1887

Chapter 18 : mRNA Decay and Processing

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

mRNA Decay and Processing, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817640/9781555812324_Chap18-1.gif /docserver/preview/fulltext/10.1128/9781555817640/9781555812324_Chap18-2.gif

Abstract:

Since there have been several extensive reviews of mRNA decay within the last several years, this chapter focuses on issues that have not been completely resolved. These include the importance of RNA structural elements in mRNA decay, the existence and function of multiprotein mRNA decay complexes, the role of polyadenylation in mRNA decay, the regulation of mRNA decay, the location of mRNA decay within the cell, whether is a suitable paradigm for mRNA processing and decay, the interrelationship between mRNA processing and decay, and whether all the proteins involved in mRNA decay and processing have been identified. Within these multiprotein complexes are a variety of 3' -> 5' exonucleases that are homologous to RNase PH, RNase R, and RNase D. While these enzymes in seem to be exclusively involved in the processing of tRNAs, it would not be unreasonable to think that some type of bacterial exosome might exist to promote 5′ → 3′ mRNA decay. Oligoribonuclease is responsible for degrading the very short oligoribonucleotides that are no longer substrates for PNPase, RNase II, or RNase R. With the exception of RNase E, RNase G, RNase III, and possibly yet to be identified endonucleases, all the other RNases in initiate degradation of mRNAs at the 3' terminus. mRNA decay and processing play integral roles in the regulation of bacterial gene expression.

Citation: Kushner S. 2005. mRNA Decay and Processing, p 327-346. In Higgins N (ed), The Bacterial Chromosome. ASM Press, Washington, DC. doi: 10.1128/9781555817640.ch18

Key Concept Ranking

Gene Expression and Regulation
0.5168426
Ribosome Binding Site
0.405084
0.5168426
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Physical relationship of RNase E and RNase G. The numbers below the horizontal rectangles represent the approximate domain boundaries as determined by McDowall and Cohen ( ) and Vanzo et al. ( ). ARRBS (rectangle) indicates the arginine-rich RNA binding site. The locations of the RhlB RNA helicase, enolase, and PNPase are as described by Vanzo et al. ( ). The allele retains the catalytic domain and the ARRBS and has been described by Ow et al. ( ). The RNase G protein is 34% identical to the first 488 amino acids of RNase E.

Citation: Kushner S. 2005. mRNA Decay and Processing, p 327-346. In Higgins N (ed), The Bacterial Chromosome. ASM Press, Washington, DC. doi: 10.1128/9781555817640.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Secondary structures that affect mRNA decay. (A) Rho-independent transcription terminator at the 3′ terminus of the mRNA. Of particular note is the very short region of single-stranded RNA that is present at the 3′ terminus. Poly(A) tails can be added at any of the three unpaired U's ( ). (B) Schematic view of the 5′ UTR of the transcript as determined by Emory and Belasco ( ). (C) Stem-loop structure recognized by RNase III. This is the R5 structure from the bacteriophage T7 early RNA ( ). Arrows indicate the location of the RNase III cleavages.

Citation: Kushner S. 2005. mRNA Decay and Processing, p 327-346. In Higgins N (ed), The Bacterial Chromosome. ASM Press, Washington, DC. doi: 10.1128/9781555817640.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Model for mRNA decay involving degradosome attachment at both the 3′ and 5′ termini of a single mRNA. In this model, binding of PNPase to the 3′ terminus of the poly(A) tail would bring along RNase E. RNase E would then bind to the 5′ triphosphate terminus if this is a primary transcript. With such an arrangement, one could account for the rapid degradation of an individual mRNA.

Citation: Kushner S. 2005. mRNA Decay and Processing, p 327-346. In Higgins N (ed), The Bacterial Chromosome. ASM Press, Washington, DC. doi: 10.1128/9781555817640.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Current working model for mRNA decay in . (A) Initiation of mRNA decay by RNase E. Based on its catalytic properties ( ), RNase E, as part of the degradosome or independently, would first bind to an accessible 5′ end. The preference of RNase E for substrates that are 5′ monophosphorylated over those that contain 5′ triphosphates ( ) suggests that this step will be the rate-limiting reaction in mRNA decay. Intermediates generated by the initial RNase E cleavage reaction can be further degraded endonucleolytically by either RNase E or RNase G or exonucleolytically by a combination of RNases. PNPase is probably the primary 3′ → 5′ exonuclease ( ). Polyadenylation will be involved if an RNA fragment contains a stable stem-loop structure. Terminal degradation products (short oligonucleotides) will be degraded by oligoribonuclease ( ). (B) Initiation of mRNA decay by either RNase III or RNase P. In a limited number of circumstances, such as observed with the or mRNAs, either RNase III or RNase P, respectively, cleave within intercistronic regions of polycistronic mRNAs to generate a downstream fragment that would have a 5′ phosphomonoester, making it a better substrate for RNase G or RNase E. Unlike RNase E, which can cleave RNAs at internal sites without binding to a 5′ terminus ( ), RNase G apparently cannot do this very efficiently. Once either RNase G or RNase E cleavages occur, the breakdown products would be susceptible to exonucleolytic degradation as in panel A. Some mRNAs may contain either potential RNase E or RNase G cleavage sites that are bypassed as shown in panels A and B, respectively. (C) mRNA decay in the absence of RNase E or for mRNAs that do not contain RNase E cleavage sites. In the absence of RNase E, decay of mRNAs dependent on this enzyme will proceed more slowly, either through RNase G cleavage or exonucleolytic degradation by PNPase and/or other exonucleases. For those mRNAs that do not contain any endonucleolytic cleavage sites, decay is probably initiated by polyadenylation of the 3′ terminus. Subsequently, the polyadenylated mRNA is degraded exonucleolytically as described for panel A. Ellipses, RNase E cleavage sites; squares, RNase G cleavage sites; circles, RNase III or RNase P cleavage sites. Heavy lines indicate gene 1 in a polycistronic mRNA. 5′ phosphomonoester termini are underlined; 5′ termini containing a triphosphate are not.

Citation: Kushner S. 2005. mRNA Decay and Processing, p 327-346. In Higgins N (ed), The Bacterial Chromosome. ASM Press, Washington, DC. doi: 10.1128/9781555817640.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817640.chap18
1. Akiyama, Y.,, T. Yoshihisa,, and K. Ito. 1995. FtsH, a membrane- bound ATPase, forms a complex in the cytoplasmic membrane of Escherichia coli. J. Biol. Chem. 270: 23485 23490.
2. Akiyama, Y.,, A. Kihara,, and K. Ito. 1996. Subunit a of proton ATPase F0 sector is a substrate of the FtsH protease in Escherichia coli. FEBS Lett. 399: 26 28.
3. Alifano, P.,, F. Rivellini,, C. Piscitelli,, C. M. Arraiano,, C. B. Bruni,, and M. S. Carlomagno. 1994. Ribonuclease E provides substrates for ribonuclease P-dependent processing of a polycistronic mRNA. Genes Dev. 8: 3021 3031.
4. Allmang, C.,, E. Petfalski,, A. Podtelejnikov,, M. Mann,, D. Tollervey,, and P. Mitchell. 1999. The yeast exosome and human PM-Scl are related complexes of 3'-5' exonucleases. Genes Dev. 13: 2148 2158.
5. Altman, S.,, L. Kirsebom,, and S. Talbot,. 1995. Recent studies of RNase P, p. 67 78. In D. Soll, and U. L. RajBhandary (ed.), tRNA: Structure, Biosynthesis, and Function. ASM Press, Washington, D.C.
6. Apirion, D.,, and A. B. Lassar. 1978. A conditional lethal mutant of Escherichia coli which affects the processing of ribosomal RNA. J. Biol. Chem. 253: 1738 1742.
7. Arraiano, C. M.,, S. D. Yancey,, and S. R. Kushner. 1988. Stabilization of discrete mRNA breakdown products in ams pnp rnb multiple mutants of Escherichia coli K-12. J. Bacteriol. 170: 4625 4633.
8. August, J.,, P. J. Ortiz,, and J. Hurwitz. 1962. Ribonucleic acid-dependent ribonucleotide incorporation. I. Purification and properties of the enzyme. J. Biol. Chem. 237: 3786 3793.
9. Babitzke, P.,, and S. R. Kushner. 1991. The Ams (altered mRNA stability) protein and ribonuclease E are encoded by the same structural gene of Escherichia coli. Proc. Natl. Acad. Sci. USA 88: 1 5.
10. Babitzke, P.,, L. Granger,, and S. R. Kushner. 1993. Analysis of mRNA decay and rRNA processing in Escherichia coli multiple mutants carrying a deletion in RNase III. J. Bacteriol. 175: 229 239.
11. Bachellier, S.,, E. Gilson,, M. Hofnung,, and C. W. Hill,. 1996. Repeated sequences, p. 2012 2040. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed., vol. 2. ASM Press, Washington, D.C.
12. Baker, K. E.,, and G. A. Mackie. 2003. Ectopic RNase E sites promote bypass of 5'-end-dependent mRNA decay in Escherichia coli. Mol. Microbiol. 47: 75 88.
13. Banuett, F.,, M. A. Hoyt,, L. McFarlane,, H. Echols,, and I. Herskowitz. 1986. hflB, a new Escherichia coli locus regulating lysogeny and the level of bacteriophage lambda cII protein. J. Mol. Biol. 187: 213 224.
14. Bardwell, J. C. A.,, P. Regnier,, S.-M. Chen,, Y. Nakamura,, M. Grunberg-Manago,, and D. L. Court. 1989. Autoregulation of RNase III operon by mRNA processing. EMBO J. 8: 3401 3407.
15. Barlow, T.,, M. Berkmen,, D. Georgellis,, L. Bayr,, S. Arvidson,, and A. Von Gabain. 1998. RNase E, the major player in mRNA degradation, is down-regulated in Escherichia coli during a transient growth retardation (Diauxic lag). Biol. Chem. 379: 33 38.
16. Blattner, F. R.,, G. Plunkett III,, C. A. Bloch,, N. T. Perna,, V. Burland,, M. Riley,, J. Collado-Vides,, J. D. Glasner,, C. K. Rode,, G. F. Mayhew,, J. Gregor,, N. W. Davis,, H. A. Kirkpatrick,, M. A. Goeden,, D. J. Rose,, B. Mau,, and Y. Shao. 1997. The complete sequence of Escherichia coli K-12. Science 277: 1453 1474.
17. Blum, E.,, B. Py,, A. J. Carpousis,, and C. F. Higgins. 1997. Polyphosphate kinase is a component of the Escherichia coli RNA degradosome. Mol. Microbiol. 26: 387 398.
18. Bralley, P.,, and G. H. Jones. 2001. Poly(A) polymerase activity and RNA polyadenylation in Streptomyces coelicolor A3. Mol. Microbiol. 40: 1155 1164.
19. Bycroft, M.,, T. J. P. Hubbard,, M. Proctor,, S. M. V. Freund,, and A. G. Murzin. 1997. The solution structure of the S1 RNA binding domain: a member of an ancient nucleic acidbinding fold. Cell 88: 235 242.
20. Cairrao, F.,, A. Chora,, R. Zilhao,, A. J. Carpousis,, and C. M. Arraiano. 2001. RNase II levels change according to the growth conditions: characterization of gmr, a new Escherichia coli gene involved in the modulation of RNase II. Mol. Microbiol. 39: 1550 1561.
21. Cannistraro, V. J.,, and D. Kennell. 1991. RNase I*, a form of RNase I, and mRNA degradation in Escherichia coli. J. Bacteriol. 173: 4653 4659.
22. Cao, G.-J.,, and N. Sarkar. 1992. Poly(A) RNA in Escherichia coli: nucleotide sequence at the junction of the lpp transcript and the polyadenylate moiety. Proc. Natl. Acad. Sci. USA 89: 7546 7550.
23. Cao, G.-J.,, and N. Sarkar. 1992. Identification of the gene for an Escherichia coli poly(A) polymerase. Proc. Natl. Acad. Sci. USA 89: 10380 10384.
24. Caponigro, G.,, and R. Parker. 1996. Mechanism and control of mRNA turnover in Saccharomyces cerevisiae. Microbiol. Rev. 60: 233 249.
25. Carpousis, A. J.,, G. Van Houwe,, C. Ehretsmann,, and H. M. Krisch. 1994. Copurification of E. coli RNAase E and PNPase: evidence for a specific association between two enzymes important in RNA processing and degradation. Cell 76: 889 900.
26. Cheng, Z. F.,, Y. Zuo,, Z. Li,, K. E. Rudd,, and M. P. Deutscher. 1998. The vacB gene required for virulence in Shigella flexneri and Escherichia coli encodes the exoribonuclease RNase R. J. Biol. Chem. 273: 14077 14080.
27. Cheng, Z. F.,, and M. P. Deutscher. 2003. Quality control of ribosomal RNA mediated by polynucleotide phosphorylase and RNase R. Proc. Natl. Acad. Sci. USA 100: 6388 6393.
28. Coburn, G. A.,, and A. G. Mackie. 1996. Overexpression, purification and properties of Escherichia coli ribonuclease II. J. Biol. Chem. 271: 1048 1053.
29. Coburn, G. A.,, and G. A. Mackie. 1996. Differential sensitivities of portions of the mRNA for ribosomal protein S20 to 3'-exonucleases dependent on oligoadenylation and RNA secondary structure. J. Biol. Chem. 271: 15776 15781.
30. Coburn, G. A.,, and G. A. Mackie. 1998. Reconstitution of the degradation of the mRNA for ribosomal protein S20 with purified enzymes. J. Mol. Biol. 279: 1061 1074.
31. Coburn, G. A.,, and G. A. Mackie. 1999. Degradation of mRNA in Escherichia coli: an old problem with some new twists. Prog. Nucleic Acid Res. 62: 55 108.
32. Coburn, G. A.,, X. Miao,, D. J. Briant,, and G. A. Mackie. 1999. Reconstitution of a minimal RNA degradosome demonstrates functional coordination between a 30 exonuclease and a DEAD-box RNA helicase. Genes Dev. 13: 2594 2603.
33. Condon, C. 2003. RNA processing and degradation in Bacillus subtilis. Microbiol. Mol. Biol. Rev. 67: 157 174.
34. Court, D., 1993. RNA processing and degradation by RNase III, p. 71 117. In J. Belasco, and G. Brawerman (ed.), Control of Messenger RNA Stability. Academic Press, Inc., New York, N.Y.
35. Deana, A.,, and J. G. Belasco. 2004. The function of RNase G in Escherichia coli is constrained by its amino and carboxyl termini. Mol. Microbiol. 51: 1205 1217.
36. Deutscher, M. P.,, and N. B. Reuven. 1991. Enzymatic basis for hydrolytic versus phosphorolytic mRNA degradation in Escherichia coli and Bacillus subtilis. Proc. Natl. Acad. Sci. USA 88: 3277 3280.
37. Deutscher, M. P. 1993. Ribonuclease multiplicity, diversity and complexity. J. Biol. Chem. 268: 13011 13014.
38. Deutscher, M. P. 1993. Promiscuous exoribonucleases of Escherichia coli. J. Bacteriol. 175: 4577 4583.
39. Deutscher, M. P.,, and Z. Li. 2000. Exoribonucleases and their multiple roles in RNA metabolism. Prog. Nucleic Acids Res. 66: 67 105.
40. Diwa, A.,, A. L. Bricker,, C. Jain,, and J. G. Belasco. 2000. An evolutionarily conserved RNA stem-loop functions as a sensor that directs feedback regulation of RNase E gene expression. Genes Dev. 14: 1249 1260.
41. Donovan, W. P.,, and S. R. Kushner. 1986. Polynucleotide phosphorylase and ribonuclease II are required for cell viability and mRNA turnover in Escherichia coli K-12. Proc. Natl. Acad. Sci. USA 83: 120 124.
42. Dunn, J. J.,, and F. W. Studier. 1973. T7 early RNAs and Escherichia coli ribosomal RNAs are cut from large precursor RNAs in vivo by ribonuclease III. Proc. Natl. Acad. Sci. USA 70: 3296 3300.
43. Dunn, J. J.,, and F. W. Studier. 1983. Complete nucleotide sequence of bacteriophage T7 DNA and the locations of T7 genetic elements. J. Mol. Biol. 166: 477 535.
44. Ehretsmann, C. P.,, A. J. Carpousis,, and H. M. Krisch. 1992. Specificity of Escherichia coli endoribonuclease RNase E: in vivo and in vitro analysis of mutants in a bacteriophage T4 mRNA processing site. Genes Dev. 6: 149 159.
45. Emory, S. A.,, and J. G. Belasco. 1990. The ompA 5' untranslated RNA segment functions in Escherichia coli as a growth-rate-regulated mRNA stabilizer whose activity is unrelated to translational efficiency. J. Bacteriol. 172: 4472 4481.
46. Emory, S. A.,, P. Bouvet,, and J. G. Belasco. 1992. A 50-terminal stem-loop structure can stabilize mRNA in Escherichia coli. Genes Dev. 6: 135 148.
47. Feng, Y.,, H. Huang,, J. Kiao,, and S. N. Cohen. 2001. Escherichia coli poly(A) binding proteins that interact with components of degradosomes or impede RNA decay mediated by polynucleotide phosphorylase and RNase E. J. Biol. Chem. 276: 31651 31656.
48. Folichon, M.,, V. Arluison,, O. Pellegrini,, E. Huntzinger,, P. Regnier,, and E. Hajnsdorf. 2003. The poly(A) binding protein Hfq protects RNA from RNase E and exoribonucleolytic degradation. Nucleic Acids Res. 31: 7302 7310.
49. Franze de Fernandez, M. T.,, L. Eoyang,, and T. L. August. 1968. Factor fraction required for the synthesis of bacteriophage Qbeta-RNA. Nature 219: 588 590.
50. Ghosh, S.,, and M. P. Deutscher. 1999. Oligoribonuclease is an essential component of the mRNA decay pathway. Proc. Natl. Acad. Sci. USA 96: 4372 4377.
51. Gitelman, D. R.,, and D. Apirion. 1980. The synthesis of some proteins is affected in RNA processing mutants of Escherichia coli. Biochem. Biophys. Res. Commun. 96: 1063 1070.
52. Godefroy-Colburn, T.,, andM. Grunberg-Manago. 1972. Polynucleotide phosphorylase, p. 533 574. In P. D. Boyer (ed.), The Enzymes, vol. 7. Academic Press, Inc., New York, N.Y.
53. Granger, L. L.,, E. B. O’Hara,, R.-F. Wang,, F. V. Meffen,, K. Armstrong,, S. D. Yancey,, P. Babitzke,, and S. R. Kushner. 1998. The E. coli mrsC gene is required for cell growth and mRNA decay. J. Bacteriol. 180: 1920 1928.
54. Hajnsdorf, E.,, F. Braun,, J. Haugel-Nielsen,, and P. Régnier. 1995. Polyadenylylation destabilizes the rpsO mRNA of Escherichia coli. Proc. Natl. Acad. Sci. USA 92: 3973 3977.
55. Hajnsdorf, E.,, and P. Régnier. 2000. Host factor Hfq of Escherichia coli stimulates elongation of poly(A) tails by poly(A) polymerase I. Proc. Natl. Acad. Sci. USA 97: 1501 1505.
56. Henry, M.,, S. D. Yancey,, and S. R. Kushner. 1992. The role of the heat-shock response in the stability of mRNA in Escherichia coli K-12. J. Bacteriol. 174: 743 748.
57. Herman, C.,, T. Ogura,, T. Tomoyasu,, S. Hiraga,, Y. Akiyama,, K. Ito,, R. Thomas,, R. D’Ari,, and P. Bouloc. 1993. Cell growth and λ phage development controlled by the same essential Escherichia coli gene, ftsH/hflB. Proc. Natl. Acad. Sci. USA 90: 10861 10865.
58. Herskovitz, M. A.,, and D. H. Bechhofer. 2000. Endoribonuclease III is essential in Bacillus subtilis. Mol. Microbiol. 38: 1027 1033.
59. Higgins, C. F.,, G. F.-L. Ames,, W. M. Barnes,, J. M. Clement,, and M. Hofnung. 1982. A novel intercistronic regulatory element of prokaryotic operons. Nature 298: 760 762.
60. Jain, C.,, and J. G. Belasco. 1995. RNase E autoregulates its synthesis by controlling the degradation rate of its own mRNA in Escherichia coli: unusual sensitivity of the rne transcript to RNase E activity. Genes Dev. 9: 84 96.
61. Jain, S. K.,, B. Pragai,, and D. Apirion. 1982. A possible complex containing RNA processing enzymes. Biochem. Biophys. Res. Commun. 106: 768 778.
62. Jarrige, A.-C.,, N. Mathy,, and C. Portier. 2001. PNPase autocontrols its expression by degrading a double-stranded structure in the pnp mRNA leader. EMBO J. 20: 6845 6855.
63. Kaberdin, V. R.,, A. Miczak,, J. S. Jakobsen,, S. Lin-Chao,, K. J. McDowall,, and A. von Gabain. 1998. The endoribonucleolytic N-terminal half of Escherichia coli RNase E is evolutionarily conserved in Synechocystis sp. and other bacteria but not the C-terminal half,which is sufficient for degradosome assembly. Proc. Natl. Acad. Sci. USA 95: 11637 11642.
64. Kaberdin, V. R. 2003. Probing the substrate specificity of Escherichia coli RNase E using a novel oligonucleotide-based assay. Nucleic Acids Res. 31: 4710 4716.
65. Kaga, N.,, G. Umitsuki,, K. Nagai,, and M. Wachi. 2002. RNase G-dependent degradation of the eno mRNA encoding a glycolysis enzyme enolase in Escherichia coli. Biosci. Biotechnol. Biochem. 66: 2216 2220.
66. Kalman, M.,, H. Murphy,, and M. Cashel. 1991. rhlB, a new Escherichia coli K-12 gene with an RNA helicase-like protein sequence motif, one of at least five such possible genes in a prokaryote. Nat. New Biol. 3: 886 895.
67. Kelly, K. O.,, N. B. Reuven,, Z. Li,, and M. P. Deutscher. 1992. RNase PH is essential for tRNA processing and viability in RNase-deficient Escherichia coli cells. J. Biol. Chem. 267: 16015 16018.
68. Kihara, A.,, Y. Akiyama,, and K. Ito. 1995. FtsH is required for proteolytic elimination of uncomplexed forms of SecY, an essential protein translocase subunit. Proc. Natl. Acad. Sci. USA 92: 4532 4536.
69. Kushner, S. R., 1996. mRNA decay, p. 849 860. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella:Cellular and Molecular Biology, 2nd ed., vol. 1. ASM Press, Washington, D.C.
70. Kushner, S. R. 2002. mRNA decay in Escherichia coli comes of age. J. Bacteriol. 184: 4658 4665.
71. Larimer, F. W.,, C. L. Hsu,, M. K. Maupin,, and A. Stevens. 1992. Characterization of the XRN1 gene encoding a 5' 3' exoribonuclease: sequence data and analysis of disparate protein and mRNA levels of gene-disrupted yeast cells. Gene 120: 51 57.
72. Le Derout, J.,, M. Folichon,, F. Briani,, G. Deho,, P. Regnier,, and E. Hajnsdorf. 2003. Hfq affects the length and the frequency of short oligo(A) tails at the 3' end of Escherichia coli rpsO mRNAs. Nucleic Acids Res. 31: 4017 4023.
73. Lee, K.,, J. A. Bernstein,, and S. N. Cohen. 2002. RNase G complementation of rne null mutation identified functional interrelationships with RNase E in Escherichia coli. Mol. Microbiol. 43: 1445 1456.
74. Lee, K.,, X. Zhan,, J. Gao,, Y. Feng,, R. Meganathan,, S. N. Cohen,, and G. Georgiou. 2003. RraA: a protein inhibitor of RNase E activity that globally modulates RNA abundance in E. coli. Cell 114: 623 634.
75. Lesnik, E. A.,, R. Sampath,, H. B. Levene,, T. J. Henderson,, J. A. McNeil,, and D. J. Ecker. 2001. Prediction of rhoindependent transcriptional terminators in Escherichia coli. Nucleic Acids Res. 29: 3583 3594.
76. Li, Y.,, and S. Altman. 2003. A specific endoribonuclease, RNase P, affects gene expression of polycistronic operon mRNAs. Proc. Natl. Acad. Sci. USA 100: 13213 13218.
77. Li, Z.,, S. Pandit,, and M. P. Deutscher. 1999. RNase G (CafA protein) and RNase E are both required for the 50 maturation of 16S ribosomal RNA. EMBO J. 18: 2878 2885.
78. Li, Z.,, and M. P. Deutscher. 2002. RNase E plays an essential role in the maturation of Escherichia coli tRNA precursors. RNA 8: 97 109.
79. Lin-Chao, S.,, C.-L. Wei,, and Y.-T. Lin. 1999. RNase E is required for the maturation of ssrA and normal ssrA RNA peptide-tagging activity. Proc. Natl. Acad. Sci. USA 96: 12406 12411.
80. Linder, P.,, P. F. Lasko,, M. Ashburner,, P. Leroy,, P. J. Nielsen,, K. Nishi,, J. Schnier,, and P. P. Slonimski. 1989. Birth of the D-E-A-D box. Nature 340: 246.
81. Liou, G.-G.,, W.-N. Jane,, S. N. Cohen,, N.-S. Lin,, and S. Lin- Chao. 2001. RNA degradosomes exist in vivo in Escherichia coli as multicomponent complexes associated with the cytoplasmic membrane via the N-terminal region of ribonuclease E. Proc. Natl. Acad. Sci. USA 98: 63 68.
82. Liou, G.-G.,, H.-Y. Chang,, C.-S. Lin,, and S. Lin-Chao. 2002. DEAD box RhlB RNA helicase physically associates with exoribonuclease PNPase to degrade double-stranded RNA independent of the degradosome-assembling region of RNase E. J. Biol. Chem. 277: 41157 41162.
83. Littauer, U. Z.,, and H. Soreq,. 1982. Polynucleotide phosphorylase, p. 517 553. In P. D. Boyer (ed.), The Enzymes, vol. 15. Academic Press, Inc., New York, N.Y.
84. Liu, J.,, and J. S. Parkinson. 1989. Genetics and sequence analysis of the pcnB locus, an Escherichia coli gene involved in plasmid copy number control. J. Bacteriol. 171: 1254 1261.
85. Liu, M. A.,, and T. Romeo. 1997. The global regulator CsrA of Escherichia coli is a specific mRNA-binding protein. J. Bacteriol. 179: 4639 4642.
86. Lopez, P. J.,, I. Marchand,, S. A. Joyce,, and M. Dreyfus. 1999. The C-terminal half of RNase E, which organizes the Escherichia coli degradosome, participates in mRNA degradation but not rRNA processing in vivo. Mol. Microbiol. 33: 188 199.
87. Lundberg, U.,, and S. Altman. 1995. Processing of the precursor to the catalytic RNA subunit of RNase P from Escherichia coli. RNA 1: 327 334.
88. Mackie, G. A. 1991. Specific endonucleolytic cleavage of the mRNA for ribosomal protein S20 of Escherichia coli requires the products of the ams gene in vivo and in vitro. J. Bacteriol. 173: 2488 2497.
89. Mackie, G. A. 1998. Ribonuclease E is a 5'-end-dependent endonuclease. Nature 395: 720 723.
90. Mackie, G. A. 2000. Stabilization of circular rpsT mRNA demonstrates the 5'-end dependence of RNase E action in vivo. J. Biol. Chem. 275: 25069 25072.
91. March, J. B.,, M. D. Colloms,, D. Hart-Davis,, I. R. Oliver,, and M. Masters. 1989. Cloning and characterization of an Escherichia coli gene, pcnB, affecting plasmid copy number. Mol. Microbiol. 3: 903 910.
92. Masaaki, W.,, U. Genryou,, S. Miwa,, T. Ayako,, and N. Kazuo. 1999. Escherichia coli cafA gene encodes a novel RNase, designated as RNase G, involved in processing of the 5' end of 16S rRNA. Biochem. Biophys. Res. Commun. 259: 483 488.
93. McDowall, K. J.,, S. Lin-Chao,, and S. N. Cohen. 1994. A + U content rather than a particular nucleotide order determines the specificity of RNase E cleavage. J. Biol. Chem. 269: 10790 10796.
94. McDowall, K. J.,, V. R. Kaberdin,, S.-W. Wu,, S. N. Cohen,, and S. Lin-Chao. 1995. Site-specific RNase E cleavage of oligonucleotides and inhibition by stem-loops. Nature 374: 287 290.
95. McDowall, K. J.,, and S. N. Cohen. 1996. The N-terminal domain of the rne gene product has RNase E activity and is non-overlapping with the arginine-rich RNA-binding motif. J. Mol. Biol. 255: 349 355.
96. McLaren, R. S.,, S. F. Newbury,, G. S. C. Dance,, H. Causton,, and C. F. Higgins. 1991. mRNA degradation by processive 3′5′exonucleases in vitro and the implications for prokaryotic mRNA decay in vivo. J. Mol. Biol. 221: 81 95.
97. Miczak, A.,, R. A. K. Srivastava,, and D. Apirion. 1991. Location of the RNA-processing enzymes RNase III, RNase E, and RNase P. Mol. Microbiol. 5: 1801 1810.
98. Miczak, A.,, V. R. Kaberdin,, C.-L. Wei,, and S. Lin-Chao. 1996. Proteins associated with RNase E in a multicomponent ribonucleolytic complex. Proc. Natl. Acad. Sci. USA 93: 3865 3869.
99. Mitchell, P.,, E. Petfalski,, A. Shevchenko,, M. Mann,, and D. Tollervey. 1996. The exosome: a conserved eukaryotic RNA processing complex containing multiple 3'-5' exoribonucleases. Cell 91: 57 66.
100. Modak, M. J.,, and P. R. Srinivasan. 1973. Purification and properties of a ribonucleic acid primer independent polyriboadenylate polymerase from Escherichia coli. J. Biol. Chem. 248: 6904 6910.
101. Mohanty, B. K.,, and S. R. Kushner. 1999. Analysis of the function of Escherichia coli poly(A) polymerase I in RNA metabolism. Mol. Microbiol. 34: 1094 1108.
102. Mohanty, B. K.,, and S. R. Kushner. 1999. Residual polyadenylation in poly(A) polymerase I ( pcnB) mutants of Escherichia coli does not result from the activity encoded by the f310 gene. Mol. Microbiol. 34: 1109 1119.
103. Mohanty, B. K.,, and S. R. Kushner. 2000. Polynucleotide phosphorylase, RNase II and RNase E play different roles in the in vivo modulation of polyadenylation in Escherichia coli. Mol. Microbiol. 36: 982 994.
104. Mohanty, B. K.,, and S. R. Kushner. 2000. Polynucleotide phosphorylase functions both as a 3'-5' exonuclease and a poly(A) polymerase in Escherichia coli. Proc. Natl. Acad. Sci. USA 97: 11966 11971.
105. Mohanty, B. K.,, and S. R. Kushner. 2002. Polyadenylation of Escherichia coli transcripts plays an integral role in regulating intracellular levels of polynucleotide phosphorylase and RNase E. Mol. Microbiol. 45: 1315 1324.
106. Mohanty, B. K.,, and S. R. Kushner. 2003. Genomic analysis in Escherichia coli demonstrates differential roles for polynucleotide phosphorylase and RNase II in mRNA abundance and decay. Mol. Microbiol. 50: 645 658.
107. Moll, I.,, T. Afonyuskhin,, O. Vytvytska,, V. R. Kaberdin,, and U. Blasi. 2003. Coincident Hfq binding and RNase E cleavage sites on mRNA and small regulator RNAs. RNA 9: 1308 1314.
108. Moller, T.,, T. Franch,, P. Hojrup,, D. R. Keene,, H. P. Bachinger,, R. G. Brennan,, and P. Valentin-Hansen. 2002. Hfq: a bacterial Sm-like protein that mediates RNA-RNA interaction. Mol. Cell 9: 23 30.
109. Moreau, P. L.,, F. Gerard,, N. W. Lutz,, and P. Cozzone. 2001. Non-growing Escherichia coli cells starved for glucose or phosphate use different mechanisms to survive oxidative stress. Mol. Microbiol. 39: 1048 1060.
110. Mott, J. E.,, J. L. Galloway,, and T. Platt. 1985. Maturation of Escherichia coli tryptophan operon mRNA: evidence for 30 exonucleolytic processing after rho-dependent termination. EMBO J. 4: 1887 1891.
111. Mudd, E. A.,, H. M. Krisch,, and C. F. Higgins. 1990. RNase E, an endoribonuclease, has a general role in the chemical decay of Escherichia coli mRNA: evidence that rne and ams are the same genetic locus. Mol. Microbiol. 4: 2127 2135.
112. Mudd, E. A.,, and C. F. Higgins. 1993. Escherichia coli endoribonuclease RNase E: autoregulation of expression and site-specific cleavage of mRNA. Mol. Microbiol. 3: 557 568.
113. Muffler, A.,, D. Fischer,, and R. Hengge-Aronis. 1996. The RNA-binding protein HF-1, known as a host factor for phage Qβ RNA replication, is essential for rpoS translation in Escherichia coli. Genes Dev. 10: 1143 1151.
114. Muffler, A.,, D. D. Traulsen,, D. Fischer,, R. Lange,, and R. Hengge-Aronis. 1997. The RNA-binding protein HF-1 plays a global regulatory role which is largely, but not exclusively, due to its role in expression of the sigma S subunit of RNA polymerase in Escherichia coli. J. Bacteriol. 179: 297 300.
115. Newbury, S. F.,, N. H. Smith,, E. C. Robinson,, I. D. Hiles,, and C. F. Higgins. 1987. Stabilization of translationally active mRNA by prokaryotic REP sequences. Cell 48: 297 310.
116. Niyogi, S. K.,, and A. K. Datta. 1975. A novel oligoribonuclease of Escherichia coli. I. Isolation and properties. J. Biol. Chem. 250: 7307 7312.
117. O’Hara, E. B.,, J. A. Chekanova,, C. A. Ingle,, Z. R. Kushner,, E. Peters,, and S. R. Kushner. 1995. Polyadenylylation helps regulate mRNA decay in Escherichia coli. Proc. Natl. Acad. Sci. USA 92: 1807 1811.
118. Okada, Y.,, M. Wachi,, A. Hirata,, K. Suzuki,, K. Nagai,, and M. Matsuhashi. 1994. Cytoplasmic axial filaments in Escherichia coli cells: possible function in the mechanism of chromosome segregation and cell division. J. Bacteriol. 176: 917 922.
119. Ono, M.,, and M. Kuwano. 1979. A conditional lethal mutation in an Escherichia coli strain with a longer chemical lifetime of mRNA. J. Mol. Biol. 129: 343 357.
120. Otsuka, Y.,, H. Ueno,, and T. Yonesaki. 2003. Escherichia coli endoribonucleases involved in cleavage of bacteriophage T4 mRNAs. J. Bacteriol. 185: 983 990.
121. Ow, M. C.,, Q. Liu,, and S. R. Kushner. 2000. Analysis of mRNA decay and rRNA processing in Escherichia coli in the absence of RNase E-based degradosome assembly. Mol. Microbiol. 38: 854 866.
122. Ow, M. C.,, and S. R. Kushner. 2002. Initiation of tRNA maturation by RNase E is essential for cell viability in Escherichia coli. Genes Dev. 16: 1102 1115.
123. Ow, M. C.,, Q. Liu,, B. K. Mohanty,, M. E. Andrew,, V. F. Maples,, and S. R. Kushner. 2002. RNase E levels in Escherichia coli are controlled by a complex regulatory system that involves transcription of the rne gene from three promoters. Mol. Microbiol. 43: 159 171.
124. Ow, M. C.,, T. Perwez,, and S. R. Kushner. 2003. RNase G of Escherichia coli exhibits only limited functional overlap with its essential homologue, RNase E. Mol. Microbiol. 49: 607 622.
125. Pellegrini, O.,, J. Nezzar,, A. Marchfelder,, H. Putzer,, and C. Condon. 2003. Endonucleolytic processing of CCA-less tRNA precursors by RNase E in Bacillus subtilis. EMBO J. 22: 4534 4543.
126. Portier, C.,, L. Dondon,, M. Grunberg-Manago,, and P. Regnier. 1987. The first step in the functional inactivation of the Escherichia coli polynucleotide phosphorylase messenger is ribonuclease III processing at the 5' end. EMBO J. 6: 2165 2170.
127. Py, B.,, H. Causton,, E. A. Mudd,, and C. F. Higgins. 1994. A protein complex mediating mRNA degradation in Escherichia coli. Mol. Microbiol. 14: 717 729.
128. Py, B.,, C. F. Higgins,, H. M. Krisch,, and A. J. Carpousis. 1996. A DEAD-box RNA helicase in the Escherichia coli RNA degradosome. Nature 381: 169 172.
129. Ramanarayanan, M.,, and P. R. Srinivasan. 1976. Further studies on the isolation and properties of polyriboadenylate polymerase from Escherichia coli PR7 (RNase I - pnp). J. Biol. Chem. 251: 6274 6286.
130. Rauhut, R.,, and G. Klug. 1999. mRNA degradation in bacteria. FEMS Microbiol. Rev. 23: 353 370.
131. Raynal, L. C.,, and A. J. Carpousis. 1999. Poly(A) polymerase I of Escherichia coli: characterization of the catalytic domain, an RNA binding site and regions for the interaction with proteins involved in mRNA degradation. Mol. Microbiol. 32: 765 775.
132. Regnier, P.,, and C. Portier. 1986. Initiation attenuation and RNase III processing of transcripts from the Escherichia coli operon encoding ribosomal protein S15 and polynucleotide phosphorylase. J. Mol. Biol. 187: 23 32.
133. Regnier, P.,, and M. Grunberg-Manago. 1989. Cleavage by RNase III in the transcripts of the metY-nus-infB operon of Escherichia coli releases the tRNA and initiates the decay of the downstream mRNA. J. Mol. Biol. 210: 293 302.
134. Regnier, P.,, and C. M. Arraiano. 2000. Degradation of mRNA in bacteria: emergence of ubiquitous features. Bioessays 22: 235 244.
135. Robert-Le Meur, M.,, and C. Portier. 1992. Escherichia coli polynucleotide phosphorylase expression is autoregulated through an RNase III-dependent mechanism. EMBO J. 11: 2633 2641.
136. Robert-Le Meur, M.,, and C. Portier. 1994. Polynucleotide phosphorylase of Escherichia coli induces the degradation of its RNase III processed messenger by preventing its translation. Nucleic Acids Res. 22: 397 403.
137. Robertson, H. D.,, R. E. Webster,, and N. D. Zinder. 1967. A nuclease specific for double-stranded RNA. Virology 12: 718 719.
138. Romeo, T. 1996. Post-transcriptional regulation of bacterial carbohydrate metabolism: evidence that the gene product CsrA is a global mRNA decay factor. Res. Microbiol. 147: 505 512.
139. Rott, R.,, G. Zipor,, V. Portnoy,, V. Liveanu,, and G. Schuster. 2003. RNA polyadenylation and degradation in cyanobacteria are similar to the chloroplast but different from Escherichia coli. J. Biol. Chem. 278: 15771 15777.
140. Sauter, C.,, J. Basquin,, and D. Suck. 2003. Sm-like proteins in Eubacteria: the crystal structure of the Hfq protein from Escherichia coli. Nucleic Acids Res. 31: 4091 4098.
141. Schiffer, S.,, S. Rosch,, and A. Marchfelder. 2002. Assigning a function to a conserved group of proteins: the tRNA 30 processing enzymes. EMBO J. 21: 2769 2677.
142. Schumacher, M. A.,, R. F. Pearson,, T. Moller,, P. Valentin-Hansen,, and R. G. Brennan. 2002. Structures of the pleiotropic translational regulator Hfq and an Hfq-RNA complex: a bacterial Sm-like protein. EMBO J. 21: 3546 3556.
143. Sledjeski, D. D.,, C. Whitman,, and A. Zhang. 2001. Hfq is necessary for regulation by the untranslated RNA DsrA. J. Bacteriol. 183: 1997 2005.
144. Sohlberg, B.,, J. Huang,, and S. N. Cohen. 2003. The Streptomyces coelicolor polynucleotide phosphorylase homologue, and not the putative poly(A) polymerase, can polyadenylate RNA. J. Bacteriol. 185: 7273 7278.
145. Soreq, H.,, and U. Z. Littauer. 1977. Purification and characterization of polynucleotide phosphorylase from Escherichia coli. J. Biol. Chem. 252: 6885 6888.
146. Spahr, P. F. 1964. Purification and properties of ribonuclease II from Escherichia coli. J. Biol. Chem. 239: 3716 3726.
147. Spickler, C.,, and G. A. Mackie. 2000. Action of RNase II and polynucleotide phosphorylase against RNAs containing stem-loops of defined structure. J. Bacteriol. 182: 2422 2427.
148. Spickler, C.,, V. Stronge,, and G. A. Mackie. 2001. Preferential cleavage of degradative intermediates of rpsT mRNA by the Escherichia coli degradosome. J. Bacteriol. 183: 1106 1109.
149. Srinivasan, P. R.,, M. Ramanarayanan,, and E. Rabbani. 1975. Presence of polyriboadenylate sequences in pulselabeled RNA of Escherichia coli. Proc. Natl. Acad. Sci. USA 72: 2910 2914.
150. Steege, D. A. 2000. Emerging features of mRNA decay in bacteria. RNA 6: 1079 1090.
151. Stern, M. J.,, G. F.-L. Ames,, N. H. Smith,, E. C. Robinson,, and C. F. Higgins. 1984. Repetitive extragenic palindromic sequences: a major component of the bacterial genome. Cell 37: 1015 1026.
152. Takiff, H. E.,, S. Chen,, and D. L. Court. 1989. Genetic analysis of the rnc operon of Escherichia coli. J. Bacteriol. 171: 2581 2590.
153. Taraseviciene, L.,, A. Miczak,, and D. Apirion. 1991. The gene specifying RNase E ( rne) and a gene affecting mRNA stability ( ams) are the same gene. Mol. Microbiol. 5: 851 855.
154. Tock, M. R.,, A. P. Walsh,, G. Carroll,, and K. J. McDowall. 2000. The CafA protein required for the 50-maturation of 16 S rRNA is a 5'-end-dependent ribonuclease that has contextdependent broad sequence specificity. J. Biol. Chem. 275: 8726 8732.
155. Umitsuki, G.,, M. Wachi,, A. Takada,, T. Hikichi,, and K. Nagia. 2001. Involvement of RNase G in in vivo mRNA metabolism in Escherichia coli. Genes Cells 6: 403 410.
156. Vanzo, N. F.,, Y. S. Li,, B. Py,, E. Blum,, C. F. Higgins,, L. C. Raynal,, H. M. Krisch,, and A. J. Carpousis. 1998. Ribonuclease E organizes the protein interactions in the Escherichia coli RNA degradosome. Genes Dev. 12: 2770 2781.
157. Vytvytska, O.,, I. Moll,, V. R. Kaberdin,, A. von Gabain,, and U. Blasi. 2000. Hfq(HF1) stimulates ompA mRNA decay by interfering with ribosome binding. Genes Dev. 14: 1109 1118.
158. Wachi, M.,, G. Umitsuki,, and K. Nagai. 1997. Functional relationship between Escherichia coli RNase E and the CafA protein. Mol. Gen. Genet. 253: 515 519.
159. Wachi, M.,, G. Umitsuki,, M. Shimizu,, A. Takada,, and K. Nagai. 1999. Escherichia coli cafA gene encodes a novel RNase, designated as RNase G, involved in processing of the 5' end of 16S rRNA. Biochem. Biophys. Res. Commun. 259: 483 488.
160. Wang, R.-F.,, E. B. O’Hara,, M. Aldea,, C. I. Bargmann,, H. Gromley,, and S. R. Kushner. 1998. E. coli MrsC is an allele of HflB, a membrane associated ATPase and protease that is required for mRNA decay. J. Bacteriol. 180: 1929 1938.
161. Wei, B. L.,, A. M. Brun-Zinkernagel,, J. W. Simecka,, B. M. Prub,, P. Babitzke,, and T. Romeo. 2001. Positive regulation of motility and flhDC expression by the RNAbinding protein CsrA of Escherichia coli. Mol. Microbiol. 40: 245 256.
162. Xu, F.,, S. Lin-Chao,, and S. N. Cohen. 1993. The Escherichia coli pcnB gene promotes adenylylation of antisense RNAI of ColE1-type plasmids in vivo and degradation of RNAI decay intermediates. Proc. Natl. Acad. Sci. USA 90: 6756 6760.
163. Xu, F.,, and S. N. Cohen. 1995. RNA degradation in Escherichia coli regulated by 3′ adenylation and 5′ phosphorylation. Nature 374: 180 183.
164. Yehudai-Resheff, S.,, and G. Schuster. 2000. Characterization of the E. coli poly(A) polymerase: nucleotide specificity, RNA-binding affinities and RNA structure dependence. Nucleic Acids Res. 28: 1139 1144.
165. Yue, D.,, N. Maizels,, and A. M. Weiner. 1996. CCA-adding enzymes and poly(A) polymerases are all members of the same nucleotidyltransferase superfamily: characterization of the CCA-adding enzyme from the archaeal hyperthermophile Sulfolobus shibatae. RNA 2: 895 908.
166. Zhang, A.,, S. Altuvia,, A. Tiwari,, L. Argaman,, R. Hengge- Aronis,, and G. Storz. 1998. The oxyS regulatory RNA represses rpoS translation by binding Hfq (Hf-1) protein. EMBO J. 17: 6061 6068.
167. Zhang, A.,, K. M. Wassarman,, C. Rosenow,, B. C. Tjaden,, G. Storz,, and S. Gottesman. 2003. Global analysis of small RNA and mRNA targets of Hfq. Mol. Microbiol. 50: 1111 1124.
168. Zhang, K.,, and A. W. Nicholson. 1997. Regulation of ribonuclease III processing by double-helical sequence antideterminants. Proc. Natl. Acad. Sci. USA 94: 13437 13441.
169. Zhang, X.,, L. Zhu,, and M. P. Deutscher. 1998. Oligoribonuclease is encoded by a highly conserved gene in the 30-50 exonuclease superfamily. J. Bacteriol. 180: 2779 2781.
170. Zilhao, R.,, R. Cairrao,, P. Régnier,, and C. M. Arraiano. 1996. PNPase modulates RNase II expression in Escherichia coli: implications for mRNA decay and cell metabolism. Mol. Microbiol. 20: 1033 1042.

Tables

Generic image for table
Table 1

Enzymes and proteins of that are involved in mRNA decay and processing

Citation: Kushner S. 2005. mRNA Decay and Processing, p 327-346. In Higgins N (ed), The Bacterial Chromosome. ASM Press, Washington, DC. doi: 10.1128/9781555817640.ch18

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error