosphingolipids by the lipooligosaccharides of pathogenic Neisseria and Haemophilus. J. Autoimmun. 16: 257 262.
102. Hassett, D. J.,, and M. S. Cohen. 1989. Bacterial adaptation to oxidative stress: implications for pathogenesis and interaction with phagocytic cells. FASEB J. 3: 2574 2582.
103. Hauck, C. R.,, and T. F. Meyer. 2003. ‘Small’ talk: Opa proteins as mediators of Neisseria-host-cell communication. Curr. Opin. Microbiol. 6: 43 49.
104. Hitchcock, P. J.,, and T. M. Brown. 1983. Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels. J. Bacteriol. 154: 269 277.
105. Hobbs, M. M.,, A. Seiler,, M. Achtman,, and J. G. Cannon. 1994. Microevolution within a clonal population of pathogenic bacteria: recombination, gene duplication and horizontal genetic exchange in the opa gene family of Neisseria meningitidis. Mol. Microbiol. 12: 171 180.
106. Holmes, K. K.,, G. W. Counts,, and H. N. Beaty. 1971. Disseminated gonococcal infection. Ann. Intern. Med. 74: 979 993.
107. Hook, E.,, and H. Handsfield. 1999. Gonococcal infections in the adult, p. 451 466. In (ed.), Sexually Transmitted Diseases, 3rd ed. McGraw-Hill Co. Inc., New York, N.Y.
108. Householder, T. C.,, W. A. Belli,, S. Lissenden,, J. A. Cole,, and V. L. Clark. 1999. cis- and trans-acting elements involved in regulation of aniA, the gene encoding the major anaerobically induced outer membrane protein in Neisseria gonorrhoeae. J. Bacteriol. 181: 541 551.
109. Ilver, D.,, H. Kallstrom,, S. Normark,, and A. B. Jonsson. 1998. Transcellular passage of Neisseria gonorrhoeae involves pilus phase variation. Infect. Immun. 66: 469 473.
110. James, J. F.,, and J. Swanson,. 1978. Color/opacity colonial variants of Neisseria gonorrhoeae and their relationship to the menstrual cycle, p. 338 343. In G. F. Brooks,, E. C. Gotschlich,, K. K. Holmes,, W. D. Sawyer, and F. E. Young (ed.), Immunobiology of Neisseria gonorrhoeae. American Society for Microbiology, Washington, D.C.
111. James, J. F.,, and J. Swanson. 1978. Studies on gonococcus infection. XIII. Occurrence of color/opacity colonial variants in clinical cultures. Infect. Immun. 19: 332 340.
112. Jephcott, A. E.,, A. Reyn,, and A. Birch-Andersen. 1971. Neisseria gonorrhoeae. 3. Demonstration of presumed appendages to cells from different colony types. Acta Pathol. Microbiol. Scand. Ser. B 79: 437 439.
113. Jerse, A. E. 1999. Experimental gonococcal genital tract infection and opacity protein expression in estradiol-treated mice. Infect. Immun. 67: 5699 5708.
114. Jerse, A. E.,, M. S. Cohen,, P. M. Drown,, L. G. Whicker,, S. F. Isbey,, H. S. Seifert,, and J. G. Cannon. 1994. Multiple gonococcal opacity proteins are expressed during experimental urethral infection in the male. J. Exp. Med. 179: 911 920.
115. Jerse, A. E.,, E. T. Crow,, A. N. Bordner,, I. Rahman,, C. N. Cornelissen,, T. R. Moench,, and K. Mehrazar. 2002. Growth of Neisseria gonorrhoeae in the female mouse genital tract does not require the gonococcal transferrin or hemoglobin receptors and may be enhanced by commensal lactobacilli. Infect. Immun. 70: 2549 2558.
116. Jerse, A. E.,, N. D. Sharma,, A. N. Simms,, E. T. Crow,, L. A. Snyder,, and W. M. Shafer. 2003. A gonococcal efflux pump system enhances bacterial survival in a female mouse model of genital tract infection. Infect. Immun. 71: 5576 5582.
117. Johansson, L.,, A. Rytkonen,, P. Bergman,, B. Albiger,, H. Kallstrom,, T. Hokfelt,, B. Agerberth,, R. Cattaneo,, and A. B. Jonsson. 2003. CD46 in meningococcal disease. Science 301: 373 375.
118. John, C. M.,, J. M. Griffiss,, M. A. Apicella,, R. E. Mandrell,, and B. W. Gibson. 1991. The structural basis for pyocin resistance in Neisseria gonorrhoeae lipooligosaccharides. J. Biol. Chem. 266: 19303 19311.
119. Johnson, S. R.,, B. M. Steiner,, D. D. Cruce,, G. H. Perkins,, and R. J. Arko. 1993. Characterization of a catalase-deficient strain of Neisseria gonorrhoeae: evidence for the significance of catalase in the biology of N. gonorrhoeae. Infect. Immun. 61: 1232 1238.
120. Jones, R. B.,, J. C. Newland,, D. A. Olsen,, and T. M. Buchanan. 1980. Immune-enhanced phagocytosis of Neisseria gonorrhoeae by macrophages: characterization of the major antigens to which opsonins are directed. J. Gen. Microbiol. 121: 365 372.
121. Jonsson, A. B.,, D. Ilver,, P. Falk,, J. Pepose,, and S. Normark. 1994. Sequence changes in the pilus subunit lead to tropism variation of Neisseria gonorrhoeae to human tissue. Mol. Microbiol. 13: 403 416.
122. Jonsson, A. B.,, G. Nyberg,, and S. Normark. 1991. Phase variation of gonococcal pili by frameshift mutation in pilC, a novel gene for pilus assembly. EMBO J. 10: 477 488.
123. Jonsson, A. B.,, J. Pfeifer,, and S. Normark. 1992. Neisseria gonorrhoeae PilC expression provides a selective mechanism for structural diversity of pili. Proc. Natl. Acad. Sci. USA 89: 3204 3208.
124. Jordan, P.,, L. A. Snyder,, and N. J. Saunders. 2003. Diversity in coding tandem repeats in related Neisseria spp. BMC Microbiol. 3: 23.
125. Kallstrom, H.,, D. Blackmer Gill,, B. Albiger,, M. K. Liszewski,, J. P. Atkinson,, and A. B. Jonsson. 2001. Attachment of Neisseria gonorrhoeae to the cellular pilus receptor CD46:identification of domains important for bacterial adherence. Cell. Microbiol. 3: 133 143.
126. Kallstrom, H.,, M. S. Islam,, P. O. Berggren,, and A. B. Jonsson. 1998. Cell signaling by the type IV pili of pathogenic Neisseria. J. Biol. Chem. 273: 21777 21782.
127. Kallstrom, H.,, M. K. Liszewski,, J. P. Atkinson,, and A. B. Jonsson. 1997. Membrane cofactor protein (MCP or CD46) is a cellular pilus receptor for pathogenic Neisseria. Mol. Microbiol. 25: 639 647.
128. Kellogg, D. S., Jr.,, I. R. Cohen,, L. C. Norins,, A. L. Schroeter,, and G. Reising. 1968. Neisseria gonorrhoeae. II. Colonial variation and pathogenicity during 35 months in vitro. J. Bacteriol. 96: 596 605.
129. Kellogg, D. S., Jr.,, W. L. Peacock, Jr.,, W. E. Deacon,, L. Brown,, and D. I. Pirkle. 1963. Neisseria gonorrhoeae. I. Virulence genetically linked to clonal variation. J. Bacteriol. 85: 1274 1279.
130. Kim, J. J.,, D. Zhou,, R. E. Mandrell,, and J. M. Griffiss. 1992. Effect of exogenous sialylation of the lipooligosaccharide of Neisseria gonorrhoeae on opsonophagocytosis. Infect. Immun. 60: 4439 4442.
131. Klimpel, K. W.,, S. A. Lesley,, and V. L. Clark. 1989. Identification of subunits of gonococcal RNA polymerase by immunoblot analysis: evidence for multiple sigma factors. J. Bacteriol. 171: 3713 3718.
132. Kline, K. A.,, E. V. Sechman,, E. P. Skaar,, and H. S. Seifert. 2003. Recombination, repair and replication in the pathogenic neisseriae: the 3 R’s of molecular genetics of two human-specific bacterial pathogens. Mol. Microbiol. 50: 3 13.
133. Knepper, B.,, I. Heuer,, T. F. Meyer,, and J. P. van Putten. 1997. Differential response of human monocytes to Neisseria gonorrhoeae variants expressing pili and opacity proteins. Infect. Immun. 65: 4122 4129.
134. Kolberg, J.,, E. A. Hoiby,, and E. Jantzen. 1997. Detection of the phosphorylcholine epitope in streptococci, Haemophilus and pathogenic neisseriae by immunoblotting. Microb. Pathog. 22: 321 329.
135. Koomey, M.,, E. C. Gotschlich,, K. Robbins,, S. Bergstrom,, and J. Swanson. 1987. Effects of recA mutations on pilus antigenic variation and phase transitions in Neisseria gonorrhoeae. Genetics 117: 391 398.
136. Kupsch, E. M.,, B. Knepper,, T. Kuroki,, I. Heuer,, and T. F. Meyer. 1993. Variable opacity (Opa) outer membrane proteins account for the cell tropisms displayed by Neisseria gonorrhoeae for human leukocytes and epithelial cells. EMBO J. 12: 641 650.
137. Lambden, P. R.,, J. E. Heckels,, L. T. James,, and P. J. Watt. 1979. Variations in surface protein composition associated with virulence properties in opacity types of Neisseria gonorrhoeae. J. Gen. Microbiol. 114: 305 312.
138. Lambden, P. R.,, J. N. Robertson,, and P. J. Watt. 1980. Biological properties of two distinct pilus types produced by isogenic variants of Neisseria gonorrhoeae P9. J. Bacteriol. 141: 393 396.
139. Laskos, L.,, J. P. Dillard,, H. S. Seifert,, J. A. Fyfe,, and J. K. Davies. 1998. The pathogenic neisseriae contain an inactive rpoN gene and do not utilize the pilE sigma54 promoter. Gene 208: 95 102.
140. Lebedeff, D. A.,, and E. B. Hochman. 1980. Rectal gonorrhea in men: diagnosis and treatment. Ann. Intern. Med. 92: 463 466.
141. Lee, S. W.,, R. A. Bonnah,, D. L. Higashi,, J. P. Atkinson,, S. L. Milgram,, and M. So. 2002. CD46 is phosphorylated at tyrosine 354 upon infection of epithelial cells by Neisseria gonorrhoeae. J. Cell Biol. 156: 951 957.
142. Levinson, G.,, and G. A. Gutman. 1987. Slipped-strand mis-pairing: a major mechanism for DNA sequence evolution. Mol. Biol. Evol. 4: 203 221.
143. Lewis, L. A.,, E. Gray,, Y. P. Wang,, B. A. Roe,, and D. W. Dyer. 1997. Molecular characterization of hpuAB, the haemoglobin- haptoglobin-utilization operon of Neisseria meningitidis. Mol. Microbiol. 23: 737 749.
144. Long, C. D.,, S. F. Hayes,, J. P. van Putten,, H. A. Harvey,, M. A. Apicella,, and H. S. Seifert. 2001. Modulation of gonococcal piliation by regulatable transcription of pilE. J. Bacteriol. 183: 1600 1609.
145. Long, C. D.,, R. N. Madraswala,, and H. S. Seifert. 1998. Comparisons between colony phase variation of Neisseria gonorrhoeae FA1090 and pilus, pilin, and S-pilin expression. Infect. Immun. 66: 1918 1927.
146. Long, C. D.,, D. M. Tobiason,, M. P. Lazio,, K. A. Kline,, and H. S. Seifert. 2003. Low-level pilin expression allows for substantial DNA transformation competence in Neisseria gonorrhoeae. Infect. Immun. 71: 6279 6291.
147. Lorenzen, D. R.,, D. Gunther,, J. Pandit,, T. Rudel,, E. Brandt,, and T. F. Meyer. 2000. Neisseria gonorrhoeae porin modifies the oxidative burst of human professional phagocytes. Infect. Immun. 68: 6215 6222.
148. Makino, S.,, J. P. van Putten,, and T. F. Meyer. 1991. Phase variation of the opacity outer membrane protein controls invasion by Neisseria gonorrhoeae into human epithelial cells. EMBO J. 10: 1307 1315.
149. Malorny, B.,, G. Morelli,, B. Kusecek,, J. Kolberg,, and M. Achtman. 1998. Sequence diversity, predicted two-dimensional protein structure, and epitope mapping of neisserial Opa proteins. J. Bacteriol. 180: 1323 1330.
150. Mandrell, R.,, H. Schneider,, M. Apicella,, W. Zollinger,, P. A. Rice,, and J. M. Griffiss. 1986. Antigenic and physical diversity of Neisseria gonorrhoeae lipooligosaccharides. Infect. Immun. 54: 63 69.
151. Mandrell, R. E.,, H. Smith,, G. A. Jarvis,, J. M. Griffiss,, and J. A. Cole. 1993. Detection and some properties of the sialyl-transferase implicated in the sialylation of lipopolysaccharide of Neisseria gonorrhoeae. Microb. Pathog. 14: 307 313.
152. Manning, P. A.,, A. Kaufmann,, U. Roll,, J. Pohlner,, T. F. Meyer,, and R. Haas. 1991. L-pilin variants of Neisseria gonorrhoeae MS11. Mol. Microbiol. 5: 917 926.
153. Marceau, M.,, and X. Nassif. 1999. Role of glycosylation at Ser63 in production of soluble pilin in pathogenic Neisseria. J. Bacteriol. 181: 656 661.
154. Mayer, L. W. 1982. Rates in vitro changes of gonococcal colony opacity phenotypes. Infect. Immun. 37: 481 485.
155. McCormack, W. M.,, R. J. Stumacher,, K. Johnson,, and A. Donner. 1977. Clinical spectrum of gonococcal infection in women. Lancet i: 1182 1185.
156. McQuillen, D. P.,, S. Gulati,, S. Ram,, A. K. Turner,, D. B. Jani,, T. C. Heeren,, and P. A. Rice. 1999. Complement processing and immunoglobulin binding to Neisseria gonorrhoeae determined in vitro simulates in vivo effects. J. Infect. Dis. 179: 124 135.
157. Mehr, I. J.,, and H. S. Seifert. 1998. Differential roles of homologous recombination pathways in Neisseria gonorrhoeae pilin antigenic variation, DNA transformation and DNA repair. Mol. Microbiol. 30: 697 710.
158. Merz, A. J.,, C. A. Enns,, and M. So. 1999. Type IV pili of pathogenic neisseriae elicit cortical plaque formation in epithelial cells. Mol. Microbiol. 32: 1316 1332.
159. Merz, A. J.,, and M. So. 2000. Interactions of pathogenic neisseriae with epithelial cell membranes. Annu. Rev. Cell Dev. Biol. 16: 423 457.
160. Merz, A. J.,, M. So,, and M. P. Sheetz. 2000. Pilus retraction powers bacterial twitching motility. Nature 407: 98 102.
161. Meyer, T. F.,, E. Billyard,, R. Haas,, S. Storzbach,, and M. So. 1984. Pilus genes of Neisseria gonorrheae: chromosomal organization and DNA sequence. Proc. Natl. Acad. Sci. USA 81: 6110 6114.
162. Meyer, T. F.,, N. Mlawer,, and M. So. 1982. Pilus expression in Neisseria gonorrhoeae involves chromosomal rearrangement. Cell 30: 45 52.
163. Mickelsen, P. A.,, and P. F. Sparling. 1981. Ability of Neisseria gonorrhoeae, Neisseria meningitidis, and commensal Neisseria species to obtain iron from transferrin and iron compounds. Infect. Immun. 33: 555 564.
164. Morand, P. C.,, P. Tattevin,, E. Eugene,, J. L. Beretti,, and X. Nassif. 2001. The adhesive property of the type IV pilus-associated component PilC1 of pathogenic Neisseria is supported by the conformational structure of the N-terminal part of the molecule. Mol. Microbiol. 40: 846 856.
165. Morelli, G.,, B. Malorny,, K. Muller,, A. Seiler,, J. F. Wang,, J. del Valle,, and M. Achtman. 1997. Clonal descent and microevolution of Neisseria meningitidis during 30 years of epidemic spread. Mol. Microbiol. 25: 1047 1064.
166. Morse, S. A.,, and M. A. Apicella. 1982. Isolation of a lipopolysaccharide mutant of Neisseria gonorrhoeae: an analysis of the antigenic and biologic difference. J. Infect. Dis. 145: 206 216.
167. Mosleh, I. M.,, H. J. Boxberger,, M. J. Sessler,, and T. F. Meyer. 1997. Experimental infection of native human ureteral tissue with Neisseria gonorrhoeae: adhesion, invasion, intracellular fate, exocytosis, and passage through a stratified epithelium. Infect. Immun. 65: 3391 3398.
168. Muenzner, P.,, O. Billker,, T. F. Meyer,, and M. Naumann. 2002. Nuclear factor-kappa B directs carcinoembryonic antigen- related cellular adhesion molecule 1 receptor expression in Neisseria gonorrhoeae-infected epithelial cells. J. Biol. Chem. 277: 7438 7446.
169. Muenzner, P.,, M. Naumann,, T. F. Meyer,, and S. D. Gray- Owen. 2001. Pathogenic Neisseria trigger expression of their carcinoembryonic antigen-related cellular adhesion molecule 1 (CEACAM1; previously CD66a) receptor on primary endothelial cells by activating the immediate early response transcription factor, nuclear factor-kappaB. J. Biol. Chem. 276: 24331 24340.
170. Murphy, G. L.,, T. D. Connell,, D. S. Barritt,, M. Koomey,, and J. G. Cannon. 1989. Phase variation of gonococcal protein II: regulation of gene expression by slipped-strand mispairing of a repetitive DNA sequence. Cell 56: 539 547.
171. Naids, F. L.,, and R. F. Rest. 1991. Stimulation of human neutrophil oxidative metabolism by nonopsonized Neisseria gonorrhoeae. Infect. Immun. 59: 4383 4390.
172. Nairn, C. A.,, J. A. Cole,, P. V. Patel,, N. J. Parsons,, J. E. Fox,, and H. Smith. 1988. Cytidine 5′-monophospho- N-acetylneuraminic acid or a related compound is the lowMr factor from human red blood cells which induces gonococcal resistance to killing by human serum. J. Gen. Microbiol. 134: 3295 3306.
173. Nassif, X.,, J. L. Beretti,, J. Lowy,, P. Stenberg,, P. O’Gaora,, J. Pfeifer,, S. Normark,, and M. So. 1994. Roles of pilin and PilC in adhesion of Neisseria meningitidis to human epithelial and endothelial cells. Proc. Natl. Acad. Sci. USA 91: 3769 3773.
174. Nicolson, I. J.,, A. C. Perry,, M. Virji,, J. E. Heckels,, and J. R. Saunders. 1987. Localization of antibody-binding sites by sequence analysis of cloned pilin genes from Neisseria gonorrhoeae. J. Gen. Microbiol. 133: 825 833.
175. Palmer, L.,, G. F. Brooks,, and S. Falkow. 1989. Expression of gonococcal protein II in Escherichia coli by translational fusion. Mol. Microbiol. 3: 663 671.
176. Pangburn, M. K.,, and H. J. Muller-Eberhard. 1978. Complement C3 convertase: cell surface restriction of β1H control and generation of restriction on neuraminidase-treated cells. Proc. Natl. Acad. Sci. USA 75: 2416 2420.
177. Pangburn, M. K.,, R. D. Schreiber,, and H. J. Muller-Eberhard. 1977. Human complement C3b inactivator: isolation, characterization, and demonstration of an absolute requirement for the serum protein β1H for cleavage of C3b and C4b in solution. J. Exp. Med. 146: 257 270.
178. Parge, H. E.,, K. T. Forest,, M. J. Hickey,, D. A. Christensen,, E. D. Getzoff,, and J. A. Tainer. 1995. Structure of the fibre-forming protein pilin at 2.6 A resolution. Nature 378: 32 38.
179. Park, H. S.,, M. Wolfgang,, J. P. van Putten,, D. Dorward,, S. F. Hayes,, and M. Koomey. 2001. Structural alterations in a type IV pilus subunit protein result in concurrent defects in multicellular behaviour and adherence to host tissue. Mol. Microbiol. 42: 293 307.
180. Parsons, N. J.,, J. R. Andrade,, P. V. Patel,, J. A. Cole,, and H. Smith. 1989. Sialylation of lipopolysaccharide and loss of absorption of bactericidal antibody during conversion of gonococci to serum resistance by cytidine 5′-monophospho- N-acetyl neuraminic acid. Microb. Pathog. 7: 63 72.
181. Pearce, W. A.,, and T. M. Buchanan. 1978. Attachment role of gonococcal pili. Optimum conditions and quantitation of adherence of isolated pili to human cells in vitro. J. Clin. Investig. 61: 931 943.
182. Perry, M. B.,, and V. Daoust. 1975. The lipopolysaccharides of Neisseria gonorrhoeae colony types 1 and 4. Can. J. Biochem. 53: 623 629.
183. Petricoin, E. F., III,, R. J. Danaher,, and D. C. Stein. 1991. Analysis of the lsi region involved in lipooligosaccharide biosynthesis in Neisseria gonorrhoeae. J. Bacteriol. 173: 7896 7902.
184. Phillips, R. S.,, P. A. Hanff,, A. Wertheimer,, and M. D. Aronson. 1988. Gonorrhea in women seen for routine gynecologic care: criteria for testing. Am. J. Med. 85: 177 182.
185. Platt, R.,, P. A. Rice,, and W. M. McCormack. 1983. Risk of acquiring gonorrhea and prevalence of abnormal adnexal findings among women recently exposed to gonorrhea. JAMA 250: 3205 3209.
186. Plummer, F. A.,, H. Chubb,, J. N. Simonsen,, M. Bosire,, L. Slaney,, N. J. Nagelkerke,, I. Maclean,, J. O. Ndinya-Achola,, P. Waiyaki,, and R. C. Brunham. 1994. Antibodies to opacity proteins (Opa) correlate with a reduced risk of gonococcal salpingitis. J. Clin. Investig. 93: 1748 1755.
187. Porat, N.,, M. A. Apicella,, and M. S. Blake. 1995. Neisseria gonorrhoeae utilizes and enhances the biosynthesis of the asialoglycoprotein receptor expressed on the surface of the hepatic HepG2 cell line. Infect. Immun. 63: 1498 1506.
188. Power, P. M.,, and M. P. Jennings. 2003. The genetics of glycosylation in gram-negative bacteria. FEMS Microbiol. Lett. 218: 211 222.
189. Power, P. M.,, L. F. Roddam,, K. Rutter,, S. Z. Fitzpatrick,, Y. N. Srikhanta,, and M. P. Jennings. 2003. Genetic characterization of pilin glycosylation and phase variation in Neisseria meningitidis. Mol. Microbiol. 49: 833 847.
190. Punsalang, A. P., Jr.,, and W. D. Sawyer. 1973. Role of pili in the virulence of Neisseria gonorrhoeae. Infect. Immun. 8: 255 263.
191. Quinn, T. C.,, W. E. Stamm,, S. E. Goodell,, E. Mkrtichian,, J. Benedetti,, L. Corey,, M. D. Schuffler,, and K. K. Holmes. 1983. The polymicrobial origin of intestinal infections in homosexual men. N. Engl. J. Med. 309: 576 582.
192. Rahman, M.,, H. Kallstrom,, S. Normark,, and A. B. Jonsson. 1997. PilC of pathogenic Neisseria is associated with the bacterial cell surface. Mol. Microbiol. 25: 11 25.
193. Ram, S.,, M. Cullinane,, A. M. Blom,, S. Gulati,, D. P. McQuillen,, B. G. Monks,, C. O’Connell,, R. Boden,, C. Elkins,, M. K. Pangburn,, B. Dahlback,, and P. A. Rice. 2001. Binding of C4b-binding protein to porin: a molecular mechanism of serum resistance of Neisseria gonorrhoeae. J. Exp. Med. 193: 281 295.
194. Ram, S.,, F. G. Mackinnon,, S. Gulati,, D. P. McQuillen,, U. Vogel,, M. Frosch,, C. Elkins,, H. K. Guttormsen,, L. M. Wetzler,, M. Oppermann,, M. K. Pangburn,, and P. A. Rice. 1999. The contrasting mechanisms of serum resistance of Neisseria gonorrhoeae and group B Neisseria meningitidis. Mol. Immunol. 36: 915 928.
195. Ram, S.,, A. K. Sharma,, S. D. Simpson,, S. Gulati,, D. P. Mc- Quillen,, M. K. Pangburn,, and P. A. Rice. 1998. A novel sialic acid binding site on factor H mediates serum resistance of sialylated Neisseria gonorrhoeae. J. Exp. Med. 187: 743 752.
196. Rest, R. F.,, S. H. Fischer,, Z. Z. Ingham,, and J. F. Jones. 1982. Interactions of Neisseria gonorrhoeae with human neutrophils: effects of serum and gonococcal opacity on phagocyte killing and chemiluminescence. Infect. Immun. 36: 737 744.
197. Rest, R. F.,, and J. V. Frangipane. 1992. Growth of Neisseria gonorrhoeae in CMP- N-acetylneuraminic acid inhibits nonopsonic (opacity-associated outer membrane protein-mediated) interactions with human neutrophils. Infect. Immun. 60: 989 997.
198. Rice, P. A. 1989. Molecular basis for serum resistance in Neisseria gonorrhoeae. Clin. Microbiol. Rev. 2(Suppl.): S112 S117.
199. Rothbard, J. B.,, R. Fernandez,, L. Wang,, N. N. Teng,, and G. K. Schoolnik. 1985. Antibodies to peptides corresponding to a conserved sequence of gonococcal pilins block bacterial adhesion. Proc. Natl. Acad. Sci. USA 82: 915 919.
200. Rudel, T.,, H. J. Boxberger,, and T. F. Meyer. 1995. Pilus biogenesis and epithelial cell adherence of Neisseria gonorrhoeae pilC double knock-out mutants. Mol. Microbiol. 17: 1057 1071.
201. Rudel, T.,, D. Facius,, R. Barten,, I. Scheuerpflug,, E. Nonnenmacher,, and T. F. Meyer. 1995. Role of pili and the phase-variable PilC protein in natural competence for transformation of Neisseria gonorrhoeae. Proc. Natl. Acad. Sci. USA 92: 7986 7990.
202. Rudel, T.,, I. Scheurerpflug,, and T. F. Meyer. 1995. Neisseria PilC protein identified as type-4 pilus tip-located adhesin. Nature 373: 357 359.
203. Rudel, T.,, J. P. van Putten,, C. P. Gibbs,, R. Haas,, and T. F. Meyer. 1992. Interaction of two variable proteins (PilE and PilC) required for pilus-mediated adherence of Neisseria gonorrhoeae to human epithelial cells. Mol. Microbiol. 6: 3439 3450.
204. Rytkonen, A.,, L. Johansson,, V. Asp,, B. Albiger,, and A. B. Jonsson. 2001. Soluble pilin of Neisseria gonorrhoeae interacts with human target cells and tissue. Infect. Immun. 69: 6419 6426.
205. Salit, I. E. 1982. The differential susceptibility of gonococcal opacity variants to sex hormones. Can. J. Microbiol. 28: 301 306.
206. Salit, I. E.,, M. Blake,, and E. C. Gotschlich. 1980. Intra-strain heterogeneity of gonococcal pili is related to opacity colony variance. J. Exp. Med. 151: 716 725.
207. Salit, I. E.,, and E. C. Gotschlich. 1978. Gonococcal color and opacity variants: virulence for chicken embryos. Infect. Immun. 22: 359 364.
208. Sandlin, R. C.,, and D. C. Stein. 1994. Role of phosphoglucomutase in lipooligosaccharide biosynthesis in Neisseria gonorrhoeae. J. Bacteriol. 176: 2930 2937.
209. Scheuerpflug, I.,, T. Rudel,, R. Ryll,, J. Pandit,, and T. F. Meyer. 1999. Roles of PilC and PilE proteins in pilus-mediated adherence of Neisseria gonorrhoeae and Neisseria meningitidis to human erythrocytes and endothelial and epithelial cells. Infect. Immun. 67: 834 843.
210. Schmidt, K. A.,, C. D. Deal,, M. Kwan,, E. Thattassery,, and H. Schneider. 2000. Neisseria gonorrhoeae MS11mkC opacity protein expression in vitro and during human volunteer infectivity studies. Sex. Transm. Dis. 27: 278 283.
211. Schneider, H.,, J. M. Griffiss,, J. W. Boslego,, P. J. Hitchcock,, K. M. Zahos,, and M. A. Apicella. 1991. Expression of paragloboside- like lipooligosaccharides may be a necessary component of gonococcal pathogenesis in men. J. Exp. Med. 174: 1601 1605.
212. Schneider, H.,, J. M. Griffiss,, R. E. Mandrell,, and G. A. Jarvis. 1985. Elaboration of a 3.6-kilodalton lipooligosaccharide, antibody against which is absent from human sera, is associated with serum resistance of Neisseria gonorrhoeae. Infect. Immun. 50: 672 677.
213. Schneider, H.,, T. L. Hale,, W. D. Zollinger,, R. C. Seid, Jr.,, C. A. Hammack,, and J. M. Griffiss. 1984. Heterogeneity of molecular size and antigenic expression within lipooligosaccharides of individual strains of Neisseria gonorrhoeae and Neisseria meningitidis. Infect. Immun. 45: 544 549.
214. Schneider, H.,, C. A. Hammack,, M. A. Apicella,, and J. M. Griffiss. 1988. Instability of expression of lipooligosaccharides and their epitopes in Neisseria gonorrhoeae. Infect. Immun. 56: 942 946.
215. Schneider, H.,, K. A. Schmidt,, D. R. Skillman,, L. Van De Verg,, R. L. Warren,, H. J. Wylie,, J. C. Sadoff,, C. D. Deal,, and A. S. Cross. 1996. Sialylation lessens the infectivity of Neisseria gonorrhoeae MS11mkC. J. Infect. Dis. 173: 1422 1427.
216. Schoolnik, G. K.,, R. Fernandez,, J. Y. Tai,, J. Rothbard,, and E. C. Gotschlich. 1984. Gonococcal pili. Primary structure and receptor binding domain. J. Exp. Med. 159: 1351 1370.
217. Schwan, E. T.,, B. D. Robertson,, H. Brade,, and J. P. van Putten. 1995. Gonococcal rfaF mutants express Rd2 chemotype LPS and do not enter epithelial host cells. Mol. Microbiol. 15: 267 275.
218. Seifert, H. S. 1992. Molecular mechanisms of antigenic variation in Neisseria gonorrhoeae. Mol. Cell. Biol. Hum. Dis. Ser. 1: 1 22.
219. Seifert, H. S. 1996. Questions about gonococcal pilus phase and antigenic variation. Mol. Microbiol. 21: 433 440.
220. Seifert, H. S. 1997. Insertionally inactivated and inducible recA alleles for use in Neisseria. Gene 188: 215 220.
221. Seifert, H. S.,, R. S. Ajioka,, D. Paruchuri,, F. Heffron,, and M. So. 1990. Shuttle mutagenesis of Neisseria gonorrhoeae: pilin null mutations lower DNA transformation competence. J. Bacteriol. 172: 40 46.
222. Seifert, H. S.,, and M. So. 1988. Genetic mechanisms of bacterial antigenic variation. Microbiol. Rev. 52: 327 336.
223. Seifert, H. S.,, C. J. Wright,, A. E. Jerse,, M. S. Cohen,, and J. G. Cannon. 1994. Multiple gonococcal pilin antigenic variants are produced during experimental human infections. J. Clin. Investig. 93: 2744 2749.
224. Serkin, C. D.,, and H. S. Seifert. 1998. Frequency of pilin antigenic variation in Neisseria gonorrhoeae. J. Bacteriol. 180: 1955 1958.
225. Serkin, C. D.,, and H. S. Seifert. 2000. Iron availability regulates DNA recombination in Neisseria gonorrhoeae. Mol. Microbiol. 37: 1075 1086.
226. Shafer, W. M.,, J. T. Balthazar,, K. E. Hagman,, and S. A. Morse. 1995. Missense mutations that alter the DNA-binding domain of the MtrR protein occur frequently in rectal isolates of Neisseria gonorrhoeae that are resistant to faecal lipids. Microbiology 141: 907 911.
227. Shafer, W. M.,, A. Datta,, V. S. Kolli,, M. M. Rahman,, J. T. Balthazar,, L. E. Martin,, W. L. Veal,, D. S. Stephens,, and R. Carlson. 2002. Phase variable changes in genes lgtA and lgtC within the lgtABCDE operon of Neisseria gonorrhoeae can modulate gonococcal susceptibility to normal human serum. J. Endotoxin. Res. 8: 47 58.
228. Shaw, J. H.,, and S. Falkow. 1988. Model for invasion of human tissue culture cells by Neisseria gonorrhoeae. Infect. Immun. 56: 1625 1632.
229. Shell, D. M.,, L. Chiles,, R. C. Judd,, S. Seal,, and R. F. Rest. 2002. The Neisseria lipooligosaccharide-specific alpha-2,3- sialyltransferase is a surface-exposed outer membrane protein. Infect. Immun. 70: 3744 3751.
230. Simon, D.,, and R. F. Rest. 1992. Escherichia coli expressing a Neisseria gonorrhoeae opacity-associated outer membrane protein invade human cervical and endometrial epithelial cell lines. Proc. Natl. Acad. Sci. USA 89: 5512 5516.
231. Singer, B. B.,, I. Scheffrahn,, R. Heymann,, K. Sigmundsson,, R. Kammerer,, and B. Obrink. 2002. Carcinoembryonic antigen- related cell adhesion molecule 1 expression and signaling in human, mouse, and rat leukocytes: evidence for replacement of the short cytoplasmic domain isoform by glycosylphosphatidylinositol- linked proteins in human leukocytes. J. Immunol. 168: 5139 5146.
232. Skaar, E. P.,, D. M. Tobiason,, J. Quick,, R. C. Judd,, H. Weissbach,, F. Etienne,, N. Brot,, and H. S. Seifert. 2002. The outer membrane localization of the Neisseria gonorrhoeae MsrA/B is involved in survival against reactive oxygen species. Proc. Natl. Acad. Sci. USA 99: 10108 10113.
233. Smith, H.,, J. A. Cole,, and N. J. Parsons. 1992. The sialylation of gonococcal lipopolysaccharide by host factors: a major impact on pathogenicity. FEMS Microbiol. Lett. 79: 287 292.
234. Snyder, L. A.,, S. A. Butcher,, and N. J. Saunders. 2001. Comparative whole-genome analyses reveal over 100 putative phase-variable genes in the pathogenic Neisseria spp. Microbiology 147: 2321 2332.
235. Sparling, P. F., 1999. Biology of Neisseria gonorrhoeae, p. 433 449. In K. H. Holmes,, P.-A. Mardh,, P. F. Sparling,, S.M. Lemon,, W. E. Stamm,, P. Piot,, and J. N. Wasserheit (ed.), SexuallyTransmitted Diseases, 3rd ed. McGraw-Hill, Inc., New York, N.Y.
236. Sparling, P. F.,, J. Tsai,, and C. N. Cornelissen. 1990. Gonococci are survivors. Scand. J. Infect. Dis. Suppl. 69: 125 136.
237. Stead, A.,, J. S. Main,, M. E. Ward,, and P. J. Watt. 1975. Studies on lipopolysaccharides isolated from strains of Neisseria gonorrhoeae. J. Gen. Microbiol. 88: 123 131.
238. Stern, A.,, M. Brown,, P. Nickel,, and T. F. Meyer. 1986. Opacity genes in Neisseria gonorrhoeae: control of phase and antigenic variation. Cell 47: 61 71.
239. Stern, A.,, and T. F. Meyer. 1987. Common mechanism controlling phase and antigenic variation in pathogenic neisseriae. Mol. Microbiol. 1: 5 12.
240. Stimson, E.,, M. Virji,, S. Barker,, M. Panico,, I. Blench,, J. Saunders,, G. Payne,, E. R. Moxon,, A. Dell,, and H. R. Morris. 1996. Discovery of a novel protein modification: alphaglycerophosphate is a substituent of meningococcal pilin. Biochem. J. 316: 29 33.
241. Stojiljkovic, I.,, J. Larson,, V. Hwa,, S. Anic,, and M. So. 1996. HmbR outer membrane receptors of pathogenic Neisseria spp.: iron-regulated, hemoglobin-binding proteins with a high level of primary structure conservation. J. Bacteriol. 178: 4670 4678.
242. Strom, M. S.,, D. N. Nunn,, and S. Lory. 1994. Posttranslational processing of type IV prepilin and homologs by PilD of Pseudomonas aeruginosa. Methods Enzymol. 235: 527 540.