1887

Chapter 10 : DNA Elongation

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

DNA Elongation, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817640/9781555812324_Chap10-1.gif /docserver/preview/fulltext/10.1128/9781555817640/9781555812324_Chap10-2.gif

Abstract:

This chapter describes the structure and mechanisms of action of bacterial DNA replication proteins, and how their activities are coordinated for efficient duplication of chromosomal DNA. The proteins holoenzyme/replicase function together as catalytic or structural components of the chromosomal DNA replication machinery known as a replisome. At the heart of the replisome is the replicase, or DNA polymerase holoenzyme-itself a complex protein machine comprising DNA polymerase and the accessory clamp and clamp loader proteins. Prokaryotic single-stranded DNA-binding protein (SSB) and eukaryotic replication protein A (RPA) are known to bind several proteins involved in DNA metabolism. The interactions between SSB and primase and between SSB and χ protein of γ/τ complex are critical for assembly of DNA polymerase onto primed DNA. Each replisomal protein provides a specific function or interaction at a specific point in the DNA replication pathway, enabling highly efficient DNA synthesis. Cell survival depends on the ability of the replisomal protein machinery to overcome such blocks in the path of DNA elongation. Bypass polymerase activity appears to be distributive, suggesting that once the polymerase traverses the lesion it "falls off," allowing reassembly of the replicative DNA polymerase and continued DNA elongation. The processes described clearly indicate that the pathways of DNA replication, recombination, and repair are intimately intertwined.

Citation: Hingorani M, O'Donnell M. 2005. DNA Elongation, p 193-216. In Higgins N (ed), The Bacterial Chromosome. ASM Press, Washington, DC. doi: 10.1128/9781555817640.ch10

Key Concept Ranking

DNA Replication Proteins
0.5638285
DNA Synthesis
0.5523324
HIV Reverse Transcriptase
0.50259066
0.5638285
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Replisome. At the DNA replication fork the helicase unwinds dsDNA, making ssDNA templates that are stabilized by SSB. Primase synthesizes RNA primers around which a clamp loader assembles circular clamps for use by the DNA polymerase. The holoenzyme, comprising two core DNA polymerases (αεθ), a connector protein (τ) and clamp loader (γ/τ complex), and two clamps (β), replicates leading and lagging DNA strands simultaneously. A connection between the holoenzyme (via t) and DnaB helicase stimulates DNA unwinding up to the speed of the DNA polymerase. Additional connections between the helicase and primase, the clamp loader, and SSB help coordinate the activities of the various protein components and help stabilize the replisome at the fork junction.

Citation: Hingorani M, O'Donnell M. 2005. DNA Elongation, p 193-216. In Higgins N (ed), The Bacterial Chromosome. ASM Press, Washington, DC. doi: 10.1128/9781555817640.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

DNA polymerase structure and catalytic site geometry. (A and B) The polymerase structure comprises the "fingers," "palm," and "thumb" domains arranged to form a DNA binding cleft with the active site at the base (in the palm domain). (B and C) The template strand is bent to expose a nucleotide for base pairing with the incoming dNTP (shown for T7 DNA polymerase), while the primer 3′-OH end and the new base pair are held snugly within the active site to facilitate correct base pairing and nucleotidyl transfer. (D) At the active site, two metal ions (A and B) are coordinated by conserved acidic residues and water molecules, and in turn coordinate the phosphate group oxygens of the incoming dNTP. The primer 3′-OH initiates nucleophilic attack on the a phosphate of dNTP, resulting in phosphodiester bond formation and pyrophosphate release.

Citation: Hingorani M, O'Donnell M. 2005. DNA Elongation, p 193-216. In Higgins N (ed), The Bacterial Chromosome. ASM Press, Washington, DC. doi: 10.1128/9781555817640.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

DNA polymerase mechanism of action. The DNA synthesis pathway (shown here for T7 DNA polymerase) initiates with rapid and high-affinity binding of primer-template DNA and dNTP to the polymerase. Next, the polymerase undergoes a slow, rate-limiting conformation in preparation for nucleotidyl transfer. The fast chemistry step is followed by another conformational change that allows product release and translocation of the new 3′-OH terminus into the active site. (A) An image of the Klentaq1●DNA “open” complex with primed DNA in the binding cleft. The arrow predicts translocation of the primer-template following nucleotidyl transfer. (B) A Klentaq1*●DNA●dNTP “closed” ternary complex, with DNA and dNTP trapped securely within the active site due to the inward movement of the fingers domain.

Citation: Hingorani M, O'Donnell M. 2005. DNA Elongation, p 193-216. In Higgins N (ed), The Bacterial Chromosome. ASM Press, Washington, DC. doi: 10.1128/9781555817640.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Circular clamps. (A) Circular sliding clamps from (β dimer), bacteriophages T4 (gp45 trimer) and RB69, and and humans (PCNA trimer). The central cavity averages 35 Å in diameter, sufficient to encircle dsDNA without any steric hindrance. (B) A model structure of the bacteriophage RB69 DNA polymerase tethered by its circular clamp (onto DNA) via a short C-terminal polymerase peptide connector.

Citation: Hingorani M, O'Donnell M. 2005. DNA Elongation, p 193-216. In Higgins N (ed), The Bacterial Chromosome. ASM Press, Washington, DC. doi: 10.1128/9781555817640.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Clamp loader. (A) A model pathway of clamp assembly by the clamp loader begins with ATP binding to the γ/τ subunits, which triggers a change in the complex conformation from "closed" (in which the β-binding element on d is buried) to "open," allowing interaction between γ/τ complex and b. The clamp loader • clamp complex binds primed DNA with high affinity, which triggers rapid ATP hydrolysis and clamp assembly around DNA. The ADP-bound γ/τ complex releases both β and DNA linked topologically to each other. ADP dissociation recycles the clamp loader for the next round of clamp assembly on DNA. (B) A crystal structure of the γδδ′ clamp loader (χ and ψ are not essential for clamp assembly) reveals three γ subunits, one δ, and one δ' subunit arranged in a pentamer. The C-terminal domains of all five proteins are arranged in a closed ring, but a large separation between the N-terminal domains of δ and d0 in an open conformation exposes the β-binding element on δ.

Citation: Hingorani M, O'Donnell M. 2005. DNA Elongation, p 193-216. In Higgins N (ed), The Bacterial Chromosome. ASM Press, Washington, DC. doi: 10.1128/9781555817640.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Additional DNA replication proteins. (A) Crystal structure of the phage T7 gp4 helicase domain, looking down the 61-symmetry axis, and a model of the gp4 helicase/primase at the DNA replication fork junction (based on electron microscopy data). (B) Crystal structure of the primase catalytic domain indicating the active site. (C) Crystal structure of the SSB tetramer showing the oligonucleotide-binding domain (five-stranded antiparallel β barrel) per monomer. (D) Crystal structure of the T. filiformis NAD-dependent DNA ligase with DNA modeled within the central channel. (E) Crystal structure of type IA topoisomerase III. (F) The DNA binding/cleavage fragment of type II topoisomerase II (analogous to DNA gyrase).

Citation: Hingorani M, O'Donnell M. 2005. DNA Elongation, p 193-216. In Higgins N (ed), The Bacterial Chromosome. ASM Press, Washington, DC. doi: 10.1128/9781555817640.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Protein switching during lagging DNA synthesis. (A) After synthesizing a primer, the primase maintains its grip on the site aided by interaction with SSB. (B) The χ subunit disrupts the primase-SSB contact, which triggers primase recycling to an upstream site and allows the clamp loader to assemble a circular clamp around the primed DNA. Meanwhile, the lagging strand polymerase finishes an Okazaki fragment and releases its clamp and DNA. The clamp on DNA is likely bound next by Pol I and DNA ligase for processing of Okazaki fragments into a continuous lagging strand. (C) The lagging strand polymerase replaces the clamp loader at the upstream primed DNA (with β on it) and initiates a new fragment. Meanwhile, the leftover β clamp on DNA is free to be recycled by the δ clamp unloader.

Citation: Hingorani M, O'Donnell M. 2005. DNA Elongation, p 193-216. In Higgins N (ed), The Bacterial Chromosome. ASM Press, Washington, DC. doi: 10.1128/9781555817640.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817640.chap10
1. Alley, S. C.,, A. D. Jones,, P. Soumillion,, and S. J. Benkovic. 1999. The carboxyl terminus of the bacteriophage T4 DNA polymerase contacts its sliding clamp at the subunit interface. J. Biol. Chem. 274: 24485 24489.
2. Aravind, L.,, D. D. Leipe,, and E. V. Koonin. 1998. Toprim— a conserved catalytic domain in type IA and II topoisomerases, DnaG-type primases, OLD family nucleases and RecR proteins. Nucleic Acids Res. 26: 4205 4213.
3. Astatke, M.,, K. Ng,, N. D. Grindley,, and C. M. Joyce. 1998. A single side chain prevents Escherichia coli DNA polymerase I (Klenow fragment) from incorporating ribonucleotides. Proc. Natl. Acad. Sci. USA 95: 3402 3407.
4. Augustin, M. A.,, R. Huber,, and J. T. Kaiser. 2001. Crystal structure of a DNA-dependent RNA polymerase (DNA primase). Nat. Struct. Biol. 8: 57 61.
5. Baird, C. L.,, T. T. Harkins,, S. K. Morris,, and J. E. Lindsley. 1999. Topoisomerase II drives DNA transport by hydrolyzing one ATP. Proc. Natl. Acad. Sci. USA 96: 13685 13690.
6. Beese, L. S.,, V. Derbyshire,, and T. A. Steitz. 1993. Structure of DNA polymerase I Klenow fragment bound to duplex DNA. Science 260: 352 355.
7. Beese, L. S.,, and T. A. Steitz. 1991. Structural basis for the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism. EMBO J. 10: 25 33.
8. Benkovic, S. J.,, A. M. Valentine,, and F. Salinas. 2001. Replisome- mediated DNA replication. Annu. Rev. Biochem. 70: 181 208.
9. Berdis, A. J.,, and S. J. Benkovic. 1998. Simultaneous formation of functional leading and lagging strand holoenzyme complexes on a small, defined DNA substrate. Proc. Natl. Acad. Sci. USA 95: 11128 11133.
10. Berger, J. M.,, S. J. Gamblin,, S. C. Harrison,, and J. C. Wang. 1996. Structure and mechanism of DNA topoisomerase II. Nature 379: 225 232.
11. Bertram, J. G.,, L. B. Bloom,, M. M. Hingorani,, J. M. Beechem,, M. O’Donnell,, and M. F. Goodman. 2000. Molecular mechanism and energetics of clamp assembly in Escherichia coli. The role of ATP hydrolysis when gamma complex loads beta on DNA. J. Biol. Chem. 275: 28413 28420.
12. Bhattacharyya, S.,, and M. A. Griep. 2000. DnaB helicase affects the initiation specificity of Escherichia coli primase on single-stranded DNA templates. Biochemistry 39: 745 752.
13. Bloom, L. B.,, X. Chen,, D. K. Fygenson,, J. Turner,, M. O’Donnell,, and M. F. Goodman. 1997. Fidelity of Escherichia coli DNA polymerase III holoenzyme. The effects of beta, gamma complex processivity proteins and epsilon proofreading exonuclease on nucleotide misincorporation efficiencies. J. Biol. Chem. 272: 27919 27930.
14. Bochkarev, A.,, E. Bochkareva,, L. Frappier,, and A. M. Edwards. 1999. The crystal structure of the complex of replication protein A subunits RPA32 and RPA14 reveals a mechanism for single-stranded DNA binding. EMBO J. 18: 4498 4504.
15. Bochkarev, A.,, R. A. Pfuetzner,, A. M. Edwards,, and L. Frappier. 1997. Structure of the single-stranded-DNAbinding domain of replication protein A bound to DNA. Nature 385: 176 181.
16. Bonnin, A.,, J. M. Lazaro,, L. Blanco,, and M. Salas. 1999. A single tyrosine prevents insertion of ribonucleotides in the eukaryotic-type phi29 DNA polymerase. J. Mol. Biol. 290: 241 251.
17. Brautigam, C. A.,, and T. A. Steitz. 1998. Structural and functional insights provided by crystal structures of DNA polymerases andtheir substrate complexes. Curr. Opin. Struct. Biol. 8: 54 63.
18. Bruck, I.,, and M. O’Donnell. 2000. The DNA replication machine of a gram-positive organism. J. Biol. Chem. 275: 28971 28983.
18a.. Bruck, I.,, A. Yuzhakov,, O. Yurieva,, D. Jeruzalmi,, M. Skangalis,, J. Kuriyan,, and M. O’Donnell. 2002. Analysis of multicomponent thermostable DNA polymerase III replicase from an extreme thermophile. J. Biol. Chem. 277: 17334 17348.
19. Bryant, F. R.,, K. A. Johnson,, and S. J. Benkovic. 1983. Elementary steps in the DNA polymerase I reaction pathway. Biochemistry 22: 3537 3546.
20. Burgers, P. M. 1998. Eukaryotic DNA polymerases in DNA replication and DNA repair. Chromosoma 107: 218 227.
21. Burgers, P. M. J.,, E. V. Koonin,, E. Bruford,, L. Blanco,, K. C. Burtis,, M. F. Christman,, W. C. Copeland,, E. C. Friedberg,, F. Hanaoka,, D. C. Hinkle,, C. W. Lawrence,, M. Nakanishi,, H. Ohmori,, L. Prakash,, S. Prakash,, C. A. Reynaud,, A. Sugino,, T. Toda,, Z. Wang,, J. C. Weill,, and R. Woodgate. 2001. Eukaryotic DNA polymerases: proposal for a revised nomenclature. J. Biol. Chem. 276: 43487 43490.
22. Cases-Gonzalez, C. E.,, M. Gutierrez-Rivas,, and L. Menendez- Arias. 2000. Coupling ribose selection to fidelity of DNA synthesis. The role of Tyr-115 of human immunodeficiency virus type 1 reverse transcriptase. J. Biol. Chem. 275: 19759 19767.
23. Champoux, J. J. 2001. DNA topoisomerases: structure, function, and mechanism. Annu. Rev. Biochem. 70: 369 413.
24. Changela, A.,, R. J. DiGate,, and A. Mondragon. 2001. Crystal structure of a complex of a type IA DNA topoisomerase with a single-stranded DNA molecule. Nature 411: 1077 1081.
25. Chong, J. P.,, M. K. Hayashi,, M. N. Simon,, R. M. Xu,, and B. Stillman. 2000. A double-hexamer archaeal minichromosome maintenance protein is an ATP-dependent DNA helicase. Proc. Natl. Acad. Sci. USA 97: 1530 1535.
26. Chuang, L. S.,, H. I. Ian,, T. W. Koh,, H. H. Ng,, G. Xu,, and B. F. Li. 1997. Human DNA-(cytosine-5) methyltransferase- PCNA complex as a target for p21WAF1. Science 277: 1996 2000.
27. Cox, M. M. 2001. Historical overview: searching for replication help in all of the rec places. Proc. Natl. Acad. Sci. USA 98: 8173 8180.
28. De Felice, M.,, C. W. Sensen,, R. L. Charlebois,, M. Rossi,, and F. M. Pisani. 1999. Two DNA polymerase sliding clamps from the thermophilic archaeon Sulfolobus solfataricus. J. Mol. Biol. 291: 47 57.
29. Delarue, M.,, O. Poch,, N. Tordo,, D. Moras,, and P. Argos. 1990. An attempt to unify the structure of polymerases. Protein Eng. 3: 461 467.
30. Donlin, M. J.,, S. S. Patel,, and K. A. Johnson. 1991. Kinetic partitioning between the exonuclease and polymerase sites in DNA error correction. Biochemistry 30: 538 546.
31. Dornreiter, I.,, L. F. Erdile,, I. U. Gilbert,, D. von Winkler,, T. J. Kelly,, and E. Fanning. 1992. Interaction of DNA polymerase alpha-primase with cellular replication protein A and SV40 T antigen. EMBO J. 11: 769 776.
32. Doublie, S.,, and T. Ellenberger. 1998. The mechanism of action of T7 DNA polymerase. Curr. Opin. Struct. Biol. 8: 704 712.
33. Doublie, S.,, S. Tabor,, A. M. Long,, C. C. Richardson,, and T. Ellenberger. 1998. Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 A resolution. Nature 391: 251 258.
34. Egelman, H. H.,, X. Yu,, R. Wild,, M. M. Hingorani,, and S. S. Patel. 1995. Bacteriophage T7 helicase/primase proteins form rings around single-stranded DNA that suggest a general structure for hexameric helicases. Proc. Natl. Acad. Sci. USA 92: 3869 3873.
35. Eggleston, A. K.,, and S. C. West. 1997. Recombination initiation: easy as A, B, C, D. . . chi? Curr. Biol. 7: R745 R749.
36. Fass, D.,, C. E. Bogden,, and J. M. Berger. 1999. Quaternary changes in topoisomerase II may direct orthogonal movement of two DNA strands. Nat. Struct. Biol. 6: 322 326.
37. Fay, P. J.,, K. O. Johanson,, C. S. McHenry,, and R. A. Bambara. 1981. Size classes of products synthesized processively by DNA polymerase III and DNA polymerase III holoenzyme of Escherichia coli. J. Biol. Chem. 256: 976 983.
38. Feinberg, H.,, A. Changela,, and A. Mondragon. 1999. Protein- nucleotide interactions in E. coli DNA topoisomerase I. Nat. Struct. Biol. 6: 961 968.
39. Fleischmann, R. D.,, M. D. Adams,, O. White,, R. A. Clayton,, E. F. Kirkness,, A. R. Kerlavage,, C. J. Bult,, J. F. Tomb,, B. A. Dougherty,, J. M. Merrick, et al. 1995. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269: 496 512.
40. Franklin, M. C.,, J. Wang,, and T. A. Steitz. 2001. Structure of the replicating complex of a pol alpha family DNA polymerase. Cell 105: 657 667.
41. Frey, M. W.,, L. C. Sowers,, D. P. Millar,, and S. J. Benkovic. 1995. The nucleotide analog 2-aminopurine as a spectroscopic probe of nucleotide incorporation by the Klenow fragment of Escherichia coli polymerase I and bacteriophage T4 DNA polymerase. Biochemistry 34: 9185 9192.
42. Gao, D.,, and C. S. McHenry. 2001. tau binds and organizes Escherichia coli replication proteins through distinct domains. Domain IV, located within the unique C terminus of tau, binds the replication fork helicase, DnaB. J. Biol. Chem. 276: 4441 4446.
43. Gao, D.,, and C. S. McHenry. 2001. tau binds and organizes Escherichia coli replication through distinct domains. Partial proteolysis of terminally tagged tau to determine candidate domains and to assign domain V as the alpha binding domain. J. Biol. Chem. 276: 4433 4440.
44. Gao, G.,, M. Orlova,, M. M. Georgiadis,, W. A. Hendrickson,, and S. P. Goff. 1997. Conferring RNA polymerase activity to a DNA polymerase: a single residue in reverse transcriptase controls substrate selection. Proc. Natl. Acad. Sci. USA 94: 407 411.
45. Gardner, A. F.,, and W. E. Jack. 1999. Determinants of nucleotide sugar recognition in an archaeon DNA polymerase. Nucleic Acids Res. 27: 2545 2553.
46. Genschel, J.,, U. Curth,, and C. Urbanke. 2000. Interaction of E. coli single-stranded DNA binding protein (SSB) with exonuclease I. The carboxy-terminus of SSB is the recognition site for the nuclease. Biol. Chem. 381: 183 192.
47. Gibbs, E.,, Z. Kelman,, J. M. Gulbis,, M. O’Donnell,, J. Kuriyan,, P. M. Burgers,, and J. Hurwitz. 1997. The influence of the proliferating cell nuclear antigen-interacting domain of p21(CIP1) on DNA synthesis catalyzed by the human and Saccharomyces cerevisiae polymerase delta holoenzymes. J. Biol. Chem. 272: 2373 2381.
48. Golub, E. I.,, R. C. Gupta,, T. Haaf,, M. S. Wold,, and C. M. Radding. 1998. Interaction of human rad51 recombination protein with single-stranded DNA binding protein, RPA. Nucleic Acids Res. 26: 5388 5393.
49. Goodman, M. F.,, and B. Tippin. 2000. Sloppier copier DNA polymerases involved in genome repair. Curr. Opin. Genet. Dev. 10: 162 168.
50. Goodrich, L. D.,, T. C. Lin,, E. K. Spicer,, C. Jones,, and W. H. Konigsberg. 1997. Residues at the carboxy terminus of T4 DNA polymerase are important determinants for interaction with the polymerase accessory proteins. Biochemistry 36: 10474 10481.
51. Guenther, B.,, R. Onrust,, A. Sali,, M. O’Donnell,, and J. Kuriyan. 1997. Crystal structure of the delta' subunit of the clamp-loader complex of E. coli DNA polymerase III. Cell 91: 335 345.
52. Gulbis, J. M.,, Z. Kelman,, J. Hurwitz,, M. O’Donnell,, and J. Kuriyan. 1996. Structure of the C-terminal region of p21(WAF1/CIP1) complexed with human PCNA. Cell 87: 297 306.
53. Hacker, K. J.,, and K. A. Johnson. 1997. A hexameric helicase encircles one DNA strand and excludes the other during DNA unwinding. Biochemistry 36: 14080 14087.
54. Hingorani, M. M.,, L. B. Bloom,, M. F. Goodman,, and M. O’Donnell. 1999. Division of labor—sequential ATP hydrolysis drives assembly of a DNA polymerase sliding clamp around DNA. EMBO J. 18: 5131 5144.
55. Hingorani, M. M.,, and M. O’Donnell. 1998. ATP binding to the Escherichia coli clamp loader powers opening of the ringshaped clamp of DNA polymerase III holoenzyme. J. Biol. Chem. 273: 24550 24563.
56. Hingorani, M. M.,, and M. O’Donnell. 2000. Sliding clamps: a (tail)ored fit. Curr. Biol. 10: R25 R29.
57. Hingorani, M. M.,, M. T. Washington,, K. C. Moore,, and S. S. Patel. 1997. The dTTPase mechanism of T7 DNA helicase resembles the binding change mechanism of the F1- ATPase. Proc. Natl. Acad. Sci. USA 94: 5012 5017.
58. Ishimi, Y. 1997. A DNA helicase activity is associated with an MCM4, -6, and -7 protein complex. J. Biol. Chem. 272: 24508 24513.
59. Jarvis, T. C.,, J. W. Newport,, and P. H. von Hippel. 1991. Stimulation of the processivity of the DNA polymerase of bacteriophage T4 by the polymerase accessory proteins. The role of ATP hydrolysis. J. Biol. Chem. 266: 1830 1840.
60. Jeruzalmi, D.,, M. O’Donnell,, and J. Kuriyan. 2001. Crystal structure of the processivity clamp loader gamma (gamma) complex of E. coli DNA polymerase III. Cell 106: 429 441.
61. Jeruzalmi, D.,, O. Yurieva,, Y. Zhao,, M. Young,, J. Stewart,, M. Hingorani,, M. O’Donnell,, and J. Kuriyan. 2001. Mechanism of processivity clamp opening by the delta subunit wrench of the clamp loader complex of E. coli DNA polymerase III. Cell 106: 417 428.
62. Jezewska, M. J.,, S. Rajendran,, D. Bujalowska,, and W. Bujalowski. 1998. Does single-stranded DNA pass through the inner channel of the protein hexamer in the complex with the Escherichia coli DnaB Helicase? Fluorescence energy transfer studies. J. Biol. Chem. 273: 10515 10529.
63. Johnson, K. A. 1993. Conformational coupling in DNA polymerase fidelity. Annu. Rev. Biochem. 62: 685 713.
64. Johnson, R. E.,, G. K. Kovvali,, S. N. Guzder,, N. S. Amin,, C. Holm,, Y. Habraken,, P. Sung,, L. Prakash,, and S. Prakash. 1996. Evidence for involvement of yeast proliferating cell nuclear antigen in DNA mismatch repair. J. Biol. Chem. 271: 27987 27990.
65. Johnson, R. E.,, M. T. Washington,, S. Prakash,, and L. Prakash. 1999. Bridging the gap: a family of novel DNA polymerases that replicate faulty DNA. Proc. Natl. Acad. Sci. USA 96: 12224 12226.
66. Johnson, S. K.,, S. Bhattacharyya,, and M. A. Griep. 2000. DnaB helicase stimulates primer synthesis activity on short oligonucleotide templates. Biochemistry 39: 736 744.
67. Joyce, C. M.,, and T. A. Steitz. 1994. Function and structure relationships in DNA polymerases. Annu. Rev. Biochem. 63: 777 822.
68. Kadyrov, F. A.,, and J. W. Drake. 2001. Conditional coupling of leading-strand and lagging-strand DNA synthesis at bacteriophage T4 replication forks. J. Biol. Chem. 276: 29559 29566.
69. Kati, W. M.,, K. A. Johnson,, L. F. Jerva,, and K. S. Anderson. 1992. Mechanism and fidelity of HIV reverse transcriptase. J. Biol. Chem. 267: 25988 25997.
70. Keck, J. L.,, and J. M. Berger. 2001. Primus inter pares (first among equals). Nat. Struct. Biol. 8: 2 4.
71. Keck, J. L.,, D. D. Roche,, A. S. Lynch,, and J. M. Berger. 2000. Structure of the RNA polymerase domain of E. coli primase. Science 287: 2482 2486.
72. Kelman, Z. 2000. DNA replication in the third domain (of life). Curr. Protein Pept. Sci. 1: 1 25.
73. Kelman, Z.,, and J. Hurwitz. 2000. A unique organization of the protein subunits of the DNA polymerase clamp loader in the archaeon Methanobacterium thermoautotrophicum deltaH. J. Biol. Chem. 275: 7327 7336.
74. Kelman, Z.,, J. K. Lee,, and J. Hurwitz. 1999. The single minichromosome maintenance protein of Methanobacterium thermoautotrophicum DeltaH contains DNA helicase activity. Proc. Natl. Acad. Sci. USA 96: 14783 14788.
75. Kelman, Z.,, and M. O’Donnell. 1995. DNA polymerase III holoenzyme: structure and function of a chromosomal replicating machine. Annu. Rev. Biochem. 64: 171 200.
76. Kelman, Z.,, S. Pietrokovski,, and J. Hurwitz. 1999. Isolation and characterization of a split B-type DNA polymerase from the archaeon Methanobacterium thermoautotrophicum deltaH. J. Biol. Chem. 274: 28751 28761.
77. Kelman, Z.,, A. Yuzhakov,, J. Andjelkovic,, and M. O’Donnell. 1998. Devoted to the lagging strand—the subunit of DNA polymerase III holoenzyme contacts SSB to promote processive elongation and sliding clamp assembly. EMBO J. 17: 2436 2449.
78. Kiefer, J. R.,, C. Mao,, J. C. Braman,, and L. S. Beese. 1998. Visualizing DNA replication in a catalytically active Bacillus DNA polymerase crystal. Nature 391: 304 307.
79. Kim, S.,, H. G. Dallmann,, C. S. McHenry,, and K. J. Marians. 1996. Coupling of a replicative polymerase and helicase: a tau-DnaB interaction mediates rapid replication fork movement. Cell 84: 643 650.
80. Klemperer, N.,, D. Zhang,, M. Skangalis,, and M. O’Donnell. 2000. Cross-utilization of the beta sliding clamp by replicative polymerases of evolutionary divergent organisms. J. Biol. Chem. 275: 26136 26143.
81. Kong, X. P.,, R. Onrust,, M. O’Donnell,, and J. Kuriyan. 1992. Three-dimensional structure of the beta subunit of E. coli DNA polymerase III holoenzyme: a sliding DNA clamp. Cell 69: 425 437.
82. Kool, E. T. 1998. Replication of non-hydrogen bonded bases by DNA polymerases: a mechanism for steric matching. Biopolymers 48: 3 17.
83. Kornberg, A. 1960. Biologic synthesis of deoxyribonucleic acid. Science 131: 1503 1508.
84. Kornberg, A.,, and T. A. Baker. 1992. DNA Replication, 2nd ed. W. H. Freeman & Co., New York, N.Y..
85. Kowalczykowski, S. C. 2000. Initiation of genetic recombination and recombination-dependent replication. Trends Biochem. Sci. 25: 156 165.
86. Kreuzer, K. N. 2000. Recombination-dependent DNA replication in phage T4. Trends Biochem. Sci. 25: 165 173.
87. Krishna, T. S.,, X. P. Kong,, S. Gary,, P. M. Burgers,, and J. Kuriyan. 1994. Crystal structure of the eukaryotic DNA polymerase processivity factor PCNA. Cell 79: 1233 1243.
88. Kuriyan, J.,, and M. O’Donnell. 1993. Sliding clamps of DNA polymerases. J. Mol. Biol. 234: 915 925.
89. Lee, J.,, P. D. Chastain II,, T. Kusakabe,, J. D. Griffith,, and C. C. Richardson. 1998. Coordinated leading and lagging strand DNA synthesis on a minicircular template. Mol. Cell 1: 1001 1010.
90. Lee, J. K.,, and J. Hurwitz. 2001. Processive DNA helicase activity of the minichromosome maintenance proteins 4, 6, and 7 complex requires forked DNA structures. Proc. Natl. Acad. Sci. USA 98: 54 59.
91. Lee, J. Y.,, C. Chang,, H. K. Song,, J. Moon,, J. K. Yang,, H. K. Kim,, S. T. Kwon,, and S. W. Suh. 2000. Crystal structure of NAD(+)-dependent DNA ligase: modular architecture and functional implications. EMBO J. 19: 1119 1129.
92. Lee, S. H.,, and J. R. Walker. 1987. Escherichia coli DnaX product, the tau subunit of DNA polymerase III, is a multifunctional protein with single-stranded DNA-dependent ATPase activity. Proc. Natl. Acad. Sci. USA 84: 2713 2717.
93. Lehman, I. R. 1974. DNA ligase: structure, mechanism, and function. Science 186: 790 797.
94. Leu, F. P.,, M. M. Hingorani,, J. Turner,, and M. O’Donnell. 2000. The delta subunit of DNA polymerase III holoenzyme serves as a sliding clamp unloader in Escherichia coli. J. Biol. Chem. 275: 34609 34618.
95. Leu, F. P.,, and M. O’Donnell. 2001. Interplay of a clamp loader subunits in opening the beta sliding clamp of Escherichia coli DNA polymerase III holoenzyme. J . Biol. Chem. 276: 47185 47194.
96. Levin, D. S.,, W. Bai,, N. Yao,, M. O’Donnell,, and A. E. Tomkinson. 1997. An interaction between DNA ligase I and proliferating cell nuclear antigen: implications for Okazaki fragment synthesis and joining. Proc. Natl. Acad. Sci. USA 94: 12863 12868.
97. Li, X.,, J. Li,, J. Harrington,, M. R. Lieber,, and P. M. Burgers. 1995. Lagging strand DNA synthesis at the eukaryotic replication fork involves binding and stimulation of FEN-1 by proliferating cell nuclear antigen. J. Biol. Chem. 270: 22109 22112.
98. Li, X.,, and K. J. Marians. 2000. Two distinct triggers for cycling of the lagging strand polymerase at the replication fork. J. Biol. Chem. 275: 34757 34765.
99. Li, Y.,, S. Korolev,, and G. Waksman. 1998. Crystal structures of open and closed forms of binary and ternary complexes of the large fragment of Thermus aquaticus DNA polymerase I: structural basis for nucleotide incorporation. EMBO J. 17: 7514 7525.
100. Li, Y.,, and G. Waksman. 2001. Crystal structures of a ddATP-, ddTTP-, ddCTP, and ddGTP-trapped ternary complex of Klentaq1: insights into nucleotide incorporation and selectivity. Protein Sci. 10: 1225 1233.
101. Li, Z.,, A. Mondragon,, and R. J. DiGate. 2001. The mechanism of type IA topoisomerase-mediated DNA topological transformations. Mol. Cell 7: 301 307.
102. Lima, C. D.,, J. C. Wang,, and A. Mondragon. 1994. Threedimensional structure of the 67K N-terminal fragment of E. coli DNA topoisomerase I. Nature 367: 138 146.
103. Lin, Y. L.,, C. Chen,, K. F. Keshav,, E. Winchester,, and A. Dutta. 1996. Dissection of functional domains of the human DNA replication protein complex replication protein A. J. Biol. Chem. 271: 17190 17198.
104. Lohman, T. M.,, and M. E. Ferrari. 1994. Escherichia coli single-stranded DNA-binding protein: multiple DNAbinding modes and cooperativities. Annu. Rev. Biochem. 63: 527 570.
105. Lopez de Saro, F. J.,, and M. O’Donnell. 2001. Interaction of the beta sliding clamp with MutS, ligase, and DNA polymerase I. Proc. Natl. Acad. Sci. USA 98: 8376 8380.
106. Low, R. L.,, S. A. Rashbaum,, and N. R. Cozzarelli. 1976. Purification and characterization of DNA polymerase III from Bacillus subtilis. J. Biol. Chem. 251: 1311 1325.
107. Maga, G.,, M. Stucki,, S. Spadari,, and U. Hubscher. 2000. DNA polymerase switching: I. Replication factor C displaces DNA polymerase alpha prior to PCNA loading. J. Mol. Biol. 295: 791 801.
108. Maki, H.,, and A. Kornberg. 1987. Proofreading by DNA polymerase III of Escherichia coli depends on cooperative interaction of the polymerase and exonuclease subunits. Proc. Natl. Acad. Sci. USA 84: 4389 4392.
109. Marians, K. J. 2000. PriA-directed replication fork restart in Escherichia coli. Trends Biochem. Sci. 25: 185 189.
110. McHenry, C. S.,, M. Seville,, and M. G. Cull. 1997. A DNA polymerase III holoenzyme-like subassembly from an extreme thermophilic eubacterium. J. Mol. Biol. 272: 178 189.
111. Mer, G.,, A. Bochkarev,, R. Gupta,, E. Bochkareva,, L. Frappier,, C. J. Ingles,, A. M. Edwards,, and W. J. Chazin. 2000. Structural basis for the recognition of DNA repair proteins UNG2, XPA, and RAD52 by replication factor RPA. Cell 103: 449 456.
112. Minnick, D. T.,, M. Astatke,, C. M. Joyce,, and T. A. Kunkel. 1996. A thumb subdomain mutant of the large fragment of Escherichia coli DNA polymerase I with reduced DNA binding affinity, processivity, and frameshift fidelity. J. Biol. Chem. 271: 24954 24961.
113. Moarefi, I.,, D. Jeruzalmi,, J. Turner,, M. O’Donnell,, and J. Kuriyan. 2000. Crystal structure of the DNA polymerase processivity factor of T4 bacteriophage. J. Mol. Biol. 296: 1215 1223.
114. Molineux, I. J.,, and M. L. Gefter. 1974. Properties of the Escherichia coli in DNA binding (unwinding) protein: interaction with DNA polymerase and DNA. Proc. Natl. Acad. Sci. USA 71: 3858 3862.
115. Morais Cabral, J. H.,, A. P. Jackson,, C. V. Smith,, N. Shikotra,, A. Maxwell,, and R. C. Liddington. 1997. Crystal structure of the breakage-reunion domain of DNA gyrase. Nature 388: 903 906.
116. Mossi, R.,, and U. Hubscher. 1998. Clamping down on clamps and clamp loaders—the eukaryotic replication factor C. Eur. J. Biochem. 254: 209 216.
117. Naktinis, V.,, R. Onrust,, L. Fang,, and M. O’Donnell. 1995. Assembly of a chromosomal replication machine: two DNA polymerases, a clamp loader, and sliding clamps in one holoenzyme particle. II. Intermediate complex between the clamp loader and its clamp. J. Biol. Chem. 270: 13358 13365.
118. Naktinis, V.,, J. Turner,, and M. O’Donnell. 1996. A molecular switch in a replication machine defined by an internal competition for protein rings. Cell 84: 137 145.
119. Napolitano, R.,, R. Janel-Bintz,, J. Wagner,, and R. P. Fuchs. 2000. All three SOS-inducible DNA polymerases (Pol II, Pol IV and Pol V) are involved in induced mutagenesis. EMBO J. 19: 6259 6265.
120. Neuwald, A. F.,, L. Aravind,, J. L. Spouge,, and E. V. Koonin. 1999. AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res. 9: 27 43.
121. O’Donnell, M.,, and P. S. Studwell. 1990. Total reconstitution of DNA polymerase III holoenzyme reveals dual accessory protein clamps. J. Biol. Chem. 265: 1179 1187.
122. Ollis, D. L.,, P. Brick,, R. Hamlin,, N. G. Xuong,, and T. A. Steitz. 1985. Structure of large fragment of Escherichia coli DNA polymerase I complexed with dTMP. Nature 313: 762 766.
123. Onrust, R.,, J. Finkelstein,, V. Naktinis,, J. Turner,, L. Fang,, and M. O’Donnell. 1995. Assembly of a chromosomal replication machine: two DNA polymerases, a clamp loader, and sliding clamps in one holoenzyme particle. I. Organization of the clamp loader. J. Biol. Chem. 270: 13348 13357.
124. Pan, H.,, and D. B. Wigley. 2000. Structure of the zincbinding domain of Bacillus stearothermophilus DNA primase. Struct. Fold Des. 8: 231 239.
125. Patel, S. S.,, and K. M. Picha. 2000. Structure and function of hexameric helicases. Annu. Rev. Biochem. 69: 651 697.
126. Patel, S. S.,, I. Wong,, and K. A. Johnson. 1991. Pre-steadystate kinetic analysis of processive DNA replication including complete characterization of an exonuclease-deficient mutant. Biochemistry 30: 511 525.
127. Pelletier, H.,, M. R. Sawaya,, A. Kumar,, S. H. Wilson,, and J. Kraut. 1994. Structures of ternary complexes of rat DNA polymerase beta, a DNA template-primer, and ddCTP. Science 264: 1891 1903.
128. Pham, P.,, S. Rangarajan,, R. Woodgate,, and M. F. Goodman. 2001. Roles of DNA polymerases V and II in SOS-induced error-prone and error-free repair in Escherichia coli. Proc. Natl. Acad. Sci. USA 98: 8350 8354.
129. Pietroni, P.,, M. C. Young,, G. J. Latham,, and P. H. von Hippel. 2001. Dissection of the ATP-driven reaction cycle of the bacteriophage T4 DNA replication processivity clamp loading system. J. Mol. Biol. 309: 869 891.
130. Pisani, F. M.,, M. De Felice,, F. Carpentieri,, and M. Rossi. 2000. Biochemical characterization of a clamp-loader complex homologous to eukaryotic replication factor C from the hyperthermophilic archaeon Sulfolobus solfataricus. J. Mol. Biol. 301: 61 73.
131. Podobnik, M.,, P. McInerney,, M. O’Donnell,, and J. Kuriyan. 2000. A TOPRIM domain in the crystal structure of the catalytic core of Escherichia coli primase confirms a structural link to DNA topoisomerases. J. Mol. Biol. 300: 353 362.
132. Pritchard, A. E.,, H. G. Dallmann,, B. P. Glover,, and C. S. McHenry. 2000. A novel assembly mechanism for the DNA polymerase III holoenzyme DnaX complex: association of deltadelta' with DnaX(4) forms DnaX(3)deltadelta'. EMBO J. 19: 6536 6545.
133. Raghunathan, S.,, A. G. Kozlov,, T. M. Lohman,, and G. Waksman. 2000. Structure of the DNA binding domain of E. coli SSB bound to ssDNA. Nat. Struct. Biol. 7: 648 652.
134. Raney, K. D.,, T. E. Carver,, and S. J. Benkovic. 1996. Stoichiometry and DNA unwinding by the bacteriophage T4 41:59 helicase. J. Biol. Chem. 271: 14074 14081.
135. Reddy, M. K.,, S. E. Weitzel,, and P. H. von Hippel. 1992. Processive proofreading is intrinsic to T4 DNA polymerase. J. Biol. Chem. 267: 14157 14166.
136. Redinbo, M. R.,, J. J. Champoux,, and W. G. Hol. 1999. Structural insights into the function of type IB topoisomerases. Curr. Opin. Struct. Biol. 9: 29 36.
137. Redinbo, M. R.,, L. Stewart,, P. Kuhn,, J. J. Champoux,, and W. G. Hol. 1998. Crystal structures of human topoisomerase I in covalent and noncovalent complexes with DNA. Science 279: 1504 1513.
138. Reha-Krantz, L. J.,, and J. Hurwitz. 1978. The dnaB gene product of Escherichia coli. I. Purification, homogeneity, and physical properties. J. Biol. Chem. 253: 4043 4050.
139. Sancar, A.,, and J. E. Hearst. 1993. Molecular matchmakers. Science 259: 1415 1420.
140. San Martin, M. C.,, C. Gruss,, and J. M. Carazo. 1997. Six molecules of SV40 large T antigen assemble in a propellershaped particle around a channel. J. Mol. Biol. 268: 15 20.
141. Sawaya, M. R.,, H. Pelletier,, A. Kumar,, S. H. Wilson,, and J. Kraut. 1994. Crystal structure of rat DNA polymerase beta: evidence for a common polymerase mechanism. Science 264: 1930 1935.
142. Sawaya, M. R.,, R. Prasad,, S. H. Wilson,, J. Kraut,, and H. Pelletier. 1997. Crystal structures of human DNA polymerase beta complexed with gapped and nicked DNA: evidence for an induced fit mechanism. Biochemistry 36: 11205 11215.
143. Scheuermann, R.,, S. Tam,, P. M. Burgers,, C. Lu,, and H. Echols. 1983. Identification of the epsilon-subunit of Escherichia coli DNA polymerase III holoenzyme as the dnaQ gene product: a fidelity subunit for DNA replication. Proc. Natl. Acad. Sci. USA 80: 7085 7089.
144. Shamoo, Y.,, and T. A. Steitz. 1999. Building a replisome from interacting pieces: sliding clamp complexed to a peptide from DNA polymerase and a polymerase editing complex. Cell 99: 155 166.
145. Shechter, D. F.,, C. Y. Ying,, and J. Gautier. 2000. The intrinsic DNA helicase activity of Methanobacterium thermoautotrophicum delta H minichromosome maintenance protein. J. Biol. Chem. 275: 15049 15059.
146. Shiomi, Y.,, J. Usukura,, Y. Masamura,, K. Takeyasu,, Y. Nakayama,, C. Obuse,, H. Yoshikawa,, and T. Tsurimoto. 2000. ATP-dependent structural change of the eukaryotic clamp-loader protein, replication factor C. Proc. Natl. Acad. Sci. USA 97: 14127 14132.
147. Sriskanda, V.,, R. W. Moyer,, and S. Shuman. 2001. Nad+dependent DNA ligase encoded by a eukaryotic virus. J. Biol. Chem. 276: 36100 36109.
148. Stewart, J.,, M. M. Hingorani,, Z. Kelman,, and M. O’Donnell. 2001. Mechanism of beta clamp opening by the delta subunit of Escherichia coli DNA polymerase III holoenzyme. J. Biol. Chem. 276: 19182 19189.
149. Stewart, L.,, M. R. Redinbo,, X. Qiu,, W. G. Hol,, and J. J. Champoux. 1998. A model for the mechanism of human topoisomerase I. Science 279: 1534 1541.
150. Studwell, P. S.,, and M. O’Donnell. 1990. Processive replication is contingent on the exonuclease subunit of DNA polymerase III holoenzyme. J. Biol. Chem. 265: 1171 1178.
151. Stukenberg, P. T.,, and M. O’Donnell. 1995. Assembly of a chromosomal replication machine: two DNA polymerases, a clamp loader, and sliding clamps in one holoenzyme particle. V. Four different polymerase-clamp complexes on DNA. J. Biol. Chem. 270: 13384 13391.
152. Stukenberg, P. T.,, P. S. Studwell-Vaughan,, and M. O’Donnell. 1991. Mechanism of the sliding beta-clamp of DNA polymerase III holoenzyme. J. Biol. Chem. 266: 11328 11334.
153. Stukenberg, P. T.,, J. Turner,, and M. O’Donnell. 1994. An explanation for lagging strand replication: polymerase hopping among DNA sliding clamps. Cell 78: 877 887.
154. Sutton, M. D.,, and G. C. Walker. 2001. Managing DNA polymerases: coordinating DNA replication, DNA repair, and DNA recombination. Proc. Natl. Acad. Sci. USA 98: 8342 8349.
155. Tabor, S.,, and C. C. Richardson. 1981. Template recognition sequence for RNA primer synthesis by gene 4 protein of bacteriophage T7. Proc. Natl. Acad. Sci. USA 78: 205 209.
156. Tang, M.,, P. Pham,, X. Shen,, J. S. Taylor,, M. O’Donnell,, R. Woodgate,, and M. F. Goodman. 2000. Roles of E. coli DNA polymerases IV and V in lesion-targeted and untargeted SOS mutagenesis. Nature 404: 1014 1018.
157. Timson, D. J.,, M. R. Singleton,, and D. B. Wigley. 2000. DNA ligases in the repair and replication of DNA. Mutat. Res. 460: 301 318.
158. Tomkinson, A. E.,, and D. S. Levin. 1997. Mammalian DNA ligases. Bioessays 19: 893 901.
159. Tougu, K.,, H. Peng,, and K. J. Marians. 1994. Identification of a domain of Escherichia coli primase required for functional interaction with the DnaB helicase at the replication fork. J. Biol. Chem. 269: 4675 4682.
160. Tsuchihashi, Z.,, and A. Kornberg. 1989. ATP interactions of the tau and gamma subunits of DNA polymerase III holoenzyme of Escherichia coli. J. Biol. Chem. 264: 17790 17795.
161. Tsurimoto, T.,, and B. Stillman. 1990. Functions of replication factor C and proliferating-cell nuclear antigen: functional similarity of DNA polymerase accessory proteins from human cells and bacteriophage T4. Proc. Natl. Acad. Sci. USA 87: 1023 1027.
162. Turner, J.,, M. M. Hingorani,, Z. Kelman,, and M. O’Donnell. 1999. The internal workings of a DNA polymerase clamploading machine. EMBO J. 18: 771 783.
163. Umezu, K.,, N. W. Chi,, and R. D. Kolodner. 1993. Biochemical interaction of the Escherichia coli RecF, RecO, and RecR proteins with RecA protein and single-stranded DNA binding protein. Proc. Natl. Acad. Sci. USA 90: 3875 3879.
164. Waga, S.,, G. Bauer,, and B. Stillman. 1994. Reconstitution of complete SV40 DNA replication with purified replication factors. J. Biol. Chem. 269: 10923 10934.
165. Waga, S.,, and B. Stillman. 1998. The DNA replication fork in eukaryotic cells. Annu. Rev. Biochem. 67: 721 751.
166. Wagner, J.,, S. Fujii,, P. Gruz,, T. Nohmi,, and R. P. Fuchs. 2000. The beta clamp targetsDNApolymerase IV toDNAand strongly increases its processivity. EMBO Rep. 1: 484 488.
167. Wang, J. C. 1996. DNA topoisomerases. Annu. Rev. Biochem. 65: 635 692.
168. Warbrick, E. 2000. The puzzle of PCNA’s many partners. Bioessays 22: 997 1006.
169. Washington, M. T.,, R. E. Johnson,, S. Prakash,, and L. Prakash. 2001. Mismatch extension ability of yeast and human DNA polymerase eta. J. Biol. Chem. 276: 2263 2266.
170. Wong, I.,, S. S. Patel,, and K. A. Johnson. 1991. An induced-fit kinetic mechanism for DNA replication fidelity: direct measurement by single-turnover kinetics. Biochemistry 30: 526 537.
171. Yao, N.,, J. Turner,, Z. Kelman,, P. T. Stukenberg,, F. Dean,, D. Shechter,, Z. Q. Pan,, J. Hurwitz,, and M. O’Donnell. 1996. Clamp loading, unloading and intrinsic stability of the PCNA, beta and gp45 sliding clamps of human, E. coli and T4 replicases. Genes Cells 1: 101 113.
172. Yoda, K.,, H. Yasuda,, X. W. Jiang,, and T. Okazaki. 1988. RNA-primed initiation sites of DNA replication in the origin region of bacteriophage lambda genome. Nucleic Acids Res. 16: 6531 6546.
173. Yong, Y.,, and L. J. Romano. 1996. Benzo[a]pyrene-DNA adducts inhibit the DNA helicase activity of the bacteriophage T7 gene 4 protein. Chem. Res. Toxicol. 9: 179 187.
174. You, Z.,, Y. Komamura,, and Y. Ishimi. 1999. Biochemical analysis of the intrinsic Mcm4-Mcm6-mcm7 DNA helicase activity. Mol. Cell. Biol. 19: 8003 8015.
175. Yurieva, O.,, M. Skangalis,, J. Kuriyan,, and M. O’Donnell. 1997. Thermus thermophilus dnaX homolog encoding gamma- and tau-like proteins of the chromosomal replicase. J. Biol. Chem. 272: 27131 27139.
176. Yuzhakov, A.,, Z. Kelman,, J. Hurwitz,, and M. O’Donnell. 1999. Multiple competition reactions for RPA order the assembly of the DNA polymerase delta holoenzyme. EMBO J. 18: 6189 6199.
177. Yuzhakov, A.,, Z. Kelman,, and M. O’Donnell. 1999. Trading places on DNA—a three-point switch underlies primer handoff from primase to the replicative DNA polymerase. Cell 96: 153 163.
178. Yuzhakov, A.,, J. Turner,, and M. O’Donnell. 1996. Replisome assembly reveals the basis for asymmetric function in eading and lagging strand replication. Cell 86: 877 886.

Tables

Generic image for table
Table 1

DNA replication proteins in E. coli

Citation: Hingorani M, O'Donnell M. 2005. DNA Elongation, p 193-216. In Higgins N (ed), The Bacterial Chromosome. ASM Press, Washington, DC. doi: 10.1128/9781555817640.ch10

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error