1887

Chapter 6 : Sialylation of the Gram-Negative Bacterial Cell Surface

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Sialylation of the Gram-Negative Bacterial Cell Surface, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817619/9781555813239_Chap06-1.gif /docserver/preview/fulltext/10.1128/9781555817619/9781555813239_Chap06-2.gif

Abstract:

Sialic acids (NeuAc) and its derivatives are found on cell membranes and in body fluids in all mammals and many higher-order animals, as well as pathogenic microorganisms. Based on an understanding of the biosynthesis of sialic acid and the evolving elucidation of the genomes of multiple microbes, researchers have described at least four mechanisms of microbial surface sialylation. These include de novo synthesis, donor scavenging, trans-sialylation and precursor scavenging. To understand the role of sialic acids in pathogenesis, it is important to examine their role in eukaryotic systems. Sialic acid-dependent receptors play an important role in adhesion to mammalian cells. Two examples of the receptors, the selectin and sialoadhesin families, are discussed in this chapter. There is a correlation between sialic acid levels and the development of cancer. A tumor cell has an increased amount of sialylation and sialyltransferase activity. The biological effects of sialylation, which mediate antiphagocytosis, anticomplement activity, and protection against bactericidal killing, have the potential to act with sialic acid binding immunoglobulinlike lectins (siglecs) on the surface of hematopoietic and immune system cells. Many bacteria produce neuraminidases, which can modify the sialylation of microbial and human tissues. Bacterial biofilms and their role in pathogenicity have generated considerable interest because of their role in antimicrobial resistance and pathogenesis. Recent studies demonstrating the potential for cooperative behavior between bacteria suggest that in complex communities, the disadvantages of surface sialylation may be obviated by neuraminidase production by a neighboring microbial partner.

Citation: Apicella M, Jones P. 2005. Sialylation of the Gram-Negative Bacterial Cell Surface, p 73-86. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch6

Key Concept Ranking

Sialic Acids
0.57806945
Influenza C virus
0.4890539
Polysialic Acid
0.48899025
0.57806945
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

The nine-carbon structure of -acetylneuraminic acid. Natural substitutions of the basic structure result in over 40 different compounds. Recently, studies of unnatural substitutions have suggested possible innovative approaches to the treatment of a number of human diseases ( ).

Citation: Apicella M, Jones P. 2005. Sialylation of the Gram-Negative Bacterial Cell Surface, p 73-86. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Biosynthesis of sialic acid.

Citation: Apicella M, Jones P. 2005. Sialylation of the Gram-Negative Bacterial Cell Surface, p 73-86. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817619.chap6
1. Apicella, M. A.,, R. E. Mandrell,, M. Shero,, M. Wilson,, J. M. Griffiss,, G. F. Brooks,, C. Fenner,, J. F. Breen,, and P. A. Rice. 1990. Modification of sialic acid of Neisseria gonorrhoeae lipooligosaccharide epitope expression in human urethral exudates: an immunoelectron microscopic analysis. J. Infect. Dis. 162: 506 512.
2. Appelmelk, B.,, R. Negrini,, A. Moran,, and E. Kuipers. 1997. Molecular mimicry between Helicobacter pylori and the host. Trends Microbiol. 5: 70 73.
3. Aspinall, G. O.,, A. G. McDonald,, T. S. Raju,, H. Pang,, L. A. Kurjanczyk,, J. L. Penner,, and A. P. Moran. 1993. Chemical structure of the core region of Campylobacter jejuni serotype O:2 lipopolysaccharide. Eur. J. Biochem. 213: 1029 1037.
4. Basu, S. S.,, M. Basu,, Z. Li,, and S. Basu. 1996. Characterization of two glycolipid: alpha 2-3sialyltransferases, SAT-3 (CMP-NeuAc:nLcOse4Cer alpha 2-3sialyltransferase) and SAT-4 (CMP-NeuAc:GgOse4Cer alpha 2-3sialyltransferase), from human colon carcinoma (Colo 205) cell line. Biochemistry 35: 5166 5174.
5. Baum, L. G.,, and J. C. Paulson. 1990. Sialyloligosaccharides of the respiratory epithelium in the selection of human influenza virus receptor specificity. Acta Histochem. Suppl. 40: 35 38.
6. Bevilacqua, M.,, E. Butcher,, B. Furie,, M. Gallatin,, M. Gimbrone,, J. Harlan,, K. Kishimoto,, L. Lasky,, R. McEver,, J. Paulson,, S. Rosen,, B. Seed,, M. Siegalman,, T. Springer,, L. Stoolman,, T. Tedder,, A. Varki,, D. Wagner,, I. Weissman,, and G. Zimmerman. 1991. S electins: a family of adhesion receptors. Cell 67: 233.
7. Bitter-Suermann, D.,, and J. Roth. 1987. Monoclonal antibodies to polysialic acid reveal epitope sharing between invasive pathogenic bacteria, differentiating cells and tumor cells. Immunol. Res. 6: 225 237.
8. Bozue, J. A.,, M. V. Tullius,, J. Wang,, B. W. Gibson,, and R. S. Munson, Jr. 1999. Haemophilus ducreyi produces a novel sialyltransferase. Identification of the sialyltransferase gene and construction of mutants deficient in the production of the sialic acid-containing glycoform of the lipooligosaccharide. J. Biol. Chem. 274: 4106 4114.
9. Brennan, M. J.,, J. L. David,, J. G. Kenimer,, and C. R. Manclark. 1988. Lectin-like binding of pertussis toxin to a 165-kilodalton Chinese hamster ovary cell glycoprotein. J. Biol. Chem. 263: 4895 4899.
10. Brinkman-Van der Linden, E. C.,, E. R. Sjoberg,, L. R. Juneja,, P. R. Crocker,, N. Varki,, and A. Varki. 2000. Loss of Nglycolylneuraminic acid in human evolution. Implications for sialic acid recognition by siglecs. J. Biol. Chem. 275: 8633 8640.
11. Charter, N. W.,, L. K. Mahal,, D. E. Koshland, Jr., and C. R. Bertozzi. 2000. Biosynthetic incorporation of unnatural sialic acids into polysialic acid on neural cells. Glycobiology 10: 1049 1056.
12. Charter, N. W.,, L. K. Mahal,, D. E. Koshland, Jr., and C. R. Bertozzi. 2002. Differential effects of unnatural sialic acids on the polysialylation of the neural cell adhesion molecule and neuronal behavior. J. Biol. Chem. 277: 9255 9261.
13. Colli, W. 1993. trans-Sialidase: a unique enzyme activity discovered in the protozoan Trypanosoma cruzi. FASEB J. 7: 1257 1264.
14. Corrall, C. J.,, J. A. Winkelstein,, and E. R. Moxon. 1982. Participation of complement in host defense against encapsulated Haemophilus influenzae types a, c, and d. Infect. Immun. 35: 759 763.
15. Cross, G. A.,, and G. B. Takle. 1993. The surface transsialidase family of Trypanosoma cruzi. Annu. Rev. Microbiol. 47: 385 411.
16. Crosson, F. J., Jr., J. A. Winkelstein, and E. R. Moxon. 1976. Participation of complement in the nonimmune host defense against experimental Haemophilus influenzae type b septicemia and meningitis. Infect. Immun. 14: 882 887.
17. Datta, A. K.,, A. Sinha,, and J. C. Paulson. 1998. Mutation of the sialyltransferase S-sialyl motif alters the kinetics of the donor and acceptor substrates. J. Biol. Chem. 273: 9608 9614.
18. de la Paz, H.,, S. J. Cooke,, and J. E. Heckels. 1995. Effect of sialylation of lipopolysaccharide of Neisseria gonorrhoeae on recognition and complement-mediated killing by monoclonal antibodies directed against different outer-membrane antigens. Microbiology 141: 913 920.
19. Edwards, U.,, A. Muller,, S. Hammerschmidt,, R. Gerardy- Schahn,, and M. Frosch. 1994. Molecular analysis of the biosynthesis pathway of the alpha-2,8-polysialic acid capsule by Neisseria meningitidis serogroup B. Mol. Microbiol. 14: 141 149.
20. Elkins, C.,, N. H. Carbonetti,, V. A. Varela,, D. Stirewalt,, D. G. Klapper,, and P. F. Sparling. 1992. Antibodies to N-terminal peptides of gonococcal porin are bactericidal when gonococcal lipopolysaccharide is not sialylated. Mol. Microbiol. 6: 2617 2628.
21. Estabrook, M. M.,, J. M. Griffiss,, and G. A. Jarvis. 1997. Sialylation of Neisseria meningitidis lipooligosaccharide inhibits serum bactericidal activity by masking lacto- N-neotetraose. Infect. Immun. 65: 4436 4444.
22. Estabrook, M. M.,, D. Zhou,, and M. A. Apicella. 1998. Nonopsonic phagocytosis of group C Neisseria meningitidis by human neutrophils. Infect. Immun. 66: 1028 1036.
23. Fakih, M. G.,, T. F. Murphy,, M. A. Pattoli,, and C. S. Berenson. 1997. Specific binding of Haemophilus influenzae to minor gangliosides of human respiratory epithelial cells. Infect. Immun. 65: 1695 1700.
24. Fearon, D. T. 1978. Regulation by membrane sialic acid of beta1H-dependent decay-dissociation of amplification C3 convertase of the alternative complement pathway. Proc. Natl. Acad. Sci. USA 75: 1971 1975.
25. Fleischmann, R. D.,, M. D. Adams,, O. White,, R. A. Clayton,, E. F. Kirkness,, A. R. Kerlavage,, C. J. Bult,, J. F. Tomb,, B. A. Dougherty,, J. M. Merrick,, K. McKenney,, G. Sutton,, W. Fitzhugh,, C. Fields,, J. D. Gocayne,, J. Scott,, R. Shirley L.-I. Liu, A. Glodek, J. M. Kelley, J. F.Weidman, C. A. Phillips, T. Spriggs, E. Hedblom, M. D. Cotton, T. R. Utterback, M. C. Hanna, D. T. Nguyen, D. M. Saudek, R. C. Brandon, L. D. Fine, J. L. Fritchman, J. L. Furhmann, N. S. M. Geoghagen, C. L. Gnehm, L. A. McDonald, K. V. Small, and C. M. Fraser. 1995. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269: 496 512.
26. Ganguli, S.,, G. Zapata,, T. Wallis,, C. Reid,, G. Boulnois,, W. F. Vann,, and I. S. Roberts. 1994. Molecular cloning and analysis of genes for sialic acid synthesis in Neisseria meningitidis group B and purification of the meningococcal CMP-NeuNAc synthetase enzyme. J. Bacteriol. 176: 4583 4589.
27. Gilbert, M.,, J. R. Brisson,, M. F. Karwaski,, J. Michniewicz,, A. M. Cunningham,, Y. Wu,, N. M. Young,, and W. W. Wakarchuk. 2000. Biosynthesis of ganglioside mimics in Campylobacter jejuni OH4384. Identification of the glycosyltransferase genes, enzymatic synthesis of model compounds, and characterization of nanomole amounts by 600-mhz (1)H and (13)C NMR analysis. J. Biol. Chem. 275: 3896 3906.
28. Gilbert, M.,, D. Watson,, A.-M. Cunningham,, M. Jennings,, N. Young,, and W. Wakarchuk. 1996. Cloning of the lipooligosaccharide alpha-2,3-sialyltransferase from the bacterial pathogens Neisseria meningitidis and Neisseria gonorrhoeae. J. Biol. Chem. 273: 28271 28276.
29. Gilsdorf, J. R.,, M. Tucci,, and C. F. Marrs. 1996. Role of pili in Haemophilus influenzae adherence to, and internalization by, respiratory cells. Pediat. Res. 39: 343 348.
30. Greiner, L. L.,, H. Watanabe,, N. J. Phillips,, J. Shao,, A. Morgan,, A. Zaleski,, B. W. Gibson,, and M. A. Apicella. 2004. Nontypeable Haemophilus influenzae strain 2019 produces a biofilm containing N-acetylneuraminic acid that may mimic sialylated O-linked glycans. Infect. Immun. 72: 4249 4260.
31. Guerry, P.,, C. P. Ewing,, T. E. Hickey,, M. M. Prendergast,, and A. P. Moran. 2000. Sialylation of lipooligosaccharide cores affects immunogenicity and serum resistance of Campylobacter jejuni. Infect. Immun. 68: 6656 6662.
32. Haft, R. F.,, M. R. Wessels,, M. F. Mebane,, N. Conaty,, and C. E. Rubens. 1996. Characterization of cpsF and its product CMP- N-acetylneuraminic acid synthetase, a group B streptococcal enzyme that can function in K1 capsular polysaccharide biosynthesis in Escherichia coli. Mol. Microbiol. 19: 555 563.
33. Hall-Stoodley, L.,, and P. Stoodley. 2002. Developmental regulation of microbial biofilms. Curr. Opin. Biotechnol. 13: 228 233.
34. Hanisch, F. G.,, J. Hacker,, and H. Schroten. 1993. Specificity of S fimbriae on recombinant Escherichia coli: preferential binding to gangliosides expressing NeuGc alpha (2-3)Gal and NeuAc alpha (2-8)NeuAc. Infect. Immun. 61: 2108 2115.
35. Higa, H. H.,, G. N. Rogers,, and J. C. Paulson. 1985. Influenza virus hemagglutinins differentiate between receptor determinants bearing N-acetyl-, N-glycolyl-, and N,Odiacetylneuraminic acids. Virology 144: 279 282.
36. Hirmo, S.,, S. Kelm,, R. Schauer,, B. Nilsson,, and T. Wadstrom. 1996. Adhesion of Helicobacter pylori strains to alpha-2,3- linked sialic acids. Glycoconj. J. 13: 1005 1011.
37. Hirst, G. K. 1941. Agglutinatin of red cells by allantonic fluid of chick embryos infected with influenzae virus. Science 94: 22 23.
38. Hood, D. W.,, A. D. Cox,, M. Gilbert,, K. Makepeace,, S. Walsh,, M. E. Deadman,, A. Cody,, A. Martin,, M. Mansson,, E. K. Schweda,, J. R. Brisson,, J. C. Richards,, E. R. Moxon,, and W. W. Wakarchuk. 2001. Identification of a lipopolysaccharide alpha-2,3-sialyltransferase from Haemophilus influenzae. Mol. Microbiol. 39: 341 350.
39. Hood, D. W.,, K. Makepeace,, M. E. Deadman,, R. F. Rest,, P. Thibault,, A. Martin,, J. C. Richards,, and E. R. Moxon. 1999. Sialic acid in the lipopolysaccharide of Haemophilus influenzae: strain distribution, influence on serum resistance and structural characterization. Mol. Microbiol. 33: 679 692.
40. Imai, Y.,, L. A. Lasky,, and S. D. Rosen. 1993. Sulphation requirement for GlyCAM-1, an endothelial ligand for L-selectin. Nature 361: 555 557.
41. Jarvis, G. A.,, and N. A. Vedros. 1987. Sialic acid of group B Neisseria meningitidis regulates alternative complement pathway activation. Infect. Immun. 55: 174 180.
42. Jones, C.,, M. Virji,, and P. R. Crocker. 2003. Recognition of sialylated meningococcal lipopolysaccharide by siglecs expressed on myeloid cells leads to enhanced bacterial uptake. Mol. Microbiol. 49: 1213 1225.
43. Jones, P. A.,, N. M. Samuels,, N. J. Phillips,, R. S. Munson, Jr., J. A. Bozue, J. A. Arseneau, W. A. Nichols, A. Zaleski, B. W. Gibson, and M. A. Apicella. 2002. Haemophilus influenzae type b strain A2 has multiple sialyltransferases involved in lipooligosaccharide sialylation. J. Biol. Chem. 277: 14598 14611.
44. Kahler, C. M.,, L. E. Martin,, G. C. Shih,, M. M. Rahman,, R. W. Carlson,, and D. S. Stephens. 1998. The (α2→8)-linked polysialic acid capsule and lipooligosaccharide structure both contribute to the ability of serogroup B Neisseria meningitidis to resist the bactericidal activity of normal human serum. Infect. Immun. 66: 5939 5947.
45. Kasper, D. J.,, J. L. Winkelhake,, B. L. Brandt,, and M. S. Artenstein. 1973. Antigenic specificity of bactericidal antibodies in antisera to Neisseria meningitidis. J. Infect. Dis. 127: 378 387.
46. Kean, E. L. 1991. Sialic acid activation. Glycobiology 1: 441 447.
47. Kelm, S.,, and R. Schauer. 1997. Sialic acids in molecular and cellular interactions. Int. Rev. Cytol. 175: 137 240.
48. Kelm, S.,, R. Schauer,, and P. R. Crocker. 1996. The sialoadhesins— a family of sialic acid-dependent cellular recognition molecules within the immunoglobulin superfamily. Glycoconj. J. 13: 913 926.
49. Kim, J. J.,, D. Zhou,, R. E. Mandrell,, and J. M. Griffiss. 1992. Effect of exogenous sialylation of the lipooligosaccharide of Neisseria gonorrhoeae on opsonophagocytosis. Infect. Immun. 60: 4439 4442.
50. Koenig, A.,, R. Jain,, R. Vig,, K. E. Norgard-Sumnicht,, K. L. Matta,, and A. Varki. 1997. Selectin inhibition: synthesis and evaluation of novel sialylated, sulfated and fucosylated oligosaccharides, including the major capping group of Gly- CAM-1. Glycobiology 7: 79 93.
51. Krivan, H. C.,, D. D. Roberts,, and V. Ginsburg. 1988. Many pulmonary pathogenic bacteria bind specifically to the carbohydrate sequence GalNAc beta 1-4Gal found in some glycolipids. Proc. Natl. Acad. Sci. USA 85: 6157 6161.
52. Livingston, B. D.,, and J. C. Paulson. 1993. Polymerase chain reaction cloning of a developmentally regulated member of the sialyltransferase gene family. J. Biol. Chem. 268: 11504 11507.
53. Luchansky, S. J.,, S. Goon,, and C. R. Bertozzi. 2004. Expanding the diversity of unnatural cell-surface sialic acids. Chembiochem 5: 371 374.
54. Mandrell, R. E. 1992. Further antigenic similarities of Neisseria gonorrhoeae lipooligosaccharides and human glycosphingolipids. Infect. Immun. 60: 3017 3020.
55. Mandrell, R. E.,, and M. A. Apicella. 1993. Lipo-oligosaccharides (LOS) of mucosal pathogens: molecular mimicry and host-modification of LOS. Immunobiology 187: 382 402.
56. Mandrell, R. E.,, J. M. Griffiss,, H. Smith,, and J. A. Cole. 1993. Distribution of a lipooligosaccharide-specific sialytransferase in pathogenic and non-pathogenic Neisseria. Microb. Pathog. 14: 315 327.
57. Mandrell, R. E.,, J. J. Kim,, C. M. John,, B. W. Gibson,, J. V. Sugal,, M. A. Apicella,, J. M. Griffiss,, and R. Yamasaki. 1991. endogenous sialylation of the lipooligosaccharides of Neisseria meningitidis. J. Bacteriol. 173: 2823 2832.
58. Mandrell, R. E.,, A. J. Lesse,, J. V. Sugai,, M. Shero,, J. M. Griffiss,, J. A. Cole,, N. J. Parsons,, H. Smith,, S. A. Morse,, and M. A. Apicella. 1990. In vitro and in vivo modification of Neisseria gonorrhoeae lipooligosaccharide epitope structure by sialylation. J. Exp. Med. 171: 1649 1664.
59. Mandrell, R. E.,, R. McLaughlin,, Y. Aba Kwaik,, A. Lesse,, R. Yamasaki,, B. Gibson,, S. M. Spinola,, and M. A. Apicella. 1992. Lipooligosaccharides (LOS) of some Haemophilus species mimic human glycosphingolipids, and some LOS are sialylated. Infect. Immun. 60: 1322 1328.
60.Reference deleted.
61. Martinez, J.,, S. Steenbergen,, and E. Vimr. 1995. Derived structure of the putative sialic acid transporter from Escherichia coli predicts a novel sugar permease domain. J. Bacteriol. 177: 6005 6010.
62. Masoud, H.,, E. Moxon,, A. Martin,, D. Krajcarski,, and J. Richards. 1997. Structure of the variable and conserved lipopolysaccharide oligosaccharide epitopes expressed by Haemophilus influenzae serotype b strain Eagan. Biochemistry 36: 2091 2103.
63. McQuillen, D. P.,, S. Gulati,, S. Ram,, A. K. Turner,, D. B. Jani,, T. C. Heeren,, and P. A. Rice. 1999. Complement processing and immunoglobulin binding to Neisseria gonorrhoeae determined in vitro simulates in vivo effects. J. Infect. Dis. 179: 124 135.
64. Melaugh, W.,, N. J. Phillips,, A. A. Campagnari,, R. Karalus,, and B. W. Gibson. 1992. Partial characterization of the major lipooligosaccharide from a strain of Haemophilus ducreyi, the causative agent of chancroid, a genital ulcer disease. J. Biol. Chem. 267: 13434 13439.
65. Melaugh, W.,, N. J. Phillips,, A. A. Campagnari,, M. V. Tullius,, and B. W. Gibson. 1994. Structure of the major oligosaccharide from the lipooligosaccharide of Haemophilus ducreyi strain 35000 and evidence for additional glycoforms. Biochemistry 33: 13070 13078.
66. Moran, A. P. 1999. Helicobacter pylori lipopolysaccharidemediated gastric and extragastric pathology. J. Physiol. Pharmacol. 50: 787 805.
67. Moran, A. P.,, M. M. Prendergast,, and B. J. Appelmelk. 1996. Molecular mimicry of host structures by bacterial lipopolysaccharides and its contribution to disease. FEMS Immunol. Med. Microbiol. 16: 105 115.
68. Moran, A. P.,, U. Zahringer,, U. Seydel,, D. Scholz,, P. Stutz,, and E. T. Rietschel. 1991. Structural analysis of the lipid A component of Campylobacter jejuni CCUG 10936 (serotype O:2) lipopolysaccharide. Eur. J. Biochem. 198: 459 469.
69. Muller-Eberhard, H. J. 1988. The molecular basis of target cell killing by human lymphocytes and of killer cell selfprotection. Immunol. Rev. 103: 87 98.
70. Murphy, T. F.,, and C. Kirkham. 2002. Biofilm formation by nontypeable Haemophilus influenzae: strain variability, outer membrane antigen expression and role of pili. BMC Microbiol. 2: 7.
71. Nairn, C. A.,, J. A. Cole,, P. V. Patel,, N. J. Parsons,, J. E. Fox,, and H. Smith. 1988. Cytidine 5′-monophospho- N acetylneuraminic acid or a related compound is the low Mr factor from human red blood cells which induces gonococccal resistance to killing by human serum. J. Gen. Microbiol. 134: 3295 3306.
72. Narayanan, S. 1994. Sialic acid as a tumor marker. Ann. Clin. Lab. Sci. 24: 376 384.
73. Pangburn, M. K.,, and H. J. Muller-Eberhard. 1978. Complement C3 convertase: cell surface restriction of beta1H control and generation of restriction on neuraminidase-treated cells. Proc. Natl. Acad. Sci. USA 75: 2416 2420.
74. Parkkinen, J.,, G. N. Rogers,, T. Korhonen,, W. Dahr,, and J. Finne. 1986. Identification of the O-linked sialyloligosaccharides of glycophorin A as the erythrocyte receptors for S-fimbriated Escherichia coli. Infect. Immun. 54: 37 42.
75. Parsons, N. J.,, J. R. Andrade,, P. V. Patel,, J. A. Cole,, and H. Smith. 1989. Sialylation of lipopolysaccharide and loss of absorption of bactericidal antibody during conversion of gonococci to serum resistance by cytidine 5′-monophospho- N-acetyl neuraminic acid. Microb. Pathog. 7: 63 72.
76. Parsons, N. J.,, A. A. Kwaasi,, P. V. Patel,, C. A. Nairn,, and H. Smith. 1986. A determinant of resistance of Neisseria gonorrhoeae to killing by human phagocytes: an outer membrane lipoprotein of about 20 kDa with a high content of glutamic acid. J. Gen. Microbiol. 132: 3277 3287.
77. Patel, P. V.,, P. M. Martin,, E. L. Tan,, C. A. Nairn,, N. J. Parsons,, M. Goldner,, and H. Smith. 1988. Protein changes associated with induced resistance of Neisseria gonorrhoeae to killing by human serum are relatively minor. J. Gen. Microbiol. 134: 499 507.
78. Peltola, V. T.,, and J. A. McCullers. 2004. Respiratory viruses predisposing to bacterial infections: role of neuraminidase. Pediatr. Infect. Dis. J. 23: S87 S97.
79. Pereira-Chioccola, V. L.,, and S. Schenkman. 1999. Biological role of Trypanosoma cruzi trans-sialidase. Biochem. Soc. Trans. 27: 516 518.
80. Phillips, N. J.,, T. J. Miller,, J. J. Engstrom,, W. Melaugh,, R. McLaughlin,, M. A. Apicella,, and B. W. Gibson. 2000. Characterization of chimeric lipopolysaccharides from Escherichia coli strain JM109 transformed with lipooligosaccharide synthesis genes ( lsg) from Haemophilus influenzae. J. Biol. Chem. 275: 4747 4758.
81. Prendergast, M. M.,, A. J. Lastovica,, and A. P. Moran. 1998. Lipopolysaccharides from Campylobacter jejuni O:41 strains associated with Guillain-Barré syndrome exhibit mimicry of GM1 ganglioside. Infect. Immun. 66: 3649 3655.
82. Preston, A.,, R. E. Mandrell,, B. W. Gibson,, and M. A. Apicella. 1996. The lipooligosaccharides of pathogenic gramnegative bacteria. Crit. Rev. Microbiol. 22: 139 180.
83. Ram, S.,, D. P. McQuillen,, S. Gulati,, C. Elkins,, M. K. Pangburn,, and P. A. Rice. 1998. Binding of complement factor H to loop 5 of porin protein 1A: a molecular mechanism of serum resistance of nonsialylated Neisseria gonorrhoeae. J. Exp. Med. 188: 671 680.
84. Ram, S.,, A. K. Sharma,, S. D. Simpson,, S. Gulati,, D. P. McQuillen,, M. K. Pangburn,, and P. A. Rice. 1998. A novel sialic acid binding site on factor H mediates serum resistance of sialylated Neisseria gonorrhoeae. J. Exp. Med. 187: 743 752.
85. Rest, R. F.,, and J. V. Frangipane. 1992. Growth of Neisseria gonorrhoeae in CMP- N-acetylneuraminic acid inhibits nonopsonic (opacity-associated outer membrane proteinmediated) interactions with human neutrophils. Infect. Immun. 60: 989 997.
86. Rogers, G. N.,, and B. L. D’Souza. 1989. Receptor binding properties of human and animal H1 influenza virus isolates. Virology 173: 317 322.
87. Roth, J.,, D. J. Taatjes,, D. Bitter-Suermann,, and J. Finne. 1987. Polysialic acid units are spatially and temporally expressed in developing postnatal rat kidney. Proc. Natl. Acad. Sci. USA 84: 1969 1973.
88. Saxon, E.,, S. J. Luchansky,, H. C. Hang,, C. Yu,, S. C. Lee,, and C. R. Bertozzi. 2002. Investigating cellular metabolism of synthetic azidosugars with the Staudinger ligation. J. Am. Chem. Soc. 124: 14893 14902.
89. Schauer, R. 1985. Sialic acids and their role as biological masks. Trends Biochem. Sci. 10: 357 360.
90. Schauer, R.,, S. Kelm,, G. Reuter,, P. Roggentin,, and L. Shaw. 1995. Biochemistry and role of sialic acids, p. 7 67. In A. Rosenberg (ed.), Biology of the Sialic Acids. Plenum Press, New York, N.Y..
91. Schenkman, S.,, D. Eichinger,, M. E. Pereira,, and V. Nussenzweig. 1994. Structural and functional properties of Trypanosoma trans-sialidase. Annu. Rev. Microbiol. 48: 499 523.
92. Schmoll, T.,, H. Hoschutzky,, J. Morschhauser,, F. Lottspeich,, K. Jann,, and J. Hacker. 1989. Analysis of genes coding for the sialic acid-binding adhesin and two other minor fimbrial subunits of the S-fimbrial adhesin determinant of Escherichia coli. Mol. Microbiol. 3: 1735 1744.
93. Schroten, H.,, R. Plogmann,, F. G. Hanisch,, J. Hacker,, R. Nobis- Bosch,, and V. Wahn. 1993. Inhibition of adhesion of S-fimbriated E. coli to buccal epithelial cells by human skim milk is predominantly mediated by mucins and depends on the period of lactation. Acta Paediatr. 82: 6 11.
94. Shakhnovich, E. A.,, S. J. King,, and J. N. Weiser. 2002. Neuraminidase expressed by Streptococcus pneumoniae desialylates the lipopolysaccharide of Neisseria meningitidis and Haemophilus influenzae: a paradigm for interbacterial competition among pathogens of the human respiratory tract. Infect. Immun. 70: 7161 7164.
95. Shi, W. X.,, R. Chammas,, N. M. Varki,, L. Powell,, and A. Varki. 1996. Sialic acid 9-O-acetylation on murine erythroleukemia cells affects complement activation, binding to Itype lectins, and tissue homing. J. Biol. Chem. 271: 31526 31532.
96.Reference deleted.
97. Sillanaukee, P.,, M. Ponnio,, and I. P. Jaaskelainen. 1999. Occurrence of sialic acids in healthy humans and different disorders. Eur. J. Clin. Investig. 29: 413 425.
98. Smith, H.,, J. A. Cole,, and N. J. Parsons. 1992. The sialylation of gonococcal lipopolysaccharide by host factors: a major impact on pathogenicity. FEMS Microbiol. Lett. 100: 287 292.
99. Suzuki, H.,, S. Eiumtrakul,, T. Ariya,, J. Supawadee,, N. Maneekarn,, M. Tanaka,, M. Ueda,, K. Kadoi,, and S. Takahashi. 1997. Antigenic analysis of influenza viruses isolated in Thailand between 1991 and 1994. New Microbiol. 20: 207 214.
100. Swords, W. E.,, M. L. Moore,, L. Godzicki,, G. Bukofzer,, M. J. Mitten,, and J. VonCannon. 2004. Sialylation of lipooligosaccharides promotes biofilm formation by nontypeable Haemophilus influenzae. Infect. Immun. 72: 106 113.
101. Tomlinson, S.,, L. C. Pontes de Carvalho,, F. Vandekerckhove,, and V. Nussenzweig. 1994. Role of sialic acid in the resistance of Trypanosoma cruzi trypomastigotes to complement. J. Immunol. 153: 3141 3147.
102. Traving, C.,, and R. Schauer. 1998. Structure, function and metabolism of sialic acids. Cell. Mol. Life Sci. 54: 1330 1349.
103. Tsuji, S. 1996. Molecular cloning and functional analysis of sialyltransferases. J. Biochem. (Tokyo) 120: 1 13.
104. Tullius, M. V.,, R. S. Munson, Jr., J. Wang, and B. W. Gibson. 1996. Purification, cloning, and expression of a cytidine 5′- monophosphate N-acetylneuraminic acid synthetase from Haemophilus ducreyi. J. Biol. Chem. 271: 15373 15380.
105. van Alphen, L.,, L. Geelen-van den Broek,, L. Blaas,, M. van Ham,, and J. Dankert. 1991. Blocking of fimbria-mediated adherence of Haemophilus influenzae by sialyl gangliosides. Infect. Immun. 59: 4473 4477.
106. van Putten, J. P.,, H. U. Grassme,, B. D. Robertson,, and E. T. Schwan. 1995. Function of lipopolysaccharide in the invasion of Neisseria gonorrhoeae into human mucosal cells. Prog. Clin. Biol. Res. 392: 49 58.
107. van Putten, J. P. M.,, T. D. Duensing,, and J. Carlson. 1998. Gonococcal invasion of epithelial cells driven by P.IA, a bacterial ion channel with GTP binding properties. J. Exp. Med. 188: 941 952.
108. Varki, A. 2001. N-Glycolylneuraminic acid deficiency in humans. Biochimie 83: 615 622.
109. Varki, A. 1997. Selectin ligands: will the real ones please stand up? J. Clin. Investig. 100: S31 S35.
110. Varki, A. 1997. Sialic acids as ligands in recognition phenomena. FASEB J. 11: 248 255.
111. Vik, D. P.,, P. Munoz-Canoves,, D. D. Chaplin,, and B. F. Tack. 1990. Factor H. Curr. Top. Microbiol. Immunol. 153: 147 162.
112. Vimr, E.,, and C. Lichtensteiger. 2002. To sialylate, or not to sialylate: that is the question. Trends Microbiol. 10: 254 257.
113. Vimr, E. R.,, R. Bergstrom,, S. M. Steenbergen,, G. Boulnois,, and I. Roberts. 1992. Homology among Escherichia coli K1 and K92 polysialytransferases. J. Bacteriol. 174: 5127 5131.
114. Virji, M.,, J. N. Weiser,, A. A. Lindberg,, and E. R. Moxon. 1990. Antigenic similarities in lipopolysaccharides of Haemophilus and Neisseria and expression of a diagalacatoside structure also present on human cells. Microb. Pathog. 9: 441 450.
115. Vogel, U.,, A. Weinberger,, R. Frank,, A. Muller,, J. Kohl,, J. P. Atkinson,, and M. Frosch. 1997. Complement factor C3 deposition and serum resistance in isogenic capsule and lipooligosaccharide sialic acid mutants of serogroup B Neisseria meningitidis. Infect. Immun. 65: 4022 4029.
116. Wakarchuk, W. W.,, M. Gilbert,, A. Martin,, Y. Wu,, J. R. Brisson,, P. Thibault,, and J. C. Richards. 1998. Structure of an alpha-2,6-sialylated lipooligosaccharide from Neisseria meningitidis immunotype L1. Eur. J. Biochem. 254: 626 633.
117. Ward, M. E.,, P. J. Watt,, and A. A. Glynn. 1970. Gonococci in urethral exudates possess a virulence factor lost on subculture. Nature 227: 382 384.
118. Warren, L.,, J. P. Fuhrer,, and C. A. Buck. 1972. Surface glycoproteins of normal and transformed cells: a difference determined by sialic acid and a growth-dependent sialyl transferase. Proc. Natl. Acad. Sci. USA 69: 1838 1842.
119. Weis, W.,, J. H. Brown,, S. Cusack,, J. C. Paulson,, J. J. Skehel,, and D. C. Wiley. 1988. Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid. Nature 333: 426 431.
120. Wetzler, L. M.,, K. Barry,, M. S. Blake,, and E. C. Gotschlich. 1992. Gonococcal lipooligosaccharide sialylation prevents complement-dependent killing by immune sera. Infect. Immun. 60: 39 43.
121. Winkelstein, J. A.,, and E. R. Moxon. 1992. The role of complement in the host’s defense against Haemophilus influenzae. J. Infect. Dis. 165( Suppl. 1): S62 S65.
122. Yamamoto, T.,, M. Nakashizuka,, H. Kodama,, Y. Kajihara,, and I. Terada. 1996. Purification and characterization of a marine bacterial beta-galactoside alpha-2,6-sialyltransferase from Photobacterium damsela JT0160. J. Biochem. (Tokyo) 120: 104 110.
123. Yamamoto, T.,, M. Nakashizuka,, and I. Terada. 1998. Cloning and expression of a marine bacterial beta-galactoside alpha-2,6-sialyltransferase gene from Photobacterium damsela JT0160. J. Biochem. (Tokyo) 123: 94 100.
124. Yogeeswaran, G.,, and P. L. Salk. 1981. Metastatic potential is positively correlated with cell surface sialylation of cultured murine tumor cell lines. Science 212: 1514 1516.
125. Zapata, G.,, W. F. Vann,, W. Aaronson,, M. S. Lewis,, and M. Moos. 1989. Sequence of the cloned Escherichia coli K1 CMP- N-acetylneuraminic acid synthetase gene. J. Biol. Chem. 264: 14769 14774.
126. Zwahlen, A.,, J. A. Winkelstein,, and E. R. Moxon. 1983. Participation of complement in host defense against capsuledeficient Haemophilus influenzae. Infect. Immun. 42: 708 715.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error