Chapter 9 : Immunoglobulin A1 Proteases of Pathogenic and Commensal Bacteria of the Respiratory Tract

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Immunoglobulin A1 Proteases of Pathogenic and Commensal Bacteria of the Respiratory Tract, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817619/9781555813239_Chap09-1.gif /docserver/preview/fulltext/10.1128/9781555817619/9781555813239_Chap09-2.gif


The three principal causes of bacterial meningitis, , , and , produce an IgA1 protease. In addition, IgA1 proteases are produced by two urogenital pathogens, five species of commensal gram-positive cocci found in the pharynx and oral cavity, , and all human-associated species of the genera and . In accordance with the substrate specificity of IgA1 proteases, humans and hominoid primates are the exclusive hosts of the bacteria that produce these enzymes. This chapter presents the hypothesis that invasive infection in occasional individuals is a result of nonsynchronized induction of the two types of antibodies by successive encounters with two different microorganisms: (i) colonization in the gut or upper respiratory tract with bacteria expressing surface epitopes similar or identical to those of the respective pathogen (e.g., K100 in the case of type b, and K1 or in the case of group B), and (ii) subsequent colonization with the actual pathogen. As a result of the prior colonization with a cross-reactive microorganism, the pathogen encounters preexisting IgA1 antibodies to its surface epitopes but no antibodies that will neutralize its IgA1 protease. IgA1s of humans and hominoid primates were the only known substrates of IgA1 proteases until recently. Now other permissive substrates have been revealed. Most of these are proteins of immunological relevance, but for some of the substrates, their accessibility to IgA1 protease in vivo is a matter of speculation.

Citation: Kilian M, Reinholdt J. 2005. Immunoglobulin A1 Proteases of Pathogenic and Commensal Bacteria of the Respiratory Tract, p 119-129. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch9

Key Concept Ranking

Tumor Necrosis Factor alpha
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Sites of IgA1 protease-induced cleavage within the hinge region of human IgA. Note that strains of and may cleave either a Pro-Ser peptide bond (type 1 protease) or a Pro-Thr peptide bond (type 2 protease). The IgA protease cleaves both IgA1 and the IgA2 allotype A2m( ), as indicated by the arrow. The shaded circles indicate carbohydrate side chains in the IgA1 hinge region, those that are hatched being variably present in IgA1 molecules. Species indicated by an asterisk show variable IgA1 protease activity.

Citation: Kilian M, Reinholdt J. 2005. Immunoglobulin A1 Proteases of Pathogenic and Commensal Bacteria of the Respiratory Tract, p 119-129. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Phylogeny of IgA1 protease and paralogous genes of (a) and and (b). Note that the strain Rd gene has a mutation resulting in a stop codon in the middle of the gene. The sequences from (AJ001739 and AJ001740) are 578-bp fragments reminiscent of the /gene family (not shown).

Citation: Kilian M, Reinholdt J. 2005. Immunoglobulin A1 Proteases of Pathogenic and Commensal Bacteria of the Respiratory Tract, p 119-129. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Hypothetical model for induction of susceptibility to invasive infection with IgA1 protease-producing pathogens. (A) Colonization with a nonpathogen with a cross-reactive surface antigen, resulting in the induction of IgA1 antibodies. (B) Colonization with an IgA1 protease-producing pathogen, resulting in elimination of IgA1-mediated protection and blockage of intact antibodies.

Citation: Kilian M, Reinholdt J. 2005. Immunoglobulin A1 Proteases of Pathogenic and Commensal Bacteria of the Respiratory Tract, p 119-129. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Ahl, T.,, and J. Reinholdt. 1991. Detection of immunoglobulin A1 protease-induced Fab alpha fragments on dental plaque bacteria. Infect. Immun. 59:563569.
2. Ayala, B. P.,, B. Vasquez,, S. Clary,, J. A. Tainer,, K. Rodland,, and M. So. 2001. The pilus-induced Ca2+ flux triggers lysosome exocytosis and increases the amount of Lamp1 accessible to Neisseria IgA1 protease. Cell. Microbiol. 3:265275.
3. Batten, M. R.,, B. W. Senior,, M. Kilian,, and J. M. Woof. 2003. Amino acid sequence requirements in the hinge of human immunoglobulin A1 (IgA1) for cleavage by streptopcoccal IgA1 proteases. Infect. Immun. 71:14621469.
4. Beck, S. C.,, and T. F. Meyer. 2000. IgA1 protease from Neisseria gonorrhoeae inhibits TNFalpha-mediated apoptosis of human monocytic cells. FEBS Lett. 472:287292.
5. Bergé, M.,, P. Garcia,, F. Iannelli,, M. F. Prere,, C. Granadel,, A. Polissi,, and J. P. Claverys. 2001. The puzzle of zmpB and extensive chain formation, autolysis defect and non-translocation of choline-binding proteins in Streptococcus pneumoniae. Mol. Microbiol. 39:16511660.
6. Binscheck, T.,, F. Bartels,, H. Bergel,, H. Bigalke,, S. Yamasaki,, T. Hayashi,, H. Niemann,, and J. Pohlner. 1995. IgA protease from Neisseria gonorrhoeae inhibits exocytosis in bovine chromaffin cells like tetanus toxin. J. Biol. Chem. 270:17701774.
7. Blue, C. E.,, G. K. Paterson,, A. R. Kerr,, M. Bergé,, J. P. Claverys,, and T. J. Mitchell. 2003. ZmpB, a novel virulence factor of Streptococcus pneumoniae that induces tumor necrosis factor alpha production in the respiratory tract. Infect. Immun. 71:49254935.
8. Brooks, G. F.,, C. J. Lammel,, M. S. Blake,, B. Kusecek,, and M. Achtman. 1992. Antibodies against IgA1 protease are stimulated both by clinical disease and asymptomatic carriage of serogroup A Neisseria meningitidis. J. Infect. Dis. 166:13161321.
9. Chiavolini, D.,, G. Memmi,, T. Maggi,, F. Iannelli,, G. Pozzi,, M. R. Oggioni. 2003. The three extra-cellular zinc metalloproteinases of Streptococcus pneumoniae have a different impact on virulence in mice. BMC Microbiol. 3:14.
10. Chintalacharuvu, K. R.,, P. D. Chuang,, A. Dragoman,, C. Z. Fernandez,, J. Qiu,, A. G. Plaut,, K. R. Trinh,, F. A. Gala,, and S. L. Morrison. 2003. Cleavage of the human immunoglobulin A1 (IgA1) hinge region by IgA1 proteases requires structures in the Fc region of IgA. Infect. Immun. 71:25632570.
11. Cooper, M. D.,, Z. A. McGee,, M. H. Mulks,, J. M. Koomey,, and T. L. Hindman. 1984. Attachment to and invasion of human fallopian tube mucosa by an IgA1 protease-deficient mutant of Neisseria gonorrhoeae and its wild-type parent. J. Infect. Dis. 150:737744.
12. Devenyi, A.G.,, A. G. Plaut,, F. J. Grundy,, and A. Wright. 1993. Post-infectious human serum antibodies inhibit IgA1 proteinases by interaction with the cleavage site specificity determinant. Mol. Immunol. 30:12431248.
13. Dopazo, J.,, A. Mendoza,, J. Herrero,, F. Caldara,, Y. Humbert,, L. Friedli,, M. Guerrier,, E. Grand-Schenk,, C. Gandin,, M. de Francesco,, A. Polissi,, G. Buell,, G. Feger,, E. Garcia,, M. Peitsch,, and J. F. Garcia-Bustos. 2001. Annotated draft genomic sequence from Streptococcus pneumoniae type 19F clinical isolate. Microb. Drug Resist. 7:99125.
14. Eskelinen, E.-L.,, T. Yoshitaka,, and P. Saftig. 2003. At the acidic edge: emerging functions for lysosomal membrane proteins. Trends Cell Biol. 13:137145.
15. Farley, M. M.,, D. S. Stephens,, M. H. Mulks,, M. D. Cooper,, J. V. Bricker,, S. S. Mirra,, and A. Wright. 1986. Pathogenesis of IgA1 protease-producing and nonproducing Haemophilus influenzae in human naso-pharyngeal organ cultures. J. Infect. Dis. 154:752759.
16. Fleischmann, R. D.,, M. D. Adams,, O. White,, R. A. Clayton,, E. F. Kirkness,, A. R. Kerlavage,, C. J. Bult,, J. F. Tomb,, B. A. Dougherty,, J. M. Merrick,, B. A. Dougherty,, J. M. Merrick,, K. McKenney,, G. Sutton,, W. Fitzhugh,, C. Fields,, J. D. Gocayne,, J. Scott,, R. Shirley,, L. I. Liu,, A. Glodek,, J. M. Kelley,, J. F. Weidman,, C. A. Phillips,, T. Spriggs,, E. Hedblom,, M. D. Cotton,, T. R. Utterback,, M. C. Hanna,, D. T. Nguyen,, D. M. Saudek,, R. C. Brandon,, L. D. Fine,, J. L. Fritchman,, J. L. Fuhrmann,, N. S. M. Geoghagen,, C. L. Gnehm,, L. A. McDonald,, K. V. Small,, C. M. Fraser,, H. O. Smith,, and J. C. Venter. 1995. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496512.
17. Fujiyama, Y.,, M. Iwaki,, K. Hodohara,, S. Hosoda,, and K. Kobayashi. 1986. The site of cleavage in human alpha chains of IgA1 and IgA2: A2m(1) allotype paraproteins by the clostridial IgA protease. Mol. Immunol. 23:147150.
18. Fukuda, M.,, J. Viitala,, J. Matteson,, and S. R. Carlsson. 1988. Cloning of cDNAs encoding human lysosomal membrane glycoproteins, h-lamp-1 and h-lamp-2. Comparison of their deduced amino acid sequences. J. Biol. Chem. 263:1892018928.
19. Gilbert, J.V.,, A. G. Plaut,, B. Longmaid,, and M. E. Lamm. 1983. Inhibition of microbial IgA proteases by human secretory IgA and serum. Mol. Immunol. 20:10391049.
20. Hackam, D. J.,, O. D. Rotstein,, C. Sjolin,, A. D. Schreiber,, W. S. Trimble,, and S. Grinstein. 1998. v-SNARE-dependent secretion is required for phagocytosis. Proc. Natl. Acad. Sci. USA 95:1169111696.
21. Hadi, H. A.,, K. G. Wooldridge,, K. Robinson,, and D. A. Ala’Aldeen. 2001. Identification and characterization of App: an immunogenic autotransporter protein of Neisseria meningitidis. Mol. Microbiol. 41:611623.
22. Hajishengallis, G.,, E. Nikolova,, and M. W. Russell. 1992. Inhibition of Streptococcus mutans adherence to saliva-coated hydroxyapatite by human secretory immunoglobulin A (SIgA) antibodies to cell surface protein antigen I/II: reversal by IgA1 protease cleavage. Infect. Immun. 60:50575064.
23. Halter, R.,, J. Pohlner,, and T. F. Meyer. 1989. Mosaic-like organization of IgA protease genes in Neisseria gonorrhoeae generated by horizontal genetic exchange in vivo. EMBO J. 8:27372744.
24. Hauck, C. R.,, and T. F. Meyer. 1997. The lysosomal/phagosomal membrane protein h-lamp-1 is a target of the IgA1 protease of Neisseria gonorrhoeae. FEBS Lett. 405:8690.
25. Hava, D. L.,, and A. Camilli. 2002. Large-scale identification of serotype 4 Streptococcus pneumoniae virulence factors. Mol. Microbiol. 45:13891405.
26. Hedges, S. R.,, M. S. Mayo,, L. Kallman,, J. Mestecky,, E. W. Hook III,, and M. W. Russell. 1998. Evaluation of immunoglobulin A1 (IgA1) protease and IgA1 protease-inhibitory activity in human female genital infection with Neisseria gonorrhoeae. Infect. Immun. 66:58265832.
27. Henderson, I.R.,, and J.P. Nataro. 2001. Virulence functions of autotransporter proteins. Infect. Immun. 69:12311243.
28. Hendrixon, D. R.,, and J. W. St. Geme III. 1998. The Haemophilus influenzae Hap serine protease promotes adherence and microcolony formation, potentiated by a soluble host protein. Mol. Cell 2:841850.
29. Hopper, S.,, B. Vasquez,, A. Merz,, S. Clary,, J. S. Wilbur,, and M. So. 2000. Effects of the immunoglobulin A1 protease on Neisseria gonorrhoeae trafficking across polarized T84 epithelial monolayers. Infect. Immun. 68:906911.
30. Hoskins, J.,, W. E. Alborn,, J. Arnold,, L. C. Blaszczak,, S. Burgett,, B. S. Dehoff,, S. T. Estrem,, D. J. Fu,, W. Fuller,, C. Geringer,, R. Gilmour,, H. Khoja,, A. R. Kraft,, R. L. Lagace,, D. J. LeBlanc,, L. N. Lee,, E. J. Lefkowitz,, J. Lu,, P. Matsushima,, S. M. McAhren,, M. McHenney,, K. McLeaster,, C. W. Mundy,, T. I. Nicas,, F. H. Norris,, M. O’Gara,, R. B. Peery,, G. T. Robertson,, P. Rockey,, P. M. Sun,, M. E. Winkler,, Y. Yang,, M. Young-Bellido,, G. Zhao,, C. A. Zook,, R. H. Baltz,, S. R. Jaskunas,, P. R. Rosteck,, P. L. Skatrud,, and J. I. John. 2001. Genome of the bacterium Streptococcus pneumoniae strain R6. J. Bacteriol. 183:57095717.
31. Jarvis, G. A.,, and J. M. Griffiss. 1991. Human IgA1 blockade of IgG-initiated lysis of Neisseria meningitidis is a function of antigen-binding fragment binding to the polysaccharide capsule. J. Immunol. 147:19621967.
32. Johannsen, D.B.,, D. M. Johnston,, H. O. Koymen,, M. S. Cohen,, and J. G. Cannon. 1999. A Neisseria gonorrhoeae immunoglobulin A1 protease mutant is infectious in the human challenge model of urethral infection. Infect. Immun. 67:30093013.
33. Jose, J.,, G. W. Otto,, and T. F. Meyer. 2003. The integration site of the iga gene in commensal Neisseria sp. Mol. Gen. Genom. 269:197204.
34. Jose, J.,, U. Wölk,, D. Lorenzen,, H. Wenschuh,, and T. F. Meyer. 2000. Human T-cell response to meningococcal immunoglobulin A1 protease associated α-proteins. Scand. J. Immunol. 51:176185.
35. Kapatais-Zoumbos, K.,, D. K. Chandler,, and M. F. Barile. 1985. Survey of immunoglobulin A protease activity among selected species of Ureaplasma and Mycoplasma specificity for host immunoglobulin A. Infect. Immun. 47:704709.
36. Kett, K.,, P. Brandtzaeg,, J. Radl,, and J. T. Haaijman. 1986. Different subclass distribution of IgA-producing cells in human lymphoid organs and various secretory tissues. J. Immunol. 136:36313635.
37. Kilian, M.,, J. Mestecky,, and R. E. Schrohenloher. 1979. Pathogenic species of Haemophilus and Streptococcus pneumoniae produce immunoglobulin A1 protease. Infect. Immun. 26:143149.
38. Kilian, M.,, K. Poulsen,, and H. Lomholt. 2002. Evolution of the paralogous hap and iga genes in Haemophilus influenzae and evidence for a conserved hap pseudogene in the recently diverged Haemophilus aegyptius and H. influenzae biogroup aegyptius. Mol. Microbiol. 46:13671380.
39. Kilian, M.,, and J. Reinholdt. 1987. A hypothetical model for the development of invasive infection due to IgA1 proteaseproducing bacteria. Adv. Exp. Med. Biol. 216B:12611269.
40. Kilian, M.,, J. Reinholdt,, H. Lomholt,, K. Poulsen,, and E. V. G. Frandsen. 1996. Biological significance of IgA1 proteases in bacterial colonization and pathogenesis: critical evaluation of experimental evidence. APMIS 104:321338.
41. Kilian, M.,, and B. Thomsen. 1983. Antigenic heterogeneity of immunoglobulin A1 proteases from encapsulated and non-encapsulated Haemophilus influenzae. Infect. Immun. 42:126132.
42. Kilian, M.,, B. Thomsen,, T. E. Petersen,, and H. S. Bleeg. 1983. Occurrence and nature of bacterial IgA proteases. Ann. N.Y. Acad. Sci. 409:612624.
43. Kirkeby, L.,, T. T. Rasmussen,, J. Reinholdt,, and M. Kilian. 2000. Immunoglobulins in nasal secretions of healthy humans: structural integrity of secretory immunoglobulin A1 (IgA1) and occurrence of neutralizing antibodies to IgA1 proteases of nasal bacteria. Clin. Diagn. Lab. Immunol. 7:3139.
44. Kobayashi, K.,, Y. Fujiyama,, K. Hagiwara,, and H. Kondoh. 1987. Resistance of normal serum IgA and secretory IgA to bacterial IgA proteases: evidence for the presence of enzymeneutralizing antibodies in both serum and secretory IgA, and also in serum IgG. Microbiol. Immunol. 31:10971106.
45. Lin, L.,, P. Ayala,, J. Larson,, M. Mulks,, M. Fukuda,, S. R. Carlsson,, C. Enns,, and M. So. 1997. The Neisseria type 2 IgA1 protease cleaves LAMP1 and promotes survival of bacteria within epithelial cells. Mol. Microbiol. 24:10831094.
46. Logan, M. R.,, S. O. Odemuyiwa,, and R. Moqbel. 2003. Understanding exocytosis in immune and inflammatory cells: the molecular basis of mediator secretion. J. Allergy Clin. Immunol. 111:923932.
47. Lomholt, H. 1995. Evidence of recombination and an antigenically diverse immunoglobulin A1 protease among strains of Streptococcus pneumoniae. Infect. Immun. 63:42384243.
48. Lomholt, H.,, K. Poulsen,, D. A. Caugant,, and M. Kilian. 1992. Molecular polymorphism and epidemiology of Neisseria meningitidis immunoglobulin A1 proteases. Proc. Natl. Acad. Sci. USA 89:21202124.
49. Lomholt, H.,, K. Poulsen,, and M. Kilian. 1995. Comparative characterization of the iga gene encoding IgA1 protease in Neisseria meningitidis, Neisseria gonorrhoeae and Haemophilus influenzae. Mol. Microbiol. 15:495506.
50. Lomholt, H.,, L. van Alphen,, and M. Kilian. 1993. Antigenic variation of irnmunoglobulin A1 proteases among sequential isolates of Haemophilus influenzae from healthy children and patients with chronic obstructive pulmonary disease. Infect. Immun. 61:45754581.
51. Lomholt, J. A.,, and M. Kilian. 2000. Immunoglobulin A1 protease activity in Gemella haemolysans. J. Clin. Microbiol. 38:27602762.
52. Lorenzen, D. R.,, F. Dux,, U. Wölk,, A. Tsirpouchtsidis,, G. Haas,, and T. F. Meyer. 1999. Immunoglobulin A1 protease, an exoenzyme of pathogenic neisseriae, is a potent inducer of proinflammatory cytokines. J. Exp. Med. 190:10491058.
53. Mattu, T. S.,, R. J. Pleass,, A. C. Willis,, M. Kilian,, M. R. Wormald,, A. C. Lellouch,, P. M. Rudd,, J. M. Woof,, and R. A. Dwek. 1998. The glycosylation and structure of human serum IgA1, Fab and Fc regions and the role of N-glycosylation on FcαR interactions. J. Biol. Chem. 273:22602272.
54. Mestecky, J.,, and M. W. Russell. 1986. IgA subclasses. Monogr. Allergy 19:277301.
55. Meyer, T. F. 1990. Pathogenic neisseriae—a model of bacterial virulence and genetic flexibility. Int. J. Med. Microbiol. 274: 135154.
56. Morelli, G.,, J. del Valle,, C. J. Lammel,, J. Pohlner,, K. Müller,, M. Blake,, G. F. Brooks,, T. F. Meyer,, B. Koumare,, N. Brieske,, and M. Achtman. 1994. Immunogenicity and evolutionary variability of epitopes within IgA1 protease from serogroup A Neisseria meningitidis. Mol. Microbiol. 11:175187.
57. Mulks, M. H.,, and A. G. Plaut. 1978. IgA protease production as a characteristic distinguishing pathogenic from harmless Neisseriaceae. N. Engl. J. Med. 299:973976.
58. Mulks, M. H.,, A. G. Plaut,, and M. Lamm,. 1980. Gonococcal IgA protease reduces inhibition of bacterial adherence by human secretory IgA, p. 217220. In S. Normark, and D. Danielsson (ed.), Genetics and Immunobiology of Pathogenic Neisseria. University of Umea, Umea, Sweden.
59. Novak, R.,, E. Charpentier,, J. S. Braun,, E. Park,, S. Murti,, E. Tuomanen,, R. Masure. 2000. Extracellular targeting of choline-bidning proteins in Streptococcus pneumoniae by a zinc-metalloprotease. Mol. Microbiol. 36:366376.
60. Oggioni, M. R, G. Memmi, T. Maggi, D. Chiavolini, F. Iannelli, and G. Pozzi. 2003. Pneumococcal zinc metalloproteinase ZmpC cleaves human matrix metalloproteinase 9 and is a virulence factor in experimental pneumonia. Mol. Microbiol. 49:795805.
61. Parkhill, J.,, M. Achtman,, K. D. James,, S. D. Bentley,, C. Churcher,, S. R. Klee,, G. Morelli,, D. Basham,, D. Brown,, T. Chillingworth,, R. M. Davies,, P. Davis,, K. Devlin,, T. Feltwell,, N. Hamlin,, S. Holroyd,, K. Jagels,, S. Leather,, S. Moule,, K. Mungall,, M. A. Quail,, M. A. Rajandream,, K. M. Rutherford,, M. Simmonds,, J. Skelton,, S. Whitehead,, B. G. Spratt,, and B. G. Barrell. 2000. Complete DNA sequence of a group A strain of Neisseria meningitidis Z2491. Nature 404:502506.
62. Plant, L.,, and A. B. Jonsson. 2003. Contacting the host: insights and implications of pathogenic Neisseria cell interactions. Scand. J. Infect. Dis. 35:608613.
63. Plaut, A. G. 1983. The IgA proteases of pathogenic bacteria. Annu. Rev. Microbiol. 37:603622.
64. Plaut, A. G.,, J. V. Gilbert,, M. S. Artenstein,, and J. D. Capra. 1975. Neisseria gonorrhoeae and Neisseria meningitidis: extracellular enzyme cleaves human immunoglobulin A. Science 193:11031105.
65. Plaut, A. G.,, J. Qiu,, F. Grundy,, F., and A. Wright. 1992. Growth of Haemophilus influenzae in human milk: synthesis, distribution and activity of IgA protease as determined by study of Iga+ and mutant Iga- cells. J. Infect. Dis. 166:4352.
66. Pizza, M.,, V. Scarlato,, V. Masignani,, M. M. Giuliani,, B. Arico,, M. Commanduci,, G. T. Jennings,, L. Baldi,, E. Bartolini,, B. Capecchi,, C. L. Galeotti,, E. Luzzi,, R. Manetti,, E. Marchetti,, M. Mora,, S. Nuti,, G. Ratti,, L. Santini,, S. Savino,, M. Scarselli,, E. Storni,, P. Zuo,, M. Broeker,, E. Hundt,, B. Knapp,, E. Blair,, T. Mason,, H. Tettelin,, D. W. Hood,, A. C. Jeffries,, N. J. Saunders,, D. M. Granoff,, J. C. Venter,, E. R. Moxon,, G. Grandi,, and R. Rappuoli. 2000. Identification of vaccine candidates against group B meningococcus by whole-genome sequencing. Science 287:18161820.
67. Pohlner, J.,, R. Halter,, K. Bayreuther,, and T. F. Meyer. 1987. Gene structure and extracellular secretion of Neisseria gonorrhoeae IgA protease. Nature 325:452462.
68. Pohlner, J.,, R. Halter,, and T. F. Meyer. 1987. Neisseria gonorrhoeae IgA protease. Secretion and implications for pathogenesis. Antonie Leeuwenhoek 53:479484.
69. Pohlner, J.,, U. Langenberg,, U. Wölk,, S. C. Beck,, and T. F. Meyer. 1995. Uptake and nuclear transport of Neisseria IgA1 protease-associated a-proteins in human cells. Mol. Microbiol. 17:10731083.
70. Polissi, A.,, A. Pontiggia,, G. Feger,, M. Altieri,, H. Mottl,, L. Ferrari,, and D. Simon. 1998. Large-scale identification of virulence genes from Streptococcus pneumoniae. Infect. Immun. 66:56205629.
71. Poulsen, K.,, J. Brandt,, J. P. Hjorth,, H. C. Thøgersen,, and M. Kilian. 1989. Cloning and sequencing of the immunoglobulin A1 protease gene (iga) of Haemophilus influenzae serotype b. Infect. Immun. 57:30973105.
72. Poulsen, K.,, J. Reinholdt,, and M. Kilian. 1996. Characterization of the Streptococcus pneumoniae immunoglobulin A1 protease gene (iga) and its translation product. Infect. Immun. 64:39573966.
73. Poulsen, K.,, J. Reinholdt,, C. Jespergaard,, K. Boye,, T. A. Brown,, M. Hauge,, and M. Kilian. 1998. A comprehensive genetic study of streptococcal immunoglobulin A1 proteases: evidence for recombination within and between species. Infect. Immun. 66:181190.
74. Poulsen, K.,, J. Reinholdt,, and M. Kilian. 1992. A comparative genetic study of serologically distinct Haemophilus influenzae type 1 immunoglobulin A1 proteases. J. Bacteriol. 174:29132921.
75. Qiu, J.,, G. P. Brackee,, and A. G. Plaut. 1996. Analysis of the specificity of bacterial immunoglobulin A (IgA) protease by a comparative study of ape serum IgAs as substrates. Infect. Immun. 64:933937.
76. Reinholdt, J.,, and M. Kilian. 1987. Interference of IgA protease with the effect of secretory IgA on adherence of oral streptococci to saliva-coated hydroxyapatite. J. Dent. Res. 66:492497.
77. Reinholdt, J.,, and M. Kilian. 1997. Comparative analysis of immunoglobulin A1 protease activity among bacteria representing different genera, species, and strains. Infect. Immun. 65:44524459.
78. Reinholdt, J.,, V. Friman,, and M. Kilian. 1993. Similar proportions of immunoglobulin A1 (IgA1) protease-producing streptococci in initial dental plaque of selectively IgA-deficient and normal individuals. Infect. Immun. 61:39984000.
79. Reinholdt, J.,, M. Tomana,, S. B. Mortensen,, and M. Kilian. 1990. Molecular aspects of immunoglobulin A1 degradation by oral streptococci. Infect. Immun. 58:11861194.
80. Russell, M. W.,, M. Kilian,, and M. E. Lamm,. 1999. Biological activities of IgA, p. 225240. In P. L. Ogra,, J. Mestecky,, M. E. Lamm,, W. Strober,, J. Bienenstock,, and J. R. McGhee. (ed.), Handbook of Mucosal Immunology. Academic Press, Inc., San Diego, Calif..
81. Russell, M.W.,, J. Reinholdt,, and M. Kilian. 1989. Anti-inflammatory activity of human IgA antibodies and their Fabα fragments: inhibition of IgG-mediated complement activation. Eur. J. Immunol. 19:22432249.
82. Schiavo, G.,, F. Benfenati,, B. Poulain,, O. Rossetto,, P. Polverino de Laureto,, B. R. DasGupta,, and C. Montecucco. 1992. Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 359:832835.
83. Senior, B. W.,, W. W. Stewart,, C. Galloway,, and M. A. Kerr. 2001. Cleavage of the hormone human chorionic gonadotropin, by the type 1 IgA1 protease of Neisseria gonorrhoeae, and its implications. J. Infect. Dis. 184:922925.
84. Serruto, D.,, J. Adu-Bobie,, M. Scarselli,, D. Veggi,, M. Pizza,, R. Rappuoli,, and B. Aricò. 2003. Neisseria meningitidis App, a new adhesion with autocatalytic protease activity. Mol. Microbiol.48:323334.
85. Shoberg, R. J.,, and M. H. Mulks. 1991. Proteolysis of bacterial membrane proteins by Neisseria gonorrhoeae type 2 immunoglobulin A1 protease. Infect. Immun. 59:25352541.
86. Sørensen, C. H.,, and M. Kilian. 1984. Bacterium-induced cleavage of IgA in nasopharyngeal secretions from atopic children. Acta Pathol. Microbiol. Immunol. Scand. Ser. C 92:8587.
87.St. Geme, J. W., III, M. L. de la Morena, and S. Falkow. 1994. A Haemophilus influenzae IgA protease-like protein promotes intimate interaction with human epithelial cells. Mol. Microbiol. 14:217233.
88. Tettelin, H.,, K. E. Nelson,, I. T. Paulsen,, J. A. Eisen,, T. D. Read,, S. Peterson,, J. Heidelberg,, R. T. DeBoy,, D. H. Haft,, R. J. Dodson,, A. S. Durkin,, M. Gwinn,, J. F. Kolonay,, W. C. Nelson,, J. D. Peterson,, A. U. Lowell,, O. White,, S. L. Salzberg,, M. R. Lewis,, D. Radune,, E. Holtzapple,, H. Khouri,, A. M. Wolf,, T. R. Utterback,, C. L. Hansen,, L. A. McDonald,, T. V. Feldblyum,, S. Angiuoli,, T. Dickinson,, E. K. Hickey,, E. H. Ingeborg,, B. J. Loftus,, F. Yang,, H. O. Smith,, J. C. Venter,, B. A. Dougherty,, D. A. Morrison,, S. K. Hollingshead,, and C. M. Fraser. 2001. Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science 293:498506.
89. Tettelin, H.,, N. J. Saunders,, J. Heidelberg,, A. C. Jeffries,, K. E. Nelson,, J. A. Eisen,, K. A. Ketchum,, D. W. Hood,, J. F. Peden,, R. J. Dodson,, W. C. Nelson,, M. L. Gwinn,, R. DeBoy,, J. D. Peterson,, E. K. Hickey,, D. H. Haft,, S. L. Salzberg,, O. White,, R. D. Fleischmann,, B. A. Dougherty,, T. Mason,, A. Ciecko,, D. S. Parksey,, E. Blair,, H. Cittone,, E. B. Clark,, M. D. Cotton,, T. R. Utterback,, H. Khouri,, H. Qin,, J. Vamathevan,, J. Gill,, V. Scarlato,, V. Masignani,, M. Pizza,, G. Grandi,, L. Sun,, H. O. Smith,, C. M. Fraser,, E. R. Moxon,, R. Rappuoli,, and J. C. Venter. 2000. Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. Science 287:18091815.
90. Tyler, B. M.,, and M. F. Cole. 1998. Effect of IgA1 protease on the ability of secretory IgA1 antibodies to inhibit the adherence of Streptococcus mutans. Microbiol. Immunol. 42:503508.
91. Van Ulsen, P.,, L. van Alphen,, C. T. Hopman,, A. van der Ende,, and J. Thommassen. 2001. In vivo expression of Neisseria meningitidis proteins homologous to the Haemophilus influenzae Hap and Hia autotransporters. FEMS Immunol. Med. Microbiol. 32:5364.
92. Van Ulsen, P.,, L. van Alphen,, J. ten Hove,, F. Fransen,, P. van der Ley,, and J. Thommassen. 2003. A neisserial autotransporter NalP modulating the processing of other autotransporters. Mol. Microbiol. 50:10171030.
93. Vitovski, S.,, K. T. Dunkin,, A. J. Howard,, and J. R. Sayers. 2002. Nontypeable Haemophilus influenzae in carriage and disease: a difference in IgA1 protease activity levels. JAMA 287:16991705.
94. Vitovski, S.,, R. C. Read,, and J. R. Sayers. 1999. Invasive isolates of Neisseria meningitidis possess enhanced immunoglobulin A1 protease activity compared to colonizing strains. FASEB J. 13:331337.
95. Wani, J. H.,, J. V. Gilbert,, A. G. Plaut,, and J. N. Weiser. 1996. Identification, cloning, and sequencing of the immunoglobulin A1 protease gene of Streptococcus pneumoniae. Infect. Immun. 64:39673974.
96. Weiser, J. N.,, D. Bae,, C. Fasching,, R. W. Scamurra,, A. J. Ratner,, and E. N. Janoff. 2003. Antibody-enhanced pneumococcal adherence requires IgA1 protease. Proc. Natl. Acad. Sci. USA 100:42154220.
97. Wood, S. G.,, and J. Burton. 1991. Synthetic peptide substrates for the immunoglobulin A1 protease from Neisseria gonorrhoeae (type 2). Infect. Immun. 59:18181822.


Generic image for table
Table 1

Bacterial IgA proteases grouped according to enzyme characteristics and phylogenic relationships

Citation: Kilian M, Reinholdt J. 2005. Immunoglobulin A1 Proteases of Pathogenic and Commensal Bacteria of the Respiratory Tract, p 119-129. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch9

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error