Chapter 14 : Overview of Transcription

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Overview of Transcription, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817640/9781555812324_Chap14-1.gif /docserver/preview/fulltext/10.1128/9781555817640/9781555812324_Chap14-2.gif


Bacterial RNA polymerase provides the central model for the transcription elongation complex and its various interesting fates-backtracking and correction by Gre protein-mediated transcript cleavage, transcription termination, and the antitermination controls that were discovered in bacteria. RNA polymerase and its transcription factors have functions beyond their obvious activity to provide RNA molecules to the cell, reflecting the fact that RNA polymerase and the process of transcription must have evolved as DNA arose from the primal RNA world-neither is worth much without the other. There is evidence or informed speculation implicating RNA polymerase and transcription proteins in processes of replication, DNA repair, and cell division. Thus, transcription by RNA polymerase activates the origins of replication of and phage λ in some structural way independent of the RNA product. Just as transcription and replication coevolved, so did the coordination of chromosome segregation and cell division arise in the context of both. DNA is transcribed as it moves about the cell in an organized fashion during replication. RNA is translated at the same time, causing an added complication when emerging membrane proteins are inserted into the membrane and provide points of fixation for the complex.

Citation: Roberts J. 2005. Overview of Transcription, p 277-281. In Higgins N (ed), The Bacterial Chromosome. ASM Press, Washington, DC. doi: 10.1128/9781555817640.ch14

Key Concept Ranking

RNA Polymerase
Transcription Elongation
Transcription Termination
Transcription Initiation
Transfer RNA
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

σ70 family members from four diverse bacteria: (E), (CC or C (B), and (M). The seventh sigma factor of , σ54, is unrelated to the main sigma family and is not shown. Reprinted from reference 16 with permission.

Citation: Roberts J. 2005. Overview of Transcription, p 277-281. In Higgins N (ed), The Bacterial Chromosome. ASM Press, Washington, DC. doi: 10.1128/9781555817640.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Barker, M. M.,, T. Gaal,, and R. L. Gourse. 2001. Mechanism of regulation of transcription initiation by ppGpp. II. Models for positive control based on properties of RNAP mutants and competition for RNAP. J. Mol. Biol. 305: 689702.
2. Bentley, S. D.,, K. F. Chater,, A.-M. CerdeñoTárraga,, G. L. Challis,, N. R. Thomson,, K. D. James,, D. E. Harris,, M. A. Quail,, H. Kieser,, D. Harper,, A. Bateman,, S. Brown,, G. Chandra,, C. W. Chen,, M. Collins,, A. Cronin,, A. Fraser,, A. Goble,, J. Hidalgo,, T. Hornsby,, S. Howarth,, C.-H. Huang,, T. Kieser,, L. Larke,, L. Murphy,, K. Oliver,, S. O’Neil,, E. Rabbinowitsch,, M.-A. Rajandream,, K. Rutherford,, S. Rutter,, K. Seeger,, D. Saunders,, S. Sharp,, R. Squares,, S. Squares,, K. Taylor,, T. Warren,, A. Wietzorrek,, J. Woodward,, B. G. Barrell,, J. Parkhill,, and D. A. Hopwood. 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141147.
3. Bohr, V. A.,, C. A. Smith,, D. S. Okumoto,, and P. C. Hanawalt. 1985. DNA repair in an active gene: removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall. Cell 40:359369.
4. Cashel, M.,, D. R. Gentry,, V. J. Hernandez,, and D. Vinella,. 1996. The stringent response, p. 14581496. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, D.C.
5. Das, A.,, D. Court,, and S. Adhya. 1976. Isolation and characterization of conditional lethal mutants of Escherichia coli defective in transcription termination factor rho. Proc. Natl. Acad. Sci. USA 73:19591963.
6. Dworkin, J.,, and R. Losick. 2002. Does RNA polymerase help drive chromosome segregation in bacteria? Proc. Natl. Acad. Sci. USA 99:1408914094.
7. Epshtein, V.,, A. S. Mironov,, and E. Nudler. 2003. The riboswitch-mediated control of sulfur metabolism in bacteria. Proc. Natl. Acad. Sci. USA 100:50525056.
8. French, S. 1992. Consequences of replication fork movement through transcription units in vivo. Science 258:13621365.
9. Jordi, B. J.,, T. A. Owen-Hughes,, C. S. Hulton,, and C. F. Higgins. 1995. DNA twist, flexibility and transcription of the osmoregulated proU promoter of Salmonella typhimurium. EMBO J. 14:56905700.
10. Lilley, D. M.,, and C. F. Higgins. 1991. Local DNA topology and gene expression: the case of the leu-500 promoter. Mol. Microbiol. 5:779783.
11. Liu, B.,, M. L. Wong,, and B. Alberts. 1994. A transcribing RNA polymerase molecule survives DNA replication without aborting its growing RNA chain. Proc. Natl. Acad. Sci. USA 91:1066010664.
12. Liu, C.,, L. S. Heath,, and C. L. Turnbough. 1994. Regulation of pyrBI operon expression in Escherichia coli by UTPsensitive reiterative RNA synthesis during transcriptional initiation. Genes Dev. 8:29042912.
13. Mandal, M.,, B. Boese,, J. E. Barrick,, W. C. Winkler,, and R. R. Breaker. 2003. Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria. Cell 113:577586.
14. McDaniel, B. A. M.,, F. J. Grundy,, I. Artsimovitch,, and T. M. Henkin. 2003. Transcription termination control of the S box system: direct measurement of S-adenosylmethionine by the leader RNA. Proc. Natl. Acad. Sci. USA 100:30833088.
15. McGlynn, P.,, and R. G. Lloyd. 2000. Modulation of RNA polymerase by (p)ppGpp reveals a RecG-dependent mechanism for replication fork progression. Cell 101:3541.
16. Paget, M. S. B.,, and J. D. Helmann. 2003. The s70 family of sigma factors. Genome Biol. 4:203.
17. Park, J. S.,, M. T. Marr,, and J. W. Roberts. 2002. E. coli transcription repair coupling factor (Mfd protein) rescues arrested complexes by promoting forward translocation. Cell 109:757767.
18. Schneider, D. A.,, W. Ross,, and R. L. Gourse. 2003. Control of rRNA expression in Escherichia coli. Curr. Opin. Microbiol. 6:151156.
19. Schnetz, K. 1995. Silencing of Escherichia coli bgl promoter by flanking sequence elements. EMBO J. 14:25452550.
20. Selby, C. P.,, and A. Sancar. 1993. Transcription-repair coupling and mutation frequency decline. J. Bacteriol. 175: 75097514.
21. Simon, L. D.,, M. Gottesman,, K. Tomczak,, and S. Gottesman. 1979. Hyperdegradation of proteins in Escherichia coli rho mutants. Proc. Natl. Acad. Sci. USA 76:16231627.
22. Tomizawa, J.,, T. Itoh,, G. Selzer,, and T. Som. 1981. Inhibition of ColE1 RNA primer formation by a plasmid-specified small RNA. Proc. Natl. Acad. Sci. USA 78:14211425.
23. Wu, H.-Y.,, S. Shyy,, J. C. Wang,, and L. F. Liu. 1988. Transcription generates positively and negatively supercoiled domains in the template. Cell 53:433440.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error