1887

8 Evolution of Terrestrial Animals and Their Viruses

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Abstract:

As vertebrates emerged from the oceans to become land-dwelling animals, numerous basic changes in their physiology and organ structures were necessary. This chapter examines the roles that persistent viruses and especially endogenous retroviruses (ERVs) have had in the evolution of terrestrial vertebrates. The mammalian paramyxovirus lineage may trace its evolutionary origins from reptiles, through avians, to mammals, and during the course of this adaptation the reptilian and avian viruses appear to have gained the ability to establish species-specific persistent infections. Although monotreme-like mammals are evolutionarily old (predating the dinosaurs), little is known about the viruses or genomes of these early mammalian predecessors. The majority of small DNA viruses (adenoviruses, papillo-maviruses, polyomaviruses, and TT viruses) have persistent life strategies, are host specific, and are phylogenetically congruent with the evolution of their hosts. The epidemiological concept of a reservoir species has been used for many decades to help explain the recurrence of viral disease after it has apparently been eliminated from a population or habitat. With the completion of the sequencing of the human genome, one can now consider what types of genetic changes were associated with this recent stage in human evolution. The successful genomes that have colonized host cells might be expected to persist in the ecosystem and contribute this vast genetic creativity to the tree of life.

Citation: Villarreal L. 2005. 8 Evolution of Terrestrial Animals and Their Viruses, p 289-382. In Viruses and the Evolution of Life. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch8
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 8.1
Figure 8.1

Schematic of HERVs and related elements (LINEs, SINEs, and ). The number of copies per genome present in invertebrates is indicated in parentheses.

Citation: Villarreal L. 2005. 8 Evolution of Terrestrial Animals and Their Viruses, p 289-382. In Viruses and the Evolution of Life. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8.2
Figure 8.2

Schematic of the time line for the evolution of mammalian species.

Citation: Villarreal L. 2005. 8 Evolution of Terrestrial Animals and Their Viruses, p 289-382. In Viruses and the Evolution of Life. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8.3
Figure 8.3

Outline of ERVs acquired by terrestrial vertebrates. Asterisks indicate significant ERV expansion. Rav-0, Rous-associated virus-0; JASV, jaagsiekte sheep retrovirus.

Citation: Villarreal L. 2005. 8 Evolution of Terrestrial Animals and Their Viruses, p 289-382. In Viruses and the Evolution of Life. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8.4
Figure 8.4

Phylogenetic relationship of rhabdoviruses. Data are from H. Badrane, C. Bahloul, P. Perrin, and N. Tordo, 3268–3276, 2001.

Citation: Villarreal L. 2005. 8 Evolution of Terrestrial Animals and Their Viruses, p 289-382. In Viruses and the Evolution of Life. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8.5
Figure 8.5

A dendrogram schematic of the evolutionary relationships of the Muridae family of rodents, based on mitochondrial DNA and cytochrome B sequence data. Data are from C. J. Conroy and J. A. Cook, 221–245, 1999. Also shown are some common names as well as patterns of hantavirus (Puumula virus [PUUV]) and coronavirus (rat coronavirus [RCV] and MHV) rodent infection.

Citation: Villarreal L. 2005. 8 Evolution of Terrestrial Animals and Their Viruses, p 289-382. In Viruses and the Evolution of Life. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8.6
Figure 8.6

Dendrogram schematic of the HERV elements associated with schizophrenia by subtractive cDNA analysis. Relationship to the HERV SINE-R.C2 is shown. Data are from H.-S. Kim, R. V. Wadekar, O. Takenaka, C. Winstanley, F. Mitsunaga, T. Kageyama, B.-H. Hyun, and T. J. Crow, . 560–566, 1999.

Citation: Villarreal L. 2005. 8 Evolution of Terrestrial Animals and Their Viruses, p 289-382. In Viruses and the Evolution of Life. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817626.chap8
1. Benit, L.,, A. Calteau,, and T. Heidmann. 2003. Characterization of the low-copy HERV-Fc family: evidence for recent integrations in primates of elements with coding envelope genes. Virology 312: 159 168.
2. Conroy, C. J.,, and A. J. Cook. 1999. MtDNA evidence for repeated pulses of speciation within arvicoline and murid rodents. J. Mamm. Evol. 6: 221 245.
3. Dewannieux, M.,, C. Esnault,, and T. Heidmann. 2003. LINE-mediated retrotransposition of marked Alu sequences. Nat. Genet. 35: 41 48.
4. Murphy, W. J.,, E. Eizirik,, W. E. Johnson,, Y. P. Zhang,, O. A. Ryder,, and S. J. O'Brien. 2001. Molecular phylogenetics and the origins of placental mammals. Nature 409: 614 618.
5. Murphy, W. J.,, E. Eizirik,, S. J. O'Brien,, O. Madsen,, M. Scally,, C. J. Douady,, E. Teeling,, O. A. Ryder,, M. J. Stanhope,, W. W. de Jong,, and M. S. Springer. 2001. Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294: 2348 2351.
6. Dimcheff, D. E.,, S. V. Drovetski,, M. Krishnan,, and D. P. Mindell. 2000. Cospeciation and horizontal transmission of avian sarcoma and leukosis virus gag genes ingalliform birds. J. Virol. 74: 3984 3995
7. Dimcheff, D. E.,, M. Krishnan,, and D. P. Mindell. 2001. Evolution and characterization of tetraonine endogenous retrovirus: a new virus related to avian sarcoma and leukosis viruses. J. Virol. 75: 2002 2009.
8. Fadly, A. M.,, and E. J. Smith. 1997. Role of contact and genetic transmission of endogenous virus-21 in the susceptibility of chickens to avian leukosis virus infectionand tumors. Poult. Sci. 76: 968 973.
9. Hanger, J. J.,, L. D. Bromham,, J. J. McKee,, T. M. O'Brien,, and W. F. Robinson. 2000. The nucleotide sequence of koala ( Phascolarctos cinereus) retrovirus: a novel type Cendogenous virus related to gibbon ape leukemia virus. J. Virol. 74: 4264 4272.
10. Huder, J. B.,, J. Böni,, J.-M. Hatt,, G. Soldati,, H. Lutz,, and J. Schüpbach. 2002. Identification and characterization of two closely related unclassifiable endogenous retroviruses in pythons (Python molurus and Python curtus). J. Virol. 76: 7607 7615.
11. Iraqi, F.,, and E. J. Smith. 1995. Organization of the sex-linked late-feathering haplotype in chickens. Anim. Genet. 26: 141 146.
12. Leblanc, P.,, S. Desset,, F. Giorgi,, A. R. Taddei,, A. M. Fausto,, M. Mazzini,, B. Dastugue,, and C. Vaury. 2000. Life cycle of an endogenous retrovirus, ZAM, in Drosophila melanogaster. J. Virol. 74: 10658 10669.
13. O'Neill, R. J.,, M. J. O'Neill,, and J. A. Graves. 1998. Undermethylation associatedwith retroelement activation and chromosome remodeling in an interspecific mammalian hybrid. Nature 393: 68 72.
14. Smith, E. J.,, and A. M. Fadly. 1994. Male-mediated venereal transmission of endogenous avian leukosis virus. Poult. Sci. 73: 488 494.
15. Tristem, M.,, E. Herniou,, K. Summers,, and J. Cook. 1996. Three retroviral sequences in amphibians are distinct from those in mammals and birds. J. Virol. 70: 4864 4870.
16. Jurka, J.,, E. Zietkiewicz,, and D. Labuda. 1995. Ubiquitous mammalian-wide interspersed repeats (MIRs) are molecular fossils from the Mesozoic era. Nucleic AcidsRes. 23: 170 175.
17. Levy, J. A. 1977. Endogenous C-type viruses in normal and “abnormal” cell development. Cancer Res. 37: 2957 2968.
18. Levy, J. A. 1975. Host range of murine xenotropic virus: replication in avian cells. Nature 253: 140 142.
19. Levy, J. A.,, J. Joyner,, and E. Borenfreund. 1980. Mouse sperm can horizontally transmit type C viruses. J. Gen. Virol. 51: 439 443.
20. Levy, J. A.,, O. Oleszko,, J. Dimpfl,, D. Lau,, R. H. Rigdon,, J. Jones,, and R. Avery. 1982. Murine xenotropic type C viruses. IV. Replication and pathogenesis of ducks. J. Gen. Virol. 61( Pt. 1): 65 74.
21. Nelson, J. A.,, J. A. Levy,, and J. C. Leong. 1981. Human placentas contain a specific inhibitor of RNA-directed DNA polymerase. Proc. Natl. Acad. Sci. USA 78: 1670 1674.
22. Revoltella, R. P., and Consiglio Nazionale delle Ricerche (Italy). 1982. Expression of Differentiated Functions in Cancer Cells. Raven Press, New York, N.Y.
23. Seman, G.,, B. M. Levy,, M. Panigel,, and L. Dmochowski. 1975. Type-C virus particles in placenta of the cottontop marmoset (Saguinus oedipus). J. Natl. Cancer Inst. 54: 251 252.
24. Blaise, S.,, N. De Parseval,, L. Benit,, and T. Heidmann. 2003. Genomewide screening for fusogenic human endogenous retrovirus envelopes identifies syncytin 2, a geneconserved on primate evolution. Proc. Natl. Acad. Sci. USA 100: 13013 13018.
25. Bromham, L. 2002. The human zoo: endogenous retroviruses in the human genome. Trends Ecol. Evol. 17: 91 97.
26. de Parseval, N.,, J. Casella,, L. Gressin,, and T. Heidmann. 2001. Characterization of the three HERV-H proviruses with an open envelope reading frame encompassing the immunosuppressive domain and evolutionary history in primates. Virology 279: 558 569.
27. Espinosa, A.,, and L. P. Villarreal. 2000. T-Ag inhibits implantation by EC cell derived embryoid bodies. Virus Genes 20: 195 200.
28. Harris, J. R. 1998. Placental endogenous retrovirus (ERV): structural, functional, and evolutionary significance Bioessays 20: 307 316.
29. Hohenadl, C.,, C. Leib-Mosch,, R. Hehlmann,, and V. Erfle. 1996. Biological significance of human endogenous retroviral sequences. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 13( Suppl. 1): S268 S273.
30. Larsson, E.,, and G. Andersson. 1998. Beneficial role of human endogenous retroviruses: facts and hypotheses. Scand. J. Immunol. 48: 329 338.
31. Mi, S.,, X. Lee,, X. Li,, G. M. Veldman,, H. Finnerty,, L. Racie,, E. LaVallie,, X. Y. Tang,, P. Edouard,, S. Howes,, J. C. Keith, Jr.,, and J. M. McCoy. 2000. Syncytin is acaptive retroviral envelope protein involved in human placental morphogenesis. Nature 403: 785 789.
32. Nakagawa, K.,, and L. C. Harrison. 1996. The potential roles of endogenous retroviruses in autoimmunity Immunol. Rev. 152: 193 236
33. Nilsson, B. O.,, M. Jin,, A. C. Andersson,, P. Sundstrom,, and E. Larsson. 1999. Expression of envelope proteins of endogenous C-type retrovirus on the surface ofmouse and human oocytes at fertilization. Virus Genes 18: 115 120.
34. Stoye, J. P.,, and J. M. Coffin. 2000. A provirus put to work Nature 403: 715, 717.
35. Villarreal, L. P. 1997. On viruses, sex, and motherhood J. Virol. 71: 859 865.
36. Charrel, R. N.,, H. Feldmann,, C. F. Fulhorst,, R. Khelifa,, R. de Chesse,, and X. de Lamballerie. 2002. Phylogeny of New World arenaviruses based on the completecoding sequences of the small genomic segment identified an evolutionary lineage produced by intrasegmental recombination. Biochem. Biophys. Res. Commun. 296: 1118 1124.
37. Gottlieb, K. A. 2001. Polyomavirus replication in the lungs of mice: link to host cell differentiation and the role of the early proteins. Ph.D. dissertation. University of California, Irvine.
38. Hart, C. A.,, and M. Bennett. 1999. Hantavirus infections: epidemiology and pathogenesis. Microbes Infect. 1: 1229 1237.
39. Hook, L. M.,, B. A. Jude,, V. S. Ter-Grigorov,, J. W. Hartley,, H. C. Morse, III,, Z. Trainin,, V. Toder,, A. V. Chervonsky,, and T. V. Golovkina. 2002 . Characterization of a novel murine retrovirus mixture that facilitates hematopoiesis . J. Virol. 76: 12112 12122.
40. Hughes Austin, L.,, and R. Friedman. 2000. Evolutionary diversification of protein-coding genes of hantaviruses. Mol. Biol. Evol. 17: 1558 1568.
41. Monroe, M. C.,, S. P. Morzunov,, A. M. Johnson,, M. D. Bowen,, H. Artsob,, T. Yates,, C. J. Peters,, P. E. Rollin,, T. G. Ksiazek,, and S. T. Nichol. 1999. Genetic diversity and distribution of Peromyscus-borne hantaviruses in North America. Emerg. Infect. Dis. 5: 75 86.
42. Nemirov, K.,, H. Henttonen,, A. Vaheri,, and A. Plyusnin. 2002. Phylogenetic evidence for host switching in the evolution of hantaviruses carried by Apodemus mice. Virus Res. 90: 207 215.
43. Singleton, G. R.,, A. L. Smith,, G. R. Shellam,, N. Fitzgerald,, and W. J. Muller. 1993. Prevalence of viral antibodies and helminths in field populations of house mice (Mus domesticus) in southeastern Australia. Epidemiol. Infect. 110: 399 417.
44. Badrane, H.,, C. Bahloul,, P. Perrin,, and N. Tordo. 2001. Evidence of two Lyssavirus phylogroups with distinct pathogenicity and immunogenicity. J. Virol. 75: 3268 3276.
45. Badrane, H.,, and N. Tordo. 2001. Host switching in Lyssavirus history from the Chiroptera to the Carnivora orders. J. Virol. 75: 8096 8104.
46. Davis, I. C.,, A. J. Zajac,, K. B. Nolte,, J. Botten,, B. Hjelle,, and S. Matalon. 2002. Elevated generation of reactive oxygen/nitrogen species in hantavirus cardiopulmonary syndrome. J. Virol. 76: 8347 8359.
47. Guyatt, K. J.,, J. Twin,, P. Davis,, E. C. Holmes,, G. A. Smith,, I. L. Smith,, J. S. Mackenzie,, and P. L. Young. 2003. A molecular epidemiological study of Australian bat lyssavirus. J. Gen. Virol. 84: 485 496.
48. Le Mercier, P.,, Y. Jacob,, K. Tanner,, and N. Tordo. 2002. A novel expression cassette of lyssavirus shows that the distantly related Mokola virus can rescue a defective rabies virus genome. J. Virol. 76: 2024 2027.
49. Tidona, C. A.,, H. W. Kurz,, H. R. Gelderblom,, and G. Darai. 1999. Isolation and molecular characterization of a novel cytopathogenic paramyxovirus from tree shrews. Virology 258: 425 434.
50. Wang, L.,, B. H. Harcourt,, M. Yu,, A. Tamin,, P. A. Rota,, W. J. Bellini,, and B. T. Eaton. 2001. Molecular biology of Hendra and Nipah viruses. Microbes Infect. 3: 279 287.
51. Wang, L.-F.,, M. Yu,, E. Hansson,, L. I. Pritchard,, B. Shiell,, W. P. Michalski,, and B. T. Eaton. 2000. The exceptionally large genome of Hendra virus: support for creation of a new genus within the family Paramyxoviridae. J. Virol. 74: 9972 9979.
52. Brownlee, G. G.,, and E. Fodor. 2001. The predicted antigenicity of the haemagglutinin of the 1918 Spanish influenza pandemic suggests an avian origin. Philos.Trans. R. Soc. Lond. B 356: 1871 1876.
53. Fanning, T. G.,, R. D. Slemons,, A. H. Reid,, T. A. Janczewski,, J. Dean,, and J. K. Taubenberger. 2002. 1917. Avian influenza virus sequences suggest that the 1918 pandemic virus did not acquire its hemagglutinin directly from birds. J. Virol. 76: 7860 7862.
54. Gammelin, M.,, A. Altmuller,, U. Reinhardt,, J. Mandler,, V. R. Harley,, P. J. Hudson,, W. M. Fitch,, and C. Scholtissek. 1990. Phylogenetic analysis of nucleoproteins suggests that human influenza A viruses emerged from a 19th-century avian ancestor. Mol. Biol. Evol. 7: 194 200.
55. Laver, W. G.,, N. Bischofberger,, and R. G. Webster. 2000. The origin and control of pandemic influenza. Perspect. Biol. Med. 43: 173 192.
56. Makarova, K. S.,, Y. Wulf,, E. P. Tereza,, and V. A. Ratner. 1998. Different patternsof molecular evolution of influenza A viruses in avian and human population. Genetika 34: 890 896. (In Russian.)
57. Schafer, J. R.,, Y. Kawaoka,, W. J. Bean,, J. Suss,, D. Senne,, and R. G. Webster. 1993. Origin of the pandemic 1957 H2 influenza A virus and the persistence of its possible progenitors in the avian reservoir. Virology 194: 781 788.
58. Antonsson, A.,, O. Forslund,, H. Ekberg,, G. Sterner,, and B. G. Hansson. 2000. The ubiquity and impressive genomic diversity of human skin papillomaviruses suggest a commensalic nature of these viruses. J. Virol. 74: 11636 11641.
59. Bahr, U.,, E. Schondorf,, M. Handermann,, and G. Darai,. 2003. Molecular anatomy of Tupaia (tree shrew) adenovirus genome; evolution of viral genes and viral phylogeny. Virus Genes 27: 29 48.
60. Ikegaya, H.,, H. Iwase,, C. Sugimoto,, and Y. Yogo. 2002. JC virus genotyping offers a new means of tracing the origins of unidentified cadavers. Int. J. Leg. Med. 116: 242 245.
61. Sugimoto, C.,, T. Kitamura,, J. Guo,, M. N. Al-Ahdal,, S. N. Shchelkunov,, B. Otova,, P. Ondrejka,, J. Y. Chollet,, S. El-Safi,, M. Ettayebi,, G. Gresenguet,, T. Kocagoz,, S. Chaiyarasamee,, K. Z. Thant,, S. Thein,, K. Moe,, N. Kobayashi,, F. Taguchi,, and Y. Yogo. 1997. Typing of urinary JC virus DNA offers a novel means of tracing human migrations. Proc. Natl. Acad. Sci. USA 94: 9191 9196.
62. Bahr, U.,, and G. Darai. 2001. Analysis and characterization of the completegenome of tupaia (tree shrew) herpesvirus. J. Virol. 75: 4854 4870.
63. Darai, G.,, H. G. Koch,, R. M. Flugel,, and H. Gelderblom. 1982. Tree shrew (Tupaia) herpesviruses. Dev. Biol. Stand. 52: 39 51.
64. Gentry, G. A.,, M. Lowe,, G. Alford,, and R. Nevins. 1988. Sequence analyses of herpesviral enzymes suggest an ancient origin for human sexual behavior. Proc. Natl.Acad. Sci. USA 85: 2658 2661.
65. Huff, J. L.,, and P. A. Barry. 2003. B-virus (Cercopithecine herpesvirus 1) infection in humans and macaques: potential for zoonotic disease. Emerg. Infect. Dis. 9: 246 250.
66. Lacoste, V.,, P. Mauclere,, G. Dubreuil,, J. Lewis,, M. C. Georges-Courbot,, and A. Gessain. 2000. KSHV-like herpesviruses in chimps and gorillas. Nature 407: 151 152.
67. McGeoch, D. J.,, A. Dolan,, and A. C. Ralph. 2000. Toward a comprehensive phylogeny for mammalian and avian herpesviruses. J. Virol. 74: 10401 10406.
68. Zong, J.,, D. M. Ciufo,, R. Viscidi,, L. Alagiozoglou,, S. Tyring,, P. Rady,, J. Orenstein,, W. Boto,, H. Kalumbuja,, N. Romano,, M. Melbye,, G. H. Kang,, C. Boshoff,, and G. S. Hayward. 2002. Genotypic analysis at multiple loci across Kaposi's sarcoma herpesvirus (KSHV) DNA molecules: clustering patterns, novel variants and chimerism. J. Clin. Virol. 23: 119 148.
69. Afonso, C. L.,, E. R. Tulman,, Z. Lu,, L. Zsak,, N. T. Sandybaev,, U. Z. Kerembekova,, V. L. Zaitsev,, G. F. Kutish,, and D. L. Rock. 2002. The genome of camelpox virus. Virology 295: 1 9.
70. Begon, M.,, S. M. Hazel,, D. Baxby,, K. Bown,, R. Cavanagh,, J. Chantrey,, T. Jones,, and M. Bennett. 1999. Transmission dynamics of a zoonotic pathogen within andbetween wildlife host species. Proc. R. Soc. Lond. B 266: 1939 1945.
71. Chantrey, J.,, H. Meyer,, D. Baxby,, M. Begon,, K. J. Bown,, S. M. Hazel,, T. Jones,, W. I. Montgomery,, and M. Bennett. 1999. Cowpox: reservoir hosts and geographic range. Epidemiol. Infect. 122: 455 460.
72. Feore, S. M.,, M. Bennett,, J. Chantrey,, T. Jones,, D. Baxby,, and M. Begon. 1997. The effect of cowpox virus infection on fecundity in bank voles and wood mice. Proc. R. Soc. Lond. B 264: 1457 1461.
73. Hazel, S. M.,, M. Bennett,, J. Chantrey,, K. Bown,, R. Cavanagh,, T. R. Jones,, D.Baxby,, and M. Begon. 2000. A longitudinal study of an endemic disease in its wildlife reservoir: cowpox and wild rodents. Epidemiol. Infect. 124: 551 562.
74. Sandvik, T.,, M. Tryland,, H. Hansen,, R. Mehl,, U. Moens,, O. Olsvik,, and T. Traavik. 1998. Naturally occurring orthopoxviruses: potential for recombination with vaccine vectors. J. Clin. Microbiol. 36: 2542 2547.
75. Seman, G.,, B. M. Levy,, M. Panigel,, and L. Dmochowski. 1975. Type-C virus particles in placenta of the cottontop marmoset (Saguinus oedipus). J. Natl. Cancer Inst. 54: 251 252.
76. Dimitri, P.,, and N. Junakovic. 1999. Revising the selfish DNA hypothesis: new evidence on accumulation of transposable elements in heterochromatin. Trends Genet. 15: 123 124.
77. Jones, S. 2003. Y: the Descent of Men, p. xvii. Houghton Mifflin, Boston, Mass.
78. Zsiros, J.,, M. F. Jebbink,, V. V. Lukashov,, P. A. Voute,, and B. Berkhout. 1999. Biased nucleotide composition of the genome of HERV-K related endogenous retroviruses and its evolutionary implications. J. Mol. Evol. 48: 102 111.
79. Zsiros, J.,, M. F. Jebbink,, V. V. Lukashov,, P. A. Voute,, and B. Berkhout. 1998. Evolutionary relationships within a subgroup of HERV-K-related human endogenousretroviruses. J. Gen. Virol. 79( Pt. 1): 61 70.
80. Barbulescu, M.,, G. Turner,, M. I. Seaman,, A. S. Deinard,, K. K. Kidd,, and J. Lenz. 1999. Many human endogenous retrovirus K (HERV-K) proviruses are unique tohumans. Curr. Biol. 9: 861 868.
81. Barbulescu, M.,, G. Turner,, M. Su,, R. Kim,, M. I. Jensen-Seaman,, A. S. Deinard,, K. K. Kidd,, and J. Lenz. 2001. A HERV-K provirus in chimpanzees, bonobos and gorillas, but not humans. Curr. Biol. 11: 779 783.
82. Benit, L.,, A. Calteau,, and T. Heidmann. 2003. Characterization of the low-copyHERV-Fc family: evidence for recent integrations in primates of elements with cod-ing envelope genes. Virology 312: 159 168.
83. de Parseval, N.,, V. Lazar,, J.-F. Casella,, L. Benit,, and T. Heidmann. 2003. Survey of human genes of retroviral origin: identification and transcriptome of the genes withcoding capacity for complete envelope proteins. J. Virol. 77: 10414 10422.
84. Lower, R.,, R. R. Tonjes,, C. Korbmacher,, R. Kurth,, and J. Lower. 1995. Identification of a Rev-related protein by analysis of spliced transcripts of the human endoge-nous retroviruses HTDV/HERV-K. J. Virol. 69: 141 149.
85. McIntosh, E. M.,, and R. H. Haynes. 1996. HIV and human endogenous retroviruses: an hypothesis with therapeutic implications. Acta Biochim. Pol. 43: 583 592.
86. Menin, C.,, S. Indraccolo,, M. Montagna,, B. Corneo,, L. Bonaldi,, C. Leib-Mosch,, L. Chieco-Bianchi,, and E. D'Andrea. 1996. Identification of a human endogenous LTR-like sequence using HIV-1 LTR specific primers. Mol. Cell. Probes 10: 443 451.
87. Sverdlov, E. D. 2000. Retroviruses and primate evolution. Bioessays 22: 161 171.
88. Tonjes, R. R.,, F. Czauderna,, and R. Kurth. 1999. Genome-wide screening, cloning, chromosomal assignment, and expression of full-length human endogenous retrovirus type K. J. Virol. 73: 9187 9195.
89. Turner, G.,, M. Barbulescu,, M. Su,, M. I. Jensen-Seaman,, K. K. Kidd,, and J. Lenz. 2001. Insertional polymorphisms of full-length endogenous retroviruses in humans. Curr. Biol. 11: 1531 1535.
90. Yang, J.,, H. P. Bogerd,, S. Peng,, H. Wiegand,, R. Truant,, and B. R. Cullen. 1999. Anancient family of human endogenous retroviruses encodes a functional homolog ofthe HIV-1 Rev protein. Proc. Natl. Acad. Sci. USA 96: 13404 13408.
91. Andersson, A. C.,, A. C. Svensson,, C. Rolny,, G. Andersson,, and E. Larsson. 1998. Expression of human endogenous retrovirus ERV3 (HERV-R) mRNA in normal and reoplastic tissues. Int. J. Oncol. 12: 309 313.
92. Blond, J. L.,, F. Beseme,, L. Duret,, O. Bouton,, F. Bedin,, H. Perron,, B. Mandrand,, and F. Mallet. 1999. Molecular characterization and placental expression of HERV-W, a new human endogenous retrovirus family. J. Virol. 73: 1175 1185.
93. Blond, J. L.,, D. Lavillette,, V. Cheynet,, O. Bouton,, G. Oriol,, S. Chapel-Femanders,, B. Mandrand,, F. Mallet,, and F. L. Cosset. 2000. An envelope glycoprotein of the human endogenous retrovirus HERV-W is expressed in the human placenta and fuses cells expressing the type D mammalian retrovirus receptor. J. Virol. 74: 3321 3329.
94. Herbst, H.,, M. Sauter,, C. Kuhler-Obbarius,, T. Loning,, and N. Mueller-Lantzsch. 1998. Human endogenous retrovirus (HERV)-K transcripts in germ cell and tro phoblastic tumours. APMIS 106: 216 220.
95. Herbst, H.,, M. Sauter,, and N. Mueller-Lantzsch. 1996. Expression of human en-dogenous retrovirus K elements in germ cell and trophoblastic tumors. Am. J.Pathol. 149: 1727 1735.
96. Kjellman, C.,, H. O. Sjogren,, L. G. Salford,, and B. Widegren. 1999. HERV-F (XA34) is a full-length human endogenous retrovirus expressed in placental and fetal tissues. Gene 239: 99 107.
97. Langat, D. K.,, P. M. Johnson,, N. S. Rote,, E. O. Wango,, G. O. Owiti,, and J. M.Mwenda. 1998. Immunohistochemical localization of retroviral-related antigens ex-pressed in normal baboon placental villous tissue. J. Med. Primatol. 27: 278 286.
98. Mi, S.,, X. Lee,, X. Li,, G. M. Veldman,, H. Finnerty,, L. Racie,, E. LaVallie,, X. Y. Tang,, P. Edouard,, S. Howes,, J. C. Keith, Jr.,, and J. M. McCoy. 2000. Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403: 785 789.
99. Turbeville, M. A.,, J. C. Rhodes,, D. M. Hyams,, C. M. Distler,, and P. E. Steele. 1997. Characterization of a putative retroviral env-related human protein. Pathobiology 65: 123 128.
100. Allison, R. W.,, and E. A. Hoover. 2003. Covert vertical transmission of feline immunodeficiency virus. AIDS Res. Hum. Retrovirol. 19: 421 434.
101. Ansari, A. A.,, N. Onlamoon,, P. Bostik,, A. E. Mayne,, L. Gargano,, and K. Pattanapanyasat. 2003. Lessons learnt from studies of the immune characterization of naturally SIV infected sooty mangabeys. Front. Biosci. 8: s1030 s1050.
102. Bailes, E.,, F. Gao,, F. Bibollet-Ruche,, V. Courgnaud,, M. Peeters,, P. A. Marx,, B. H. Hahn,, and P. M. Sharp. 2003. Hybrid origin of SIV in chimpanzees. Science 300: 1713.
103. Biek, R.,, A. G. Rodrigo,, D. Holley,, A. Drummond,, C. R. Anderson, Jr.,, H. A. Ross,, and M. Poss. 2003. Epidemiology, genetic diversity, and evolution of endemic feline immunodeficiency virus in a population of wild cougars. J. Virol. 77: 9578 9589.
104. Courgnaud, V.,, M. Salemi,, X. Pourrut,, E. Mpoudi-Ngole,, B. Abela,, P. Auzel,, F. Bibollet-Ruche,, B. Hahn,, A.-M. Vandamme,, E. Delaporte,, and M. Peeters. 2002. Characterization of a novel simian immunodeficiency virus with a vpu gene from greater spot-nosed monkeys ( Cercopithecus nictitans) provides new insights into simian/human immunodeficiency virus phylogeny. J. Virol. 76: 8298 8309.
105. Courgnaud, V.,, W. Saurin,, F. Villinger,, and P. Sonigo. 1998. Different evolution of simian immunodeficiency virus in a natural host and a new host. Virology 247: 41 50.
106. Patterson, B. K.,, H. Behbahani,, W. J. Kabat,, Y. Sullivan,, M. R. O'Gorman,, A. Landay,, Z. Flener,, N. Khan,, R. Yogev,, and J. Andersson. 2001. Leukemia in-hibitory factor inhibits HIV-1 replication and is upregulated in placentae from nontransmitting women. J. Clin. Investig. 107: 287 294.
107. Rey-Cuille, M. A.,, J. L. Berthier,, M. C. Bomsel-Demontoy,, Y. Chaduc,, L. Montagnier,, A. G. Hovanessian,, and L. A. Chakrabarti. 1998. Simian immunodeficiency virus replicates to high levels in sooty mangabeys without inducing disease. J. Virol. 72: 3872 3886.
108. Salemi, M.,, T. De Oliveira,, V. Courgnaud,, V. Moulton,, B. Holland,, S. Cassol,, W. M. Switzer,, and A. M. Vandamme. 2003. Mosaic genomes of the six major primate lentivirus lineages revealed by phylogenetic analyses. J. Virol. 77: 7202 7213.
109. Wang, B.,, M. Mikhail,, W. B. Dyer,, J. J. Zaunders,, A. D. Kelleher,, and N. K. Saksena. 2003. First demonstration of a lack of viral sequence evolution in a nonprogressor, defining replication-incompetent HIV-1 infection. Virology 312: 135 150.
110. Berlim, M. T.,, B. S. Mattevi,, P. Belmonte-de-Abreu,, and T. J. Crow. 2003. The etiology of schizophrenia and the origin of language: overview of a theory. Compr Psychiatry 44: 7 14.
111. Crow, T. J. 1997. Is schizophrenia the price that Homo sapiens pays for language? Schizophr. Res. 28: 127 141.
112. Crow, T. J. 1997. Aetiology of schizophrenia: an echo of the speciation event. Int.Rev. Psychiatry 9: 321 330.
113. Crow, T. J. 1999. Commentary on Annett, Yeo et al., Klar, Saugstad and Orr: cerebral asymmetry, language and psychosis—the case for a Homo sapiens-specific sexlinked gene for brain growth. Schizophr. Res. 39: 219 231.
114. Crow, T. J. 2000. Schizophrenia as the price that Homo sapiens pays for language: a resolution of the central paradox in the origin of the species. Brain Res. Rev. 31: 118 129.
115. Highley, J. R.,, B. McDonald,, M. A. Walker,, M. M. Esiri,, and T. J. Crow. 1999. Schizophrenia and temporal lobe asymmetry. A post-mortem stereological study oftissue volume. Br. J. Psychiatry 175: 127 134.
116. Karlsson, H.,, S. Bachmann,, J. Schroder,, J. McArthur,, E. F. Torrey,, and R. H. Yolken. 2001. Retroviral RNA identified in the cerebrospinal fluids and brains of individuals with schizophrenia. Proc. Natl. Acad. Sci. USA 98: 4634 4639.
117. Kim, H. S.,, O. Takenaka,, and T. J. Crow. 1999. Isolation and phylogeny ofendogenous retrovirus sequences belonging to the HERV-W family in primates. J. Gen. Virol. 80( Pt. 10): 2613 2619.
118. Kim, H.-S.,, R. V. Wadekar,, O. Takenaka,, C. Winstanley,, F. Mitsunaga,, T. Kageyama,, B.-H. Hyun,, and T. J. Crow. 1999. SINE-R. C2 (a Homo sapiens specific retroposon) is homologous to cDNA from postmortem brain in schizophrenia and to two loci in the Xq21.3/Yp block linked to handedness and psychosis. Am. J.Med. Genet. 88: 560 566.
119. Yolken, R. H.,, H. Karlsson,, F. Yee,, N. L. Johnston-Wilson,, and E. F. Torrey. 2000. Endogenous retroviruses and schizophrenia. Brain Res. Rev. 31: 193 199.
120. Aragona, B. J.,, Y. Liu,, J. T. Curtis,, F. K. Stephan,, and Z. Wang. 2003. A critical role for nucleus accumbens dopamine in partner-preference formation in male prairie voles. J. Neurosci. 23: 3483 3490.
121. Ayasse, M.,, F. P. Schiestl,, H. F. Paulus,, F. Ibarra,, and W. Francke. 2003. Pollinator attraction in a sexually deceptive orchid by means of unconventional chemicals. Proc. R. Soc. Lond. B 270: 517 522.
122. Pitkow, L. J.,, C. A. Sharer,, X. Ren,, T. R. Insel,, E. F. Terwilliger,, and L. J. Young. 2001. Facilitation of affiliation and pair-bond formation by vasopressin receptor gene transfer into the ventral forebrain of a monogamous vole. J. Neurosci. 21: 7392 7396.
123. Schiestl, F. P.,, R. Peakall,, J. G. Mant,, F. Ibarra,, C. Schulz,, S. Franke,, and W. Francke. 2003. The chemistry of sexual deception in an orchid-wasp pollination system. Science 302: 437 438.
124. Varaldi, J.,, P. Fouillet,, M. Ravallec,, M. Lopez-Ferber,, M. Bouletreau,, and F. Fleury. 2003. Infectious behavior in a parasitoid. Science 302: 1930.

Tables

Generic image for table
Table 8.1

Classification of ERVs

Citation: Villarreal L. 2005. 8 Evolution of Terrestrial Animals and Their Viruses, p 289-382. In Viruses and the Evolution of Life. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch8
Generic image for table
Table 8.2

Known intact HERVs

Citation: Villarreal L. 2005. 8 Evolution of Terrestrial Animals and Their Viruses, p 289-382. In Viruses and the Evolution of Life. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch8
Generic image for table
Table 8.3

Major examples of persistence emergence

Citation: Villarreal L. 2005. 8 Evolution of Terrestrial Animals and Their Viruses, p 289-382. In Viruses and the Evolution of Life. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch8
Generic image for table
Table 8.4

Hantavirus emergence from rodent- or shrew-specific persistence

Citation: Villarreal L. 2005. 8 Evolution of Terrestrial Animals and Their Viruses, p 289-382. In Viruses and the Evolution of Life. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch8

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error