1887

Chapter 24 : Allelic Variation of the FimH Lectin of Type 1 Fimbriae and Uropathogenesis

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Allelic Variation of the FimH Lectin of Type 1 Fimbriae and Uropathogenesis, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817619/9781555813239_Chap24-1.gif /docserver/preview/fulltext/10.1128/9781555817619/9781555813239_Chap24-2.gif

Abstract:

One of the clearest examples of pathoadaptive mutation can be found in the allelic variation of the FimH lectin adhesin of type 1 fimbriae. This chapter reviews evidence for the role of type 1 fimbriae as urovirulence factors. While the focus is on the FimH lectin and the occurrence of mutations that cause some alleles to be pathoadaptive, the discussion on allelic variation of FimH is presented within the broader context of type 1 fimbrial biology in the chapter. Type 1 fimbriae bearing the FimH lectin are expressed on the surfaces of virtually all strains and most other members of the family . Importantly, zonal analysis of alleles from the same strains did not reveal any similar signs of adaptive selection. No striking differences could be found between the highest binding and lowest binding of the strains in terms of fimbrial number, fimbrial length, and relative amounts of FimH protein incorporated into fimbriae. These results suggested that conformational differences in the FimH subunit alone were responsible for the differences in adhesion. It was logical to hypothesize, on the basis of the in vitro studies, that the ability to bind effectively to Man1 receptors was a key factor in the pathogenesis of cystitis.

Citation: Hasty D, Wu X, Dykuizen D, Sokurenko E. 2005. Allelic Variation of the FimH Lectin of Type 1 Fimbriae and Uropathogenesis, p 351-378. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch24

Key Concept Ranking

Type 1 Fimbriae
0.7980537
Outer Membrane Proteins
0.4700549
Urinary Tract Infections
0.41256374
Integral Membrane Proteins
0.40877405
0.7980537
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Schematic illustration of the genetic organization of the genes. The location of the genes within the gene cluster and their roles in regulation or biogenesis are indicated. Switching from ON to OFF phases is controlled by the inversion of a segment of DNA located between the and genes that contains the promoter for the gene. Inversion is affected by FimB and FimE, as described in the text. In the ON orientation, is successfully transcribed, but in the OFF orientation, the message is aborted. Integration host factor (IHF) and Lrp bind to elements within the switch and also affect rates of inversion. Modified from reference 116 with permission.

Citation: Hasty D, Wu X, Dykuizen D, Sokurenko E. 2005. Allelic Variation of the FimH Lectin of Type 1 Fimbriae and Uropathogenesis, p 351-378. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Electron micrograph of type 1 fimbriated strain illustrating the typical numbers, lengths, and general morphology of the hair-like surface appendages. Type 1 fimbriae, and others of its class, are peritrichously arranged, can number in the hundreds per cell, and are rigid-appearing, straight structures. There are 1,000 or more FimA subunits polymerized into a 7-nm-diameter helical structure. This subunit makes up the majority of the fimbrial structure. The mannose-binding lectin, FimH, is located at the distal tips of the fimbriae (see Fig. 4 and 5 ). Reprinted from reference 52 with permission from Elsevier.

Citation: Hasty D, Wu X, Dykuizen D, Sokurenko E. 2005. Allelic Variation of the FimH Lectin of Type 1 Fimbriae and Uropathogenesis, p 351-378. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

A 3-D reconstruction of a type 1 fimbria. The segment displayed in this model comprises 40 FimA subunits and covers 1.5 helical repeats. It has been surface rendered to include 100% of the nominal mass. The model shows the type 1 fimbria to be a hollow tube with walls that are formed by a helical string of elongated subunits associated in a head-to-tail orientation. Adjacent turns of the helix are connected via three binding sites, making the fimbriae relatively rigid structures. Reprinted from reference 52 with permission from Elsevier.

Citation: Hasty D, Wu X, Dykuizen D, Sokurenko E. 2005. Allelic Variation of the FimH Lectin of Type 1 Fimbriae and Uropathogenesis, p 351-378. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Schematic model for biogenesis of type 1 fimbriae. Nascent polypeptides of fimbrial subunits are transported across the inner membrane by the general secretion pathway. The periplasmic chaperone, FimC, binds to the polypeptides as they are being transported through the inner membrane. Polypeptides not protected by the chaperone are thought to be degraded by periplasmic proteases. The FimH subunit is held by FimC in a mannose-binding, nonpolymerizing form in the periplasm until delivered to the FimD assembly complex, or usher. The chaperone-subunit complexes arrive at the outer membrane usher, where they bind to previously delivered subunits, traverse the outer membrane as a ~2-nm-diameter linear filament, and then coil into a helical form at the external face of the usher. In this pathway, the translocation of subunits is highly ordered, with translocation of a FimH subunit being followed by that of FimF, FimG, and, finally, hundreds to thousands of copies of FimA. The precise number of FimF, FimG, and FimH subunits in this illustration is not known with absolute certainty. Reprinted from reference , with permission.

Citation: Hasty D, Wu X, Dykuizen D, Sokurenko E. 2005. Allelic Variation of the FimH Lectin of Type 1 Fimbriae and Uropathogenesis, p 351-378. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Electron micrographs of type 1 fimbriae. (a and b) Isolated type 1 fimbriae negatively stained with uranyl formate. The main fimbrial shaft appears to be rather rigid and contains a central cavity, indicated by the dark thread of stain running parallel to the fimbrial axis. The 7-nm shafts end in a flexible, loosely coiled tip fibrillum (arrowheads) roughly half the diameter of the main shaft. (c) Immunolocalization of FimH at the fimbrial tips. Colloidal gold particles 8 nm in diameter were coated with polyclonal rabbit antibody against FimH. Gold particles are found exclusively at the fimbrial tips. Reprinted from reference 52 with permission from Elsevier.

Citation: Hasty D, Wu X, Dykuizen D, Sokurenko E. 2005. Allelic Variation of the FimH Lectin of Type 1 Fimbriae and Uropathogenesis, p 351-378. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Schematic diagram of typical N-linked glycans. Saccharide structures 1 and 2 are examples of high-mannose oligosaccharide chains. Saccharide 3 is an example of a typical hybrid-type glycan unit, one arm of which bears a trisaccharide. Saccharide 4 is an example of a complex-type glycan unit, both arms of which are terminally substituted with saccharides other than mannose (i.e., there is no terminal mannose). Prior to 1992, the primary type 1 fimbrial receptor was expected to have the structure of saccharide 1 or 3. Modified from reference 55 with permission.

Citation: Hasty D, Wu X, Dykuizen D, Sokurenko E. 2005. Allelic Variation of the FimH Lectin of Type 1 Fimbriae and Uropathogenesis, p 351-378. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Schematic diagram of the recombinant strains constructed to test the phenotypes conferred by different alleles of The host strain used was the Δ K-12 strain AAEC191A (11). Plasmid pPKL114 contains the entire gene cluster in a pBR322 replicon, with a stop linker inserted into the gene. Because is the last gene in the cluster, no polar effects would be expected. Plasmid pGB2-24 and subsequent derivatives contain genes in a pACYC184 replicon, and these plasmids complement the defect of pPKL114.

Citation: Hasty D, Wu X, Dykuizen D, Sokurenko E. 2005. Allelic Variation of the FimH Lectin of Type 1 Fimbriae and Uropathogenesis, p 351-378. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8
Figure 8

Adhesion of representative wild-type (A) and recombinant (B) M, MF, and MFP class strains to mannan (panel 1), Fn (panel 2), periodate-treated Fn (panel 3), and a synthetic peptide (panel 4). Strain designations are given in panels 5. The recombinant strains are constructed as indicated in the legend to Fig. 7 and the text. Open columns indicate bacteria incubated without D-mannose; solid columns indicate bacteria incubated with D-mannose. Values are the means and standard errors of the mean ( 4) for each column. ND, not determined. O.D., optical density. Reprinted from reference 136 with permission.

Citation: Hasty D, Wu X, Dykuizen D, Sokurenko E. 2005. Allelic Variation of the FimH Lectin of Type 1 Fimbriae and Uropathogenesis, p 351-378. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9
Figure 9

Deduced amino acid sequences of several FimH variants. The polymorphic sites (sites in which there has been a nonsynonymous mutation in the codon) within the 300-residue FimH sequence are indicated. The positions are numbered vertically above each polymorphic amino acid, compared to the original FimH sequence published by Klemm and Christiansen ( ). Positions that do not vary among the FimH alelles sequenced thus far are not present in the figure. Δ indicates a deleted residue. Substitutions that affect the adhesion phenotype are indicated in boldface type. The sequences are divided into two groups that differ from each other at residues 70 and 78, where Asn-to-Ser and Ser-to-Asn substitutions occur. Reprinted from reference 137 with permission.

Citation: Hasty D, Wu X, Dykuizen D, Sokurenko E. 2005. Allelic Variation of the FimH Lectin of Type 1 Fimbriae and Uropathogenesis, p 351-378. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 10
Figure 10

Adhesion of -transformed wild-type strains to mannan. Extra copies of result in a more uniform expression of type 1 fimbriae, eliminating variable expression levels as one explanation for differences in adhesion. Open columns indicate bacteria incubated without α-methylmannoside; solid columns indicate bacteria incubated with 50 mM α-methylmannoside. Values are the means and standard errors of the mean ( 4). Reprinted from reference 137 with permission.

Citation: Hasty D, Wu X, Dykuizen D, Sokurenko E. 2005. Allelic Variation of the FimH Lectin of Type 1 Fimbriae and Uropathogenesis, p 351-378. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 11
Figure 11

Adhesion of recombinant strains constructed using genes cloned from the wild-type strains shown in Fig. 10 . Columns and values are as in Fig. 10 . Reprinted from reference with permission.

Citation: Hasty D, Wu X, Dykuizen D, Sokurenko E. 2005. Allelic Variation of the FimH Lectin of Type 1 Fimbriae and Uropathogenesis, p 351-378. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 12
Figure 12

Adhesion of wild-type fecal isolates and isolates from patients with UTIs to mannan. All binding was inhibited by >80% by α-methylmannoside. To simplify the graphic presentation, data are arranged in groups of 0.25 × 10 bacteria bound per well. Since the data are plotted in this way, the actual numbers for circles placed behind the two reference lines fall below the line values, whereas those placed in front of the lines fall above the line values. Reprinted from reference 137 with permission.

Citation: Hasty D, Wu X, Dykuizen D, Sokurenko E. 2005. Allelic Variation of the FimH Lectin of Type 1 Fimbriae and Uropathogenesis, p 351-378. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 13
Figure 13

Correlation of the abilities of seven recombinant strains to bind to mannan(MN)with their abilities to adhere to the J82 bladder epithelial cell line. Strain numbers are shown. Statistical analysis is given in the text. Reprinted from reference 138 with permission from the publisher.

Citation: Hasty D, Wu X, Dykuizen D, Sokurenko E. 2005. Allelic Variation of the FimH Lectin of Type 1 Fimbriae and Uropathogenesis, p 351-378. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 14
Figure 14

Scatchard plot analyses of the binding of strains KB54 and KB91 to mannan at equilibrium. Data from a single experiment are presented, but the experiment was repeated several times and the results were essentially the same. Reprinted from reference 138 with permission from the publisher.

Citation: Hasty D, Wu X, Dykuizen D, Sokurenko E. 2005. Allelic Variation of the FimH Lectin of Type 1 Fimbriae and Uropathogenesis, p 351-378. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 15
Figure 15

Adhesion of strains KB54 and KB91 to various glycoproteins. Abbreviations: Cas, bovine milk casein; αaGP, human α-acid glycoprotein; aTr, human serum -transferrin; Mn, yeast mannan; mIgAλ, mouse immunoglobulin Aλ; Lm, human laminin; OvAl, chicken egg albumin; mIgAκ, mouse immunoglobulin Aκ; TG, porcine thyroglobulin; POx, horseradish peroxidase; hIgA human immunoglobulin A; RNB, bovine RNase B. Values are means and standard errors of the mean ( 3). Reprinted from reference 138 with permission from the publisher.

Citation: Hasty D, Wu X, Dykuizen D, Sokurenko E. 2005. Allelic Variation of the FimH Lectin of Type 1 Fimbriae and Uropathogenesis, p 351-378. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 16
Figure 16

Schematic diagram of the N-linked glycan units of bovine RNase B. Data from reference 42. Reprinted from reference 55 with permission.

Citation: Hasty D, Wu X, Dykuizen D, Sokurenko E. 2005. Allelic Variation of the FimH Lectin of Type 1 Fimbriae and Uropathogenesis, p 351-378. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 17
Figure 17

Scatchard plot analyses of binding of strains KB54 and KB91 to bovine RNase B at equilibrium. Data from a single experiment are presented, but the experiment was repeated several times and the results were essentially the same. Reprinted from reference 138 with permission from the publisher.

Citation: Hasty D, Wu X, Dykuizen D, Sokurenko E. 2005. Allelic Variation of the FimH Lectin of Type 1 Fimbriae and Uropathogenesis, p 351-378. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 18
Figure 18

Correlation of the adhesion of seven recombinant strains ( Fig. 13 ) to Man-BSA with their adhesion to bovine RNase B (bRB). Strain numbers are shown. Reprinted from reference 138 with permission from the publisher.

Citation: Hasty D, Wu X, Dykuizen D, Sokurenko E. 2005. Allelic Variation of the FimH Lectin of Type 1 Fimbriae and Uropathogenesis, p 351-378. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 19
Figure 19

Correlation of the levels of adhesion of the same recombinant strains shown in Fig. 18 to Man-BSA with their adhesion to mannan (MN). Strain numbers are shown. Reprinted from reference 138 with permission from the publisher.

Citation: Hasty D, Wu X, Dykuizen D, Sokurenko E. 2005. Allelic Variation of the FimH Lectin of Type 1 Fimbriae and Uropathogenesis, p 351-378. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 20
Figure 20

Adhesion of 11 wild-type strains to high-Man moieties of bovine RNase B (HIGH-Man), monomannosylated BSA (Man1) and trimannosylated BSA (Man3). Reprinted from reference 55 with permission from the publisher.

Citation: Hasty D, Wu X, Dykuizen D, Sokurenko E. 2005. Allelic Variation of the FimH Lectin of Type 1 Fimbriae and Uropathogenesis, p 351-378. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 21
Figure 21

Ribbon diagram illustrating the three-dimensional structure of the FimH lectin subunit complexed with the FimC chaperone and cocrystallized with cyclohexylbutanoyl--hydroxyethyl-D-glucamide (C-HEGA). FimH is folded into two domains connected by a short linker arm. The NH-terminal lectin domain binds to mannosylated receptors, and the COOH-terminal pilin domain anchors FimH to the proximal subunits of the fimbrial superstructure. The lectin domain is an 11-strand elongated β-barrel that exhibits a mannose-size pocket at the tip of the domain distal from the linker arm connecting the two domains. The figure was generously provided by Stefan Knight.

Citation: Hasty D, Wu X, Dykuizen D, Sokurenko E. 2005. Allelic Variation of the FimH Lectin of Type 1 Fimbriae and Uropathogenesis, p 351-378. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 22
Figure 22

β-Sheet topology diagram of the lectin domain of FimH. The lengths of the sheets and loops do not relect the actual size, but the relative positions of the labeled residues are accurately indicated. The filled circles indicate the positions of point mutations that induce a dual low-Man1-binding/high-Man1-binding phenotype (for details, see reference 132). The crosses indicate residues interacting with the receptor analog, C-HEGA. The open circle indicates the position of an E89K mutation (see reference 141). Reprinted from reference 141 with permission from Blackwell Publishing.

Citation: Hasty D, Wu X, Dykuizen D, Sokurenko E. 2005. Allelic Variation of the FimH Lectin of Type 1 Fimbriae and Uropathogenesis, p 351-378. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 23
Figure 23

Luminal surface topography of the mouse urothelium. Quick-freeze, deep-etch, and rotary shadowed images of mouse bladder urothelium are shown. (a) An overview showing several crystalline plaques (P) interrupted by hinge areas (H). The upper right corner is an area where the apical surface membrane has been cross-fractured and the cytosol has been water etched, thus exposing the underlying cytoskeleton (Cy). (b) Higher-magnification image of the urothelial plaque and its fast Fourier transform (inset), showing the hexagonal symmetry of the packing and the twisted hexagonal symmetry of individual particles. Reprinted from reference 72 with permission from Elsevier.

Citation: Hasty D, Wu X, Dykuizen D, Sokurenko E. 2005. Allelic Variation of the FimH Lectin of Type 1 Fimbriae and Uropathogenesis, p 351-378. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 24
Figure 24

Localization of UPIa receptor for FimH on the six inner domains of the mouse 16-nm AUM particle. (a) UPIa specificity of the FimH-FimC complex. The FimH-FimC complex was biotinylated and incubated with proteins from purified mouse urothelial plaques that had been resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transferred to a nitrocellulose membrane. Lane 1 shows total proteins of mouse urothelial plaques visualized by Coomassie blue staining, showing the separation of UPII (15 kDa), UPIa (24 kDa), UPIb (27 kDa), and UPIII 947 kDa). There is excellent separation between UPIa and UPIb in this figure. Lane 2 shows the selective binding of biotinylated FimH/FimC to UPIa. Lane 3 shows the selective binding of [S] methionine-labeled type 1 fimbriated to UPIa. MW, molecular mass standards. (b) A 2-D difference map of the mouse urothelial plaque images collected in the presence and absence of FimH and FimC. (c) Localization of the FimH-binding site on the six inner domains of the 16-nm AUM particle when projected onto a 3-D model of the particle. Reprinted from reference 102 with permission from Elsevier.

Citation: Hasty D, Wu X, Dykuizen D, Sokurenko E. 2005. Allelic Variation of the FimH Lectin of Type 1 Fimbriae and Uropathogenesis, p 351-378. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 25
Figure 25

Adhesion of low-Man-binding and high-Man-binding strains to AUMs. Reprinted from reference 55 with permission from the publisher.

Citation: Hasty D, Wu X, Dykuizen D, Sokurenko E. 2005. Allelic Variation of the FimH Lectin of Type 1 Fimbriae and Uropathogenesis, p 351-378. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 26
Figure 26

Scanning electron micrograph of a high-Man-binding phenotype recombinant strain binding to the surface of mouse bladder epithelial cells. The mosaic pattern of adhesion of this strain is striking. Cells bearing hundreds of bound bacteria are intermingled with cells bearing essentially none. Bar, 20 μm.

Citation: Hasty D, Wu X, Dykuizen D, Sokurenko E. 2005. Allelic Variation of the FimH Lectin of Type 1 Fimbriae and Uropathogenesis, p 351-378. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 27
Figure 27

Colonization of mouse bladders by isogenic expressing nonfunctional (M) FimH, low-Man-binding (M) FimH, or high-Man-binding (M) Fim H subunits. Bars indicate mean CFU per bladder; error bars indicate standard error of the mean. values indicating level of significance between different groups are indicated. Reprinted from reference 139 with permission from the publisher.

Citation: Hasty D, Wu X, Dykuizen D, Sokurenko E. 2005. Allelic Variation of the FimH Lectin of Type 1 Fimbriae and Uropathogenesis, p 351-378. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 28
Figure 28

Essentially equivalent binding of to buccal epithelial cells (0% α-methylmannoside) and inhibition of this interaction by increasing levels of α-methyl-D-mannopyrannoside. Reprinted from reference 139 with permission from the publisher.

Citation: Hasty D, Wu X, Dykuizen D, Sokurenko E. 2005. Allelic Variation of the FimH Lectin of Type 1 Fimbriae and Uropathogenesis, p 351-378. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 29
Figure 29

Inhibition of the interaction of and buccal cells by whole, stimulated human saliva. Reprinted from reference 139 with permission from the publisher.

Citation: Hasty D, Wu X, Dykuizen D, Sokurenko E. 2005. Allelic Variation of the FimH Lectin of Type 1 Fimbriae and Uropathogenesis, p 351-378. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 30
Figure 30

Phylogenetic tree (unrooted phylogram) of FimH protein variants. The protein tree was built by collapsing branch regions containing silent mutations, using a maximum-likelihood gene tree. The nodes are separated into primary, secondary, and extended zones (see the text). The node labeled CONS corresponds to the consensus structure FimH. All other nodes are labeled with the replacement mutation by which they vary from the immediate ancestral node. Where the same replacement was acquired independently, they are distinguished by a lowercase letter. The grey circles represent FimH variants with intranodal synonymous variations, i.e., encoded by multiple gene alleles. The numbers within circles give the total numbers of strains with the indicated mutation. The small solid circles represent FimH variants found in a single strain in the collection. Reprinted from reference 142 with permission from the publisher.

Citation: Hasty D, Wu X, Dykuizen D, Sokurenko E. 2005. Allelic Variation of the FimH Lectin of Type 1 Fimbriae and Uropathogenesis, p 351-378. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817619.chap24
1. Abraham, J. M.,, C. S. Freitag,, J. R. Clements,, and B. I. Eisenstein. 1985. An invertible element of DNA controls phase variation of type 1 fimbriae of Escherichia coli. Proc. Natl. Acad. Sci. USA 82: 5724 5727.
2. Abraham, S. N, D. Sun, J. B. Dale, and E. H. Beachey. 1988. Conservation of the D-mannose-adhesion protein among type 1 fimbriated members of the family Enterobacteriaceae. Nature 336: 682 684.
3. Abraham, S. N.,, J. D. Goguen,, D. Sun,, P. Klemm,, and E. H. Beachey. 1987. Identification of two ancillary subunits of Escherichia coli type 1 fimbriae by using antibodies against synthetic oligopeptides of fim gene products. J. Bacteriol. 169: 5530 5536.
4. Anderson, G. G.,, J. J. Palermo,, J. D. Schilling,, R. Roth,, J. Heuser,, and S. J. Hultgren. 2003. Intracellular bacterial biofilm-like pods in urinary tract infections. Science 301: 105 107.
5. Aronson, M.,, O. Medalia,, L. Schori,, D. Mirelman,, N. Sharon, and I Ofek. 1979. Prevention of colonization of the urinary tract of mice with Escherichia coli by blocking of bacterial adherence with methyl alpha-D-mannopyranoside. J. Infect. Dis. 139: 329 332.
6. Bahrani-Mougeot, F.K.,, E. L. Buckles,, C. V. Lockatell,, J. R. Hebel,, D. E Johnson,, C. M. Tang,, and M. S. Donnenberg. 2002. Type 1 fimbriae and extracellular polysaccharides are preeminent uropathogenic Escherichia coli virulence determinants in the murine urinary tract. Mol. Microbiol. 45: 1079 1093.
7. Barnhart, M. M.,, F. G. Sauer,, J. S. Pinkner,, and S. J. Hultgren. 2003. Chaperone-subunit-usher interactions required for donor strand exchange during bacterial pilus assembly. J. Bacteriol. 185: 2723 2730.
8. Blattner, F. R.,, G. Plunkett III,, C. A. Bloch,, N. T. Perna,, V. Burland,, M. Riley,, J. Collado-Vides,, J. D. Glasner,, C. K. Rode,, G. F. Mayhew,, J. Gregor,, N. W. Davis,, H. A. Kirkpatrick,, M. A. Goeden,, D. J. Rose,, B. Mau,, and Y. Shao. 1997. The complete genome sequence of Escherichia coli K- 12. Science 277: 1453 1474.
9. Bloch, C. A.,, and P. E. Orndorff. 1990. Impaired colonization by and full invasiveness of Escherichia coli K1 bearing a site-directed mutation in the type 1 pilin gene. Infect. Immun. 58: 275 278.
10. Bloch, C. A.,, B. A. D. Stocker,, and P. Orndorff. 1992. A key role for type 1 fimbriae in enterobacterial communicability. Mol. Microbiol. 6: 697 701.
11. Blomfield, I. C.,, M. S. McClain,, and B. I. Eisenstein. 1991. Type 1 fimbriae mutants of Escherichia coli K12: characterization of recognized afimbriate strains and construction of new fim deletion mutants. Mol. Microbiol. 5: 1439 1445.
12. Blomfield, I. C.,, P. J. Calie,, K. J. Eberhardt,, M. S. McClain,, and B. I. Eisenstein. 1993. Lrp stimulates phase variation of type 1 fimbriation in Escherichia coli K-12. J. Bacteriol. 175: 27 36.
13. Blomfield, I. C.,, D. H. Kulasekara,, and B. I. Eisenstein. 1997. Integration host factor stimulates both FimB- and FimE-mediated site-specific DNA inversion that controls phase variation of type 1 fimbriae expression in Escherichia coli. Mol. Microbiol. 23: 705 717.
14. Blum, G.,, V. Falbo,, A. Caprioli,, and J. Hacker. 1995. Gene clusters encoding the cytotoxic necrotizing factor type 1, Prs-fimbriae and α-hemolysin form the pathogenicity island II of the uropathogenic Escherichia coli strain J96. FEMS Microbiol. Lett. 126: 189 196.
15. Boddicker, J. D.,, N. A. Ledeboer,, J. Jagnow,, B. D. Jones,, and S. Clegg. 2002. Differential binding to and biofilm formation on HEp-2 cells by Salmonella enterica serovar Typhimurium is dependent upon allelic variation in the fimH gene of the fim gene cluster. Mol. Microbiol. 45: 1255 1265.
16. Brinton, C. C., Jr. 1959. Non-flagellar appendages of bacteria. Nature 183: 782 786.
17. Brinton, C. C., Jr. 1965. The structure, function, synthesis and genetic control of bacterial pili and a molecular model for DNA and RNA transport in gram negative bacteria. Trans. N. Y. Acad. Sci. 27: 1003 1054.
18. Brinton, C. C., Jr.,, A. Buzzell,, and M. A. Lauffer. 1954. Electrophoresis and phage susceptibility studies on a filament-producing variant of the E. coli B bacterium. Biochim. Biophys. Acta 15: 533 542.
19. Bullitt, E.,, and L. Makowski. 1995. Structural polymorphism of bacterial adhesion pili. Nature 373: 164 167.
20. Choudhury, D.,, A. Thompson,, V. Stojanoff,, S. Langermann,, J. Pinkner,, S. J. Hultgren,, and S. D. Knight. 1999. X-ray structure of the FimC-FimH chaperone-adhesin complex from uropathogenic Escherichia coli. Science 285: 1061 1066.
21. Collier, W. A.,, and J. C. de Miranda. 1955. Bacterien- Haemagglutination. III. Die Hemmung der Coli-Haemagglutination durch Mannose. Antonie Leeuwenhoek 21: 133 140.
22. Connell, H.,, W. Agace,, P. Klemm,, M. Schembri,, S. Mårild,, and C. Svanborg. 1996, Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract. Proc. Natl. Acad. Sci. USA 93: 9827 9832.
23. Costerton, J. W.,, Z. Lewandowski,, D. E. Caldwell,, D. R. Korber,, and H. M. Lappin-Scott. 1995. Microbial biofilms. Annu. Rev. Microbiol. 49: 711 745.
24. Costerton, J. W.,, P. S. Stewart,, and E. P. Greenberg. 1999. Bacterial biofilms: a common cause of persistent infections. Science 284: 2137 2142.
25. Covacci, A.,, S. Falkow,, D. E. Berg,, and R. Rappuoli. 1997. Did the inheritance of a pathognicity island modify the virulence of Helicobacter pylori? Trends Microbiol. 5: 205 208.
26. De Graaf, F. K.,, and R. R. Mooi. 1986. The fimbrial adhesins of Escherichia coli. Adv. Microb. Physiol. 28: 65 143.
27. De Graaf, F. K.,, and W. Gaastra,. 1994. Fimbriae of enterotoxigenic Escherichia coli, p. 53 83. In P. Klemm (ed.), Fimbriae: Adhesion, Genetics, Biogenesis, and Vaccines. CRC Press, Inc., Boca Raton, Fla.
28. Donnenberg, M. S.,, and R. A. Welch,. 1996. Virulence determinants of uropathogenic Escherichia coli, p. 135 174. In H. L. T. Mobley, and J. W. Warren (ed.), Urinary Tract Infections: Molecular Pathogenesis and Clinical Management. ASM Press, Washington, D.C.
29. Dorman, C. J.,, and C. F. Higgins. 1987. Fimbrial phase variation in Escherichia coli: dependence on integration host factor and homologies with other site-specific recombinases. J. Bacteriol. 169: 3840 3843.
30. Duguid, J. P. 1964. Functional anatomy of Escherichia coli with special reference to enteropathogenic E. coli. Rev. Latinam. Microbiol. 7(Suppl. 13-4): 1 16.
31. Duguid, J. P.,, I. W. Smith,, G. Dempster,, and P. N. Edmunds. 1955. Non-flagellar filamentous appendages (“fimbriae”) and haemagglutinating activity in Bacterium coli. J. Pathol. Bacteriol. 70: 335 348.
32. Duguid, J. P.,, and R. R. Gillies. 1957. Fimbriae and adhesive properties in dysentery bacilli. J. Pathol. 74: 397 411.
33. Duguid, J. P.,, and D. C. Old,. 1994. Introduction: A historical perspective, p. 1 7. In P. Klemm (ed.), Fimbriae: Adhesion, Genetics, Biogenesis, and Vaccines. CRC Press, Inc., Boca Raton, Fla.
34. Eisenstein, B. I.,, D. S. Sweet,, V. Vaughn,, and D. I. Friedman. 1987. Integration host factor is required for the DNA inversion that controls phase variation in Escherichia coli. Proc. Natl. Acad. Sci. USA 84: 6506 6510.
35. El-Labany, S.,, B. K. Sohanpal,, M. Lahooti,, R. Akerman,, and I. C. Blomfield. 2003. Distant cis-active sequences and sialic acid control the expression of fimB in Escherichia coli K-12. Mol. Microbiol. 49: 1109 1118.
36. Eshdat, Y.,, F. J. Silverblatt,, and N. Sharon. 1981. Dissociation and reassembly of Escherichia coli type 1 pili. J. Bacteriol. 148: 308 314.
37. Falkow, S. 1997. What is a pathogen? ASM News 63: 359 365.
38. Firon, N.,, I. Ofek,, and N. Sharon. 1983. Carbohydrate specificity of the surface lectins of Escherichia coli, Klebsiella pneumoniae, and Salmonella typhimurium. Carbohydr. Res. 120: 235 249.
39. Firon, N.,, I. Ofek,, and N. Sharon. 1984. Carbohydrate-binding sites of the mannose-specific fimbrial lectins of enterobacteria. Infect. Immun. 43: 1088 1090.
40. Firon, N.,, S. Ashkenazi,, D. Mirelman,, I. Ofek,, and N. Sharon. 1987. Aromatic alpha-glycosides of mannose are powerful inhibitors of the adherence of type 1 fimbriated Escherichia coli to yeast and intestinal epithelial cells. Infect. Immun. 55: 472 476.
41. Foxman, B. 2002. Epidemiology of urinary tract infections: incidence, morbidity, and economic costs. Am. J. Med. 113 ( Suppl. 1): 5S 13S.
42. Fu, D.,, L. Chen,, and R. A. O’Neill. 1994. A detailed structural characterization of ribonuclease B oligosaccharides by 1H NMR spectroscopy and mass spectrometry. Carbohydr. Res. 261: 173 186.
43. Gally, D. L, T. J. Rucker, and I. C. Blomfield. 1994. The leucine-responsive regulatory protein binds to the fim switch to control phase variation of type 1 fimbrial expression in Escherichia coli K-12. J. Bacteriol. 176: 5665 5672.
44. Gally, D. L.,, J. Leathart,, and I. C. Blomfield. 1996. Interaction of fimB and fimE with the fim switch that controls the phase variation of type 1 fimbriae in Escherichia coli K-12. Mol. Microbiol. 21: 725 738.
45. Guerina, N. G.,, T. W. Kessler,, V. J. Guerina,, M. R. Neutra,, H. W. Clegg,, S. Langermann,, F. A. Scannapieco,, and D. A. Goldman. 1983. The role of pili and capsule in the pathogenesis of neonatal infection with Escherichia coli K1. J. Infect. Dis. 148: 395 405.
46. Gunther, N. W., IV, V. Lockatell, D. E. Johnson, and H. L. T. Mobley. 2001. In vivo dynamics of type 1 fimbria regulation in uropathogenic Escherichia coli during experimental urinary tract infection. Infect. Immun. 69: 2838 2846.
47. Gunther, N. W., IV, J. A. Snyder, V. Lockatell, I. Blomfield, D. E. Johnson, and H. L. T. Mobley. 2002. Assessment of virulence of uropathogenic Escherichia coli type 1 fimbrial mutants in which the invertible element is phase-locked on or off. Infect. Immun. 70: 3344 3354.
48. Guyot, G. 1908. Uber die bakterielle Haemagglutination. Zentbl. Bakteriol. Abt. I Orig. 47: 640 653.
49. Haas, R.,, and T. F. Meyer. 1992. Silent pilin genes of Neisseria gonorrhoeae MS11 and the occurrence of related hyper-variant sequences among gonocococcal isolates. Mol. Microbiol. 6: 197 208.
50. Hacker, J.,, G. Blum-Oehler,, I. Muhldorfer,, and H. Tschape. 1997. Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution. Mol. Microbiol. 23: 1089 1097.
51. Hacker, J.,, G. Blum-Oehler,, B. Janke,, G. Nagy,, and W. Goebel,. 1999. Pathogenicity islands of extraintestinal Escherichia coli, p. 59 76. In J. B. Kaper, and J. Hacker (ed.), Pathogenicity Islands and Other Mobile Virulence Elements. ASM Press, Washington, D.C.
52. Hahn, E.,, P. Wild,, U. Hermanns,, P. Sebbel,, R. Glockshuber,, M. Häner,, N. Taschner,, P. Burkhard,, U. Aebi,, and S. A. Müller. 2002. Exploring the 3D molecular architecture of Escherichia coli type 1 pili. J. Mol. Biol. 323: 845 857.
53. Hanson, M. S.,, and C. C. Brinton, Jr. 1988. Identification and characterization of E. coli type-1 pilus tip adhesion protein. Nature 332: 265 268.
54. Hanson, M. S.,, J. Hempel,, and C. C. Brinton, Jr. 1988. Purification of the Escherichia coli type 1 pilin and minor pilus proteins and partial characterization of the adhesin protein. J. Bacteriol. 170: 3350 3358.
55. Hasty, D. L.,, and E. V. Sokurenko,. 2000. The FimH lectin of Escherichia coli type 1 fimbriae. An adaptive adhesin, p. 481 515. In R. J. Doyle (ed.), Glycomicrobiology. Kluwer Academic/Plenum Publishers, New York, N.Y.
56. Hedrick, P. W. 1986. Genetic polymorphism in heterogeneous environments—a decade later. Annu. Rev. Ecol. Syst. 17: 535 566.
57. Hicks, R. M. 1975. The mammalian urinary bladder: an accommodating organ. Biol. Rev. Camb. Philos. Soc. 50: 215 246.
58. Holden, N. J.,, B. E. Uhlin,, and D. L. Gally. 2001. PapB paralogues and their effect on the phase variation of type 1 fimbriae in Escherichia coli. Mol. Microbiol. 42: 319 330.
59. Hommais, F.,, S. Gouriou,, C. Amorin,, H. Bui,, M. C. Rahimy,, B. Picard,, and E. Denamur. 2003. The FimH A27V mutation is pathoadaptive for urovirulence in Escherichia coli B2 phylogenetic group isolates. Infect. Immun. 71: 3619 3622.
60. Houwink, A. L.,, and W. van Iterson. 1950. Electron microscopical observations on bacterial cytology. II. A study on flagellation. Biochim. Biophys. Acta 5: 10 44.
61. Hultgren, S. J.,, T. N. Porter,, A. J. Schaeffer,, and J. L. Duncan. 1985. Role of type 1 pili and effects of phase variation on lower urinary tract infections produced by Escherichia coli. Infect. Immun. 50: 370 377.
62. Hultgren, S.J.,, S. Normark,, and S. N. Abraham. 1991. Chaperone- assisted assembly and molecular architecture of adhesive pili. Annu. Rev. Microbiol. 45: 383 415.
63. Hung, C.-S.,, J. Bouckaert,, D. Hung,, J. Pinkner,, C. Widberg,, A. DeFusco,, C. G. Auguste,, R. Strouse,, S. Langermann,, G. Waksman,, and S. J. Hultgren. 2002. Structural basis of tropism of Escherichia coli to the bladder during urinary tract infection. Mol. Microbiol. 44: 903 915.
64. Jacob-Dubuisson, F.,, J. Heuser,, K. Dodson,, S. Normark,, and S. J. Hultgren. 1993. Initiation of assembly and association of the structural elements of a bacterial pilus depend on two specialized tip proteins. EMBO J. 12: 837 847.
65. Jann, K.,, and B. Jann (ed.). 1990. Bacterial Adhesins. Springer-Verlag, KG, Berlin, Germany.
66.Reference deleted.
67. Johnson, J. R. 1991. Virulence factors in Escherichia coli urinary tract infection. Clin. Microbiol. Rev. 4: 80 128.
68. Johnson, J. R.,, T. A. Russo,, F. Scheutz,, J. J. Brown,, L. X. Zhang,, K. Palin,, C. Rode,, C. Bloch,, C. F. Marrs,, and B. Foxman. 1997. Discovery of disseminated L96-like strains of uropathogenic Escherichia coli O4:H5 containing genes for both papG J96 (class I) and prsG J96 (class III) Gal(α1-4)Gal-binding adhesins. J. Infect. Dis. 175: 983 988.
69. Jones, H. C.,, F. Jacob-Dubuisson,, K. Dodson,, M. Kuehn,, L. Slonim,, R. Striker,, and S. J. Hultgren. 1992. Adhesin presentation in bacteria requires molecular chaperones and ushers. Infect. Immun. 60: 4445 4451.
70. Jones, C. H.,, J. S. Pinkner,, A. V. Nicholes,, L. N. Slonim,, S. N. Abraham,, and S. J. Hultgren. 1993. FimC is a periplasmic PapD-like chaperone that directs assembly of type 1 pili in bacteria. Proc. Natl. Acad. Sci. USA 90: 8397 8401.
71. Jones, C. H.,, J. S. Pinkner,, R. Roth,, J. Heuser,, A. V. Nicholes,, S. N. Abraham,, and S. J. Hultgren. 1995. FimH adhesin of type 1 pili is assembled into a fibrillar tip structure in the Enterobacteriaceae. Proc. Natl. Acad. Sci. USA 92: 2081 2085.
72. Kachar, B.,, F. Liang,, U. Lins,, M. Ding,, X.-R. Wu,, D. Stoffler,, U. Aebi,, and T.-T. Sun. 1999. Three-dimensional analysis of the 16 nm urothelial plaque particle: luminal surface exposure, preferential head-to-head interaction, and hinge formation. J. Mol. Biol. 285: 595 608.
73. Kaper, J. B.,, and J. Hacker. 1999. Pathogenicity Islands and Other Mobile Virulence Elements. ASM Press, Washington, D.C.
74. Kawula, T. H.,, and P. E. Orndorff. 1991. Rapid site-specific DNA inversion in Escherichia coli mutants lacking the histonelike protein H-NS. J. Bacteriol. 173: 4116 4123.
75. Keith, B. R.,, L. Maurer,, P. A. Spears,, and P. E. Orndorff. 1986. Receptor-binding function of type 1 pili effects bladder colonization by a clinical isolate of Escherichia coli. Infect. Immun. 53: 693 696.
76. Kimura, M. 1983. The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge, United Kingdom.
77. Klemm, P. 1984. The fimA gene encoding the type-1 fimbrial subunit of Escherichia coli. Nucleotide sequence and primary structure of the proteins. Eur. J. Biochem. 143: 395 399.
78. Klemm, P. 1986. Two regulatory fim genes, fimB and fimE, control the phase variation of type 1 fimbriae in Escherichia coli. EMBO J. 5: 1389 1393.
79. Klemm, P. 1992. FimC, a chaperone-like periplasmic protein of Escherichia coli involved in biogenesis of type 1 fimbriae. Res. Microbiol. 143: 831 838.
80. Klemm, P. (ed.). 1994. Fimbriae. Adhesion, Genetics, Biogenesis, and Vaccines, CRC Press, Inc., Boca Raton, Fla.
81. Klemm, P.,, B. J. Jorgensen,, I. van Die,, H. de Ree,, and H. Bergmans. 1985. The fim genes responsible for synthesis of type 1 fimbriae in Escherichia coli: cloning and genetic organization. Mol. Gen. Genet. 199: 410 414.
82. Klemm, P.,, and G. Christiansen. 1987. Three fim genes required for the regulation of length and mediation of adhesion of Escherichia coli type 1 fimbriae. Mol. Gen. Genet. 208: 439 445.
83. Klemm, P.,, and K. A. Krogfelt,. 1994. Type 1 fimbriae of Escherichia coli, p. 9 26. In P. Klemm (ed.), Fimbriae: Adhesion, Genetics, Biogenesis, and Vaccines. CRC Press, Inc., Boca Raton, Fla.
84. Krallmann-Wenzel, U.,, M. Ott,, J. Hacker,, and G. Schmidt. 1989. Chromosomal mapping of genes encoding mannose-sensitive (type I) and mannose-resistant F8 (P) fimbriae of Escherichia coli O18:K5:H5. FEMS Microbiol. Lett. 58: 315 322.
85. Kreitman, M.,, and R. R. Hudson. 1991. Inferring the evolutionary histories of the Adh and Adh-dup loci in Drosophila melanogaster from patterns of polymorphism and divergence. Genetics 127: 565 582.
86. Krogfelt, K. A.,, and P. Klemm. 1988. Investigation of minor components of E. coli type 1 fimbriae: protein chemical and immunological aspects. Microb. Pathog. 4: 231 238.
87. Krogfelt, K. A.,, H. Bergmans,, and P. Klemm. 1990. Direct evidence that the FimH protein is the mannose-specific adhesin of Escherichia coli type 1 fimbriae. Infect. Immun. 58: 1995 1998.
88. Langermann, S.,, S. Palaszynski,, M. Barnhart,, G. Auguste,, J. S. Pinkner,, J. Burlein,, P. Barren,, S. Koenig,, S. Leath,, C. H. Jones,, and S. J. Hultgren. 1997. Prevention of mucosal Escherichia coli infection by FimH-adhesin-based systemic vaccination. Science 276: 607 611.
89. Langermann, S.,, R. Möllby,, J. E. Burlein,, S. R. Palaszynski,, C. G. Auguste,, A. DeFusco,, R. Strouse,, M. A. Schenerman,, S. J. Hultgren,, J. S. Pinkner,, J. Winberg,, L. Guldevall,, M. Söderhäll,, K. Ishikawa,, S. Normark,, and S. Koenig. 2000. Vaccination with FimH adhesin protects Cynomolgus monkeys from colonization and infection by uropathogenic Escherichia coli. J. Infect. Dis. 181: 774 778.
90. Leathart, J. B. S.,, and D. L. Gally. 1998. Regulation of type 1 fimbrial expression in uropathogenic Escherichia coli: heterogeneity of expression through sequence changes in the fim switch region. Mol. Microbiol. 28: 371 381.
91. Lim, J. K.,, N. W. Gunther IV,, H. Zhao,, D. E. Johnson,, S. K. Keay,, and H. L. T. Mobley. 1998. In vivo phase variation of Escherichia coli type 1 fimbrial genes in women with urinary tract infection. Infect. Immun. 66: 3303 3310.
92. Lowe, M. A.,, S. C. Holt,, and B. I. Eisenstein. 1987. Immuno-electron microscopic analysis of elongation of type 1 fimbriae in Escherichia coli. J. Bacteriol. 169: 157 163.
93. Manges, A. R.,, J. R. Johnson,, B. Foxman,, T. T. O’Bryan,, K. E. Fullerton,, and L. W. Riley. 2001. Widespread distribution of urinary tract infections caused by a multidrug-resistant Escherichia coli clonal group. N. Engl. J. Med. 345: 1007 1013.
94. Martinez, J. J.,, M. A. Mulvey,, J. D. Schilling,, J. S. Pinkner,, and S. J. Hultgren. 2000. Type 1 pilus-mediated bacterial invasion of bladder epithelial cells. EMBO J. 19: 28803 2812.
95. Maurer, L.,, and P. E. Orndorff. 1985. A new locus, pilE, required for the binding of type 1 piliated Escherichia coli to erythrocytes. FEMS Microbiol. Lett. 30: 59 66.
96. Maurer, L.,, and P. E. Orndorff. 1987. Identification and characterization of genes determining receptor binding and pilus length of Escherichia coli type 1 pili. J. Bacteriol. 169: 640 645.
97. May, A. K.,, C. A. Bloch,, R. G. Sawyer,, M. D. Spengler,, and T. L. Pruett. 1993. Enhanced virulence of Escherichia coli bearing a site-targeted mutation in the major structural subunit of type 1 fimbriae. Infect. Immun. 61: 1667 1673.
98. McClain, M. S.,, I. C. Blomfield,, and B. I. Eisenstein. 1991. Roles of fimB and fimE in site-specific DNA inversion associated with phase variation of type 1 fimbriae in Escherichia coli. J. Bacteriol. 173: 5308 5314.
99. McCormick, B. A.,, D. P. Franklin,, D. C. Laux,, and P. S. Cohen. 1989. Type 1 pili are not necessary for colonization of the streptomycin-treated mouse large intestine by type 1- piliated Escherichia coli F-18 and E. coli K-12. Infect. Immun. 57: 3022 3029.
100. McCormick, B. A.,, P. Klemm,, K. A. Krogfelt,, R. L. Burghoff,, L. Pallesen,, D. C. Laux,, and P. S. Cohen. 1993. Escherichia coli F-18 phase locked ‘on’ for expression of type 1 fimbriae is a poor colonizer of the streptomycin-treated mouse large intestine. Microb. Pathog. 14: 33 43.
101. Miller, J. H. 1972. Experiments in Molecular Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
102. Min, G.,, M. Stolz,, G. Zhou,, F. Liang,, P. Sebbel,, D. Stoffler,, R. Glockshuber,, T.-T. Sun,, U. Aebi,, and X.-P. Kong. 2002. Localization of Uroplakin Ia, the urothelial receptor for bacterial adhesin FimH, on the six inner domains of the 16 nm urothelial plaque particle. J. Mol. Biol. 317: 697 706.
103. Minion, F. C.,, S. N. Abraham,, E. H. Beachey,, and J. D. Goguen. 1986. The genetic determinant of adhesive function in type 1 fimbriae of Escherichia coli is distinct from the gene encoding the fimbrial subunit. J. Bacteriol. 165: 1033 1036.
104. Mitsui, Y.,, F. P. Dyer,, and R. Langridge. 1973. X-ray diffraction studies on bacterial pili. J. Mol. Biol. 79: 57 64.
105. Morschhäuser, J.,, V. Vetter,, L. Emödy,, and J. Hacker. 1994. Adhesin regulatory genes within large, unstable DNA regions of pathogenic Escherichia coli: cross-talk between different adhesin gene clusters. Mol. Microbiol. 11: 555 566.
106. Mulvey, M. A.,, Y. S. Lopez-Boado,, C. L. Wilson,, R. Roth,, W. C. Parks,, J. Heuser,, and S. J. Hultgren. 1998. Induction and evasion of host defenses by type 1-piliated uropathogenic Escherichia coli. Science 282: 1494 1497.
107. Mulvey, M. A.,, J. D. Schilling,, and S. J. Hultgren. 2001. Establishment of a persistent Escherichia coli reservoir during the acute phase of a bladder infection. Infect. Immun. 69: 4572 4579.
108. Neeser, J.-R.,, B. Koellreutter,, and P. Wuersch. 1986. Oligomannoside- type glycopeptides inhibiting adhesion of Escherichia coli strains mediated by type 1 pili: preparation of potent inhibitors from plant glycoproteins. Infect. Immun. 52: 428 436.
109. Nei, M.,, and T. Gojobori. 1986. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol. Biol. Evol. 3: 418 426.
110. Newman, J. V.,, R. L. Burghoff,, L. Pallesen,, K. A. Krogfelt,, C. S. Kristensen,, D. C. Laux,, and P. S. Cohen. 1994. Stimulation of Escherichia coli F-18Col - type-1 fimbriae synthesis by leuX. FEMS Microbiol. Lett. 122: 281 287.
111. Ofek, I.,, D. Mirelman,, and N. Sharon. 1977. Adherence of Escherichia coli to human mucosal cells mediated by mannose receptors. Nature 265: 623 625.
112. Ofek, I.,, and E. H. Beachey. 1978. Mannose binding and epithelial cell adherence of Escherichia coli. Infect. Immun. 22: 247 254.
113. Ofek, I.,, and N. Sharon,. 1986. Mannose specific bacterial surface lectins, p. 55 81. In D. Mirelman (ed.), Microbial Lectins and Agglutinins. Properties and Biological Activity. John Wiley & Sons, Inc., New York, N.Y.
114. Ofek, I.,, and N. Sharon. 1988. Lectinophagocytosis: a molecular mechanism of recognition between cell surface sugars and lecting in the phagocytosis of bacteria. Infect. Immun. 56: 539 547.
115. Ofek, I.,, D. L. Hasty,, and N. Sharon. 2003. Anti-adhesion therapy of bacterial infections: achievements, problems and prospects. FEMS Immunol. Med. Microbiol. 8: 181 191.
116. Ofek, I.,, D. L. Hasty,, and R. J. Doyle. 2003. Bacterial Adhesion to Animal Cells and Tissues. ASM Press, Washington, D.C.
117. Ofek, I.,, D. L. Hasty,, and R. J. Doyle,. 2003. Antiadhesion therapy, p. 157 176. In I. Ofek,, D. L. Hasty,, and R. J. Doyle (ed.), Bacterial Adhesion to Animal Cells and Tissues. ASM Press, Washington, D.C.
118. Olsen, P. B.,, and P. Klemm. 1994. Localization of promoters in the fim gene cluster and the effect of H-NS on the transcription of fimB and fimE. FEMS Microbiol. Lett. 116: 95 100.
119. Orndorff, P. E.,, and S. Falkow. 1984. Identification and characterization of a gene product that regulates type 1 piliation in Escherichia coli. J. Bacteriol. 160: 61 66.
120. Orndorff, P. E.,, and S. Falkow. 1984, Organization and expression of genes responsible for type 1 piliation in Escherichia coli. J. Bacteriol. 159: 736 744.
121. Ørskov, I.,, F. Ørskov,, and A. Birch-Andersen. 1980. Comparison of Escherichia coli fimbrial antigen F7 with type 1 fimbriae. Infect. Immun. 27: 657 666.
122. O’Toole, G. A.,, H. B. Kaplan,, and R. Kolter. 2000. Biofilm formation as microbial development. Annu. Rev. Microbiol. 54: 49 79.
123. Pouttu, R.,, T. Puustinen,, R. Virkola,, J. Hacker,, P. Klemm,, and T. K. Korhonen. 1999. Amino acid residue Ala-62 in the FimH fimbrial adhesin is critical for the adhesiveness of meningitis-associated Escherichia coli to collagens. Mol. Microbiol. 31: 1747 1757.
124. Pratt, L. A.,, and R. Kolter. 1998. Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type 1 pili. Mol. Microbiol. 30: 285 293.
125. Pulliam, H. R. 1988. Sources, sinks, and population regulation. Am. Nat. 132: 652 661.
126. Ritter, A.,, D. L. Gally,, P. B. Olsen,, U. Dobrindt,, A. Friedrich,, P. Klemm,, and J. Hacker. 1997. The Pai-associated leuX specific tRNA 5 Leu affects type 1 fimbriation in pathogenic Escherichia coli by control of FimB recombinase expression. Mol. Microbiol. 25: 871 882.
127. Rosenthal, L. 1943. Agglutinating properties of Escherichia coli. Agglutination of erythrocytes, leucocytes, thrombochtes, speermatozoa, spores of molds, and pollen by strains of E. coli. J. Bacteriol. 45: 545 550.
128. Salit, I. E.,, and E. C. Gotschlich. 1977. Haemagglutination by purified Escherichia coli pili. J. Exp. Med. 146: 1169 1181.
129. Salyers, A. A.,, and D. D. Whitt. 1994. Bacterial Pathogenesis. A Molecular Approach. ASM Press, Washington, D.C.
130. Schaeffer, A. J.,, W. R. Schwan,, S. J. Hultgren,, and J. L. Duncan. 1987. Relationship of type 1 pilus expression in Escherichia coli to ascending urinary tract infections in mice. Infect. Immun. 55: 373 380.
131. Schembri, M. A.,, L. Pallesen,, H. Connell,, D. L. Hasty,, and P. Klemm. 1996. Linker insertion analysis of the FimH adhesin of type 1 fimbriae in an Escherichia coli fimH-null background. FEMS Microbiol. Lett. 137: 257 263.
132. Schembri, M. A.,, E. V. Sokurenko,, and P. Klemm. 2000. Functional flexibility of the FimH adhesin: insights from a random mutant library. Infect. Immun. 68: 2638 2646.
133. Schembri, M. A.,, and P. Klemm. 2001. Biofilm formation in a hydrodynamic environment by novel FimH variants and ramifications for virulence. Infect. Immun. 69: 1322 1328.
134. Schembri, M. A.,, K. Kjaegaard,, and P. Klemm. 2003. Global gene expression in Escherichia coli biofilms. Mol. Microbiol. 48: 253 267.
135. Sokurenko, E. V.,, H. S. Courtney,, S. N. Abraham,, P. Klemm,, and D. L. Hasty. 1992. Functional heterogeneity of type 1 fimbriae of Escherichia coli. Infect. Immun. 60: 4709 4719.
136. Sokurenko, E. V.,, H. S. Courtney,, D. E. Ohman,, P. Klemm,, and D. L. Hasty. 1994. FimH family of type 1 fimbrial adhesins: functional heterogeneity due to minor sequence variations among fimH genes. J. Bacteriol. 176: 748 755.
137. Sokurenko, E. V.,, H. S. Courtney,, J. Maslow,, A. Siitonen,, and D. L. Hasty. 1995. Quantitative differences in adhesiveness of type 1 fimbriated Escherichia coli due to structural differences in fimH genes. J. Bacteriol. 177: 3680 3686.
138. Sokurenko, E. V.,, V. Chesnokova,, R. J. Doyle,, and D. L. Hasty. 1997. Diversity of the Escherichia coli type 1 fimbrial lectin. Differential binding to mannosides and uroepithelial cells. J. Biol. Chem. 272: 17880 17886.
139. Sokurenko, E. V.,, V. Chesnokova,, D. E. Dykhuizen,, I. Ofek,, X.-R. Wu,, K. A. Krogfelt,, C. Struve,, M. A. Shembri,, and D. L. Hasty. 1998. Pathogenic adaptation of Escherichia coli by natural variation of the FimH adhesin. Proc. Natl. Acad. Sci. USA 95: 8922 8926.
140. Sokurenko, E. V.,, D. L. Hasty,, and D. E. Dykhuizen. 1999. Pathoadaptive mutations: gene loss and vation in bacterial pathogens. Trends Microbiol. 7: 191 195.
141. Sokurenko, E. V.,, M. A. Schembri,, E. Trintchina,, K. Kjaergaard,, D. L. Hasty,, and P. Klemm. 2001. Valency conversion in the type 1 fimbrial adhesin of Escherichia coli. Mol. Microbiol. 41: 675 686.
142. Sokurenko, E. V.,, M. Feldgarden,, E. Trintchina,, S. J. Weissman,, S. Avagyan,, J. Johnson,, and D. E. Dykhuizen. 2004. Selection footprint in the FimH adhesin shows pathogenicity-adaptive niche differentiation in Escherichia coli. Mol. Biol. Evol. 21: 1373 1383.
143. Sussman, M. 1997. Escherichia coli. Mechanisms of Virulence. Cambridge University Press, Cambridge, United Kingdom.
144.. Tajima, F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphisms. Genetics 123: 585 595.
145. Thomas, W. E.,, E. Trintchina,, M. Forero,, V. Vogel,, and E. V. Sokurenko. 2002. Bacterial adhesion to target cells enhanced by shear force. Cell 109: 913 923.
146. Valenski, M.L.,, S.L. Harris,, P. A. Spears,, J. R. Horton,, and P. E. Orndorff. 2003. The product of the fimI gene is necessary for Escherichia coli type 1 pilus biosynthesis. J. Bacteriol. 185: 5007 5011.
147. Wu, X.-R.,, M. Manabe,, J. Yu,, and T.-T. Sun. 1990. Large scale purification and immunolocalization of bovine uroplakins I, II, and III. Molecular markers of urothelial differentiation. J. Biol. Chem. 265: 19170 19179.
148. Wu, X.-R.,, L.-H. Lin,, T. Walz,, M. Häner,, J. Yu,, U. Aebi,, and T.-T. Sun. 1994. Mammalian uroplakins: a group of highly conserved urothelial differentiation-related membrane proteins. J. Biol. Chem. 269: 13716 13724.
149. Wu, X.-R.,, T.-T. Sun,, and J. J. Medina. 1996. In vitro binding of type 1 fimbriated Escherichia coli to uroplakins Ia and Ib: relation to urinary tract infections. Proc. Natl. Acad. Sci. USA 93: 9630 9635.
150. Xia, Y.,, D. Gally,, K. Forsman-Semb,, and B. E. Uhlin. 2000. Regulatory cross-talk between adhesin operons in Escherichia coli: inhibition of type 1 fimbriae expression by the PapB protein. EMBO J. 19: 1450 1457.
151. Zhang, L. X.,, B. Foxman,, P. Tallman,, E. Claderar,, C. Le Bouguenec,, and C. F. Marrs. 1997. Distribution of drb genes coding for Dr binding adhesins among uropathogenic and fecal Escherichia coli isolates and identification of new subtypes. Infect. Immun. 65: 2011 2018.
152. Zhou, G.,, W.-J. Mo,, P. Sebbel,, G. Min,, T. A. Neubert,, R. Glockshuber,, X.-R. Wu,, T.-T. Sun,, and X.-P. Kong. 2001. Uroplakin Ia is the urothelial receptor for uropathogenic Escherichia coli: evidence from in vitro FimH binding. J. Cell Sci. 114: 4095 4103.
153. Ziebuhr, W.,, K. Ohlsen,, H. Karch,, T. Korhonen,, and J. Hacker. 1999. Evolution of bacterial pathogenesis. Cell. Mol. Life Sci. 56: 719 728.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error