1887

Chapter 20 : The RecA Protein

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

The RecA Protein, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817640/9781555812324_Chap20-1.gif /docserver/preview/fulltext/10.1128/9781555817640/9781555812324_Chap20-2.gif

Abstract:

This chapter focuses on the bacterial RecA proteins, which have at least three major roles. The first function involves a direct participation in the central steps of recombination, via the DNA strand exchange activity. Second, RecA protein has a role in regulation. As a regulatory function, the RecA protein facilitates the autocatalytic cleavage of the LexA repressor and certain other proteins to induce the SOS response to DNA damage. Finally, the RecA protein participates in yet another type of repair process. Late in the SOS response, especially when DNA damage levels are particularly high and nonmutagenic DNA repair is insufficient to get replication restarted, a need arises to restart replication via lesion bypass. The known biochemical activities of the RecA protein parallel these cellular roles. These include binding to DNA, ATP hydrolysis, filament formation, DNA strand exchange, and the coprotease activity. The nucleation of RecA protein on single-stranded DNA (ssDNA) is slowed considerably if the DNA is bound by the single-strand DNA-binding protein SSB. The capacity to promote uniquely unidirectional DNA strand exchange reactions, to bypass significant structural barriers, and to promote four-strand exchange reactions is so far unique to the bacterial RecA proteins, and all of these processes require ATP hydrolysis.

Citation: Cox M. 2005. The RecA Protein, p 369-388. In Higgins N (ed), The Bacterial Chromosome. ASM Press, Washington, DC. doi: 10.1128/9781555817640.ch20

Key Concept Ranking

Bacterial Proteins
0.50878066
DNA Polymerase V
0.4992486
0.50878066
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Replication fork demise at the sites of DNA damage. (A) Encounter with a strand break leads to a double-strand break and dissociation of one arm of the fork. (B) Encounter with an unrepaired DNA lesion can result in the creation of a gap at a stalled fork. In either case, repair pathways involve recombination.

Citation: Cox M. 2005. The RecA Protein, p 369-388. In Higgins N (ed), The Bacterial Chromosome. ASM Press, Washington, DC. doi: 10.1128/9781555817640.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

RecA protein structure. (A) A RecA filament is shown, with 24 RecA monomers, based on the 1992 structure by Story and Steitz ( ) (see text). One monomer is colored in a darker gray. (B) A RecA monomer, with bound ADP. (C) An electron micrograph of one segment of a RecA filament formed on DNA.

Citation: Cox M. 2005. The RecA Protein, p 369-388. In Higgins N (ed), The Bacterial Chromosome. ASM Press, Washington, DC. doi: 10.1128/9781555817640.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Domain structures of RecA protein and its homologues in and . The open box is the core domain shared by all four proteins. The RecA C-terminal domain is unique to bacterial RecA proteins. Homologies among other domain elements are indicated by shading patterns.

Citation: Cox M. 2005. The RecA Protein, p 369-388. In Higgins N (ed), The Bacterial Chromosome. ASM Press, Washington, DC. doi: 10.1128/9781555817640.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Assembly and disassembly pathways for RecA filaments. After nucleation, filament extension proceeds 5′ to 3′ relative to the ssDNA, and can encompass adjacent duplex regions. RecA dissociation occurs from the opposite filament end, and proceeds also 5′ to 3′.

Citation: Cox M. 2005. The RecA Protein, p 369-388. In Higgins N (ed), The Bacterial Chromosome. ASM Press, Washington, DC. doi: 10.1128/9781555817640.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

RecA protein-mediated DNA strand exchange reactions. (A) The most common three-strand reaction used in many studies. (B) The standard four-strand reaction. RecA protein filaments are nucleated in the gap of the circular DNA substrate, and DNA pairing is also initiated in this gap. (C) Initiation of DNA strand exchange at a free duplex DNA end. (D) Initiation of DNA strand exchange at a free single-strand (RecA-bound) DNA end.

Citation: Cox M. 2005. The RecA Protein, p 369-388. In Higgins N (ed), The Bacterial Chromosome. ASM Press, Washington, DC. doi: 10.1128/9781555817640.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Unproductive complexes that can stall DNA strand exchange reactions. The formation of a joint molecule involves the uptake of a duplex DNA into the RecA filament and its alignment with the previously bound single-stranded DNA. Extension of the region of paired DNA requires a continued spooling of the duplex into the filament, as shown in the top panel. This extension can be blocked by a secondary DNA pairing involving another part of the duplex (leaving an external loop of DNA [middle panel]) or any unproductive interaction of the duplex and the filament (bottom panel) that halts the needed spooling process.

Citation: Cox M. 2005. The RecA Protein, p 369-388. In Higgins N (ed), The Bacterial Chromosome. ASM Press, Washington, DC. doi: 10.1128/9781555817640.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Model for RecA protein-mediated rotation of DNA to effect DNA strand exchange. Any duplex DNA external to the filament, perhaps as a result of the formation of external DNA loops as shown in Fig. 6 , would be rotated around the outside of the filament in a reaction coupled to ATP hydrolysis. Rotation in the direction of the curved arrows will result in branch movement in the direction of the black arrows.

Citation: Cox M. 2005. The RecA Protein, p 369-388. In Higgins N (ed), The Bacterial Chromosome. ASM Press, Washington, DC. doi: 10.1128/9781555817640.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8
Figure 8

Fork regression as might occur at a stalled replication fork. The product of this reaction is sometimes called a chicken foot.

Citation: Cox M. 2005. The RecA Protein, p 369-388. In Higgins N (ed), The Bacterial Chromosome. ASM Press, Washington, DC. doi: 10.1128/9781555817640.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817640.chap20
1. Abrahams, J. P.,, A. G. Leslie,, R. Lutter,, and J. E. Walker. 1994. Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria. Nature 370:621628.
2. Adzuma, K. 1998. No sliding during homology search by RecA protein. J. Biol. Chem. 273:3156531573.
3. Adzuma, K. 1992. Stable synapsis of homologous DNA molecules mediated by the Escherichia coli RecA protein involves local exchange of DNA strands. Genes Dev. 6:16791694.
4. Amano, T.,, M. Yoshida,, Y. Matsuo,, and K. Nishikawa. 1994. Structural model of the ATP-binding domain of the F1- beta subunit based on analogy to the RecA protein. FEBS Lett. 351:15.
5. Amaratunga, M.,, and A. S. Benight. 1988. DNA sequence dependence of ATP hydrolysis by RecA protein. Biochem. Biophys. Res. Commun. 157:127133.
6. Anderson, D. G.,, and S. C. Kowalczykowski. 1997. The translocating RecBCD enzyme stimulates recombination by directing RecA protein onto ssDNA in a chi-regulated manner. Cell 90:7786.
7. Arenson, T. A.,, O. V. Tsodikov,, and M. M. Cox. 1999. Quantitative analysis of the kinetics of end-dependent disassembly of RecA filaments from ssDNA. J. Mol. Biol. 288:391401.
8. Baliga, R.,, J. W. Singleton,, and P. B. Dervan. 1995. RecA oligonucleotide filaments bind in the minor groove of double-stranded DNA. Proc. Natl. Acad. Sci. USA 92:1039310397.
9. Baumann, P.,, F. E. Benson,, and S. C. West. 1996. Human Rad51 protein promotes ATP-dependent homologous pairing and strand transfer reactions in vitro. Cell 87:757766.
10. Baumann, P.,, and S. C. West. 1997. The human Rad51 protein: polarity of strand transfer and stimulation by Hrp-A. EMBO J. 16:51985206.
11. Bazemore, L. R.,, E. Foltastogniew,, M. Takahashi,, and C. M. Radding. 1997. RecA tests homology at both pairing and strand exchange. Proc. Natl. Acad. Sci. USA 94:1186311868.
12. Bazemore, L. R.,, M. Takahashi,, and C. M. Radding. 1997. Kinetic analysis of pairing and strand exchange catalyzed by RecA. Detection by fluorescence energy transfer. J. Biol. Chem. 272:1467214682.
13. Bedale, W. A.,, and M. Cox. 1996. Evidence for the coupling of ATP hydrolysis to the final (extension) phase of RecA protein-mediated DNA strand exchange. J. Biol. Chem. 271:57255732.
14. Bianchet, M. A.,, Y. H. Ko,, L. M. Amzel,, and P. L. Pedersen. 1997. Modeling of nucleotide binding domains of ABC transporter proteins based on a F1-ATPase/recA topology: structural model of the nucleotide binding domains of the cystic fibrosis transmembrane conductance regulator (CFTR). J. Bioenerg. Biomembr. 29:503524.
15. Bianco, P. R.,, R. B. Tracy,, and S. C. Kowalczykowski. 1998. DNA strand exchange proteins: a biochemical and physical comparison. Front. Biosci. 3:560603.
16. Bishop, D. K.,, D. Park,, L. Xu,, and N. Kleckner. 1992. DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell 69:439456.
17. Brendel, V.,, L. Brocchieri,, S. J. Sandler,, A. J. Clark,, and S. Karlin. 1997. Evolutionary comparisons of RecA-like proteins across all major kingdoms of living organisms. J. Mol. Evol. 44:528541.
18. Brenner, S. L.,, R. S. Mitchell,, S. W. Morrical,, S. K. Neuendorf,, B. C. Schutte,, and M. M. Cox. 1987. RecA protein-promoted ATP hydrolysis occurs throughout RecA nucleoprotein filaments. J. Biol. Chem. 262:40114016.
19. Brenner, S. L.,, A. Zlotnick,, and J. D. Griffith. 1988. RecA protein self-assembly. Multiple discrete aggregation states. J. Mol. Biol. 204:959972.
20. Brenner, S. L.,, A. Zlotnick,, and W. F. Stafford. 1990. RecA protein self-assembly. 2. Analytical equilibrium ultracentrifugation studies of the entropy-driven self-association of RecA. J. Mol. Biol. 216:949964.
21. Cazaux, C.,, F. Larminat,, G. Villani,, N. P. Johnson,, M. Schnarr,, and M. Defais. 1994. Purification and biochemical characterization of Escherichia coli RecA proteins mutated in the putative DNA binding site. J. Biol. Chem. 269:82468254.
22. Cazenave, C.,, M. Chabbert,, J. J. Toulme,, and C. Helene. 1984. Absorption and fluorescence studies of the binding of the recA gene product from E. coli to single-stranded and double-stranded DNA. Ionic strength dependence. Biochim. Biophys. Acta 781:713.
23. Chow, S. A.,, S. K. Chiu,, and B. C. Wong. 1992. RecA protein-promoted homologous pairing and strand exchange between intact and partially single-stranded duplex DNA. J. Mol. Biol. 223:7993.
24. Chow, S. A.,, S. M. Honigberg,, and C. M. Radding. 1988. DNase protection by RecA protein during strand exchange. Asymmetric protection of the Holliday structure. J. Biol. Chem. 263:33353347.
25. Churchill, J. J.,, D. G. Anderson,, and S. C. Kowalczykowski. 1999. The RecBC enzyme loads RecA protein onto ssDNA asymmetrically and independently of chi, resulting in constitutive recombination activation. Genes Dev. 13:901911.
26. Clark, A. J.,, and A. D. Margulies. 1965. Isolation and characterization of recombination-deficient mutants of Escherichia coli K12. Proc. Natl. Acad. Sci. USA 53:451459.
27. Conley, E. C.,, and S. C. West. 1990. Underwinding of DNA associated with duplex-duplex pairing by RecA protein. J. Biol. Chem. 265:1015610163.
28. Cotterill, S. M.,, A. C. Satterthwait,, and A. R. Fersht. 1982. RecA protein from Escherichia coli. A very rapid and simple purification procedure: binding of adenosine 5′-triphosphate and adenosine 5′-diphosphate by the homogeneous protein. Biochemistry 21:43324337.
29. Cox, M. M. 1995. Alignment of three (but not four) DNA strands in a RecA protein filament. J. Biol. Chem. 270:2602126024.
30. Cox, M. M. 1998. A broadening view of recombinational DNA repair in bacteria. Genes Cells 3:6578.
31. Cox, M. M. 2001. Historical overview: searching for replication help in all the rec places. Proc. Natl. Acad. Sci. USA 98:81738180.
32. Cox, M. M. 1999. Recombinational DNA repair in bacteria and the RecA protein. Prog. Nucleic Acid Res. Mol. Biol. 63:310366.
33. Cox, M. M. 2001. Recombinational DNA repair of damaged replication forks in Escherichia coli: questions. Annu. Rev. Genet. 35:5382.
34. Cox, M. M., 1989. The role of RecA protein in homologous genetic recombination, p. 4370. In K. W. Adolph (ed.), Molecular Biology of Chromosome Function. Springer-Verlag, New York, N.Y.
35. Cox, M. M. 1994. Why does RecA protein hydrolyze ATP. Trends Biochem. Sci. 19:217222.
36. Cox, M. M.,, M. F. Goodman,, K. N. Kreuzer,, D. J. Sherratt,, S. J. Sandler,, and K. J. Marians. 2000. The importance of repairing stalled replication forks. Nature 404:3741.
37. Cox, M. M.,, and I. R. Lehman. 1981. Directionality and polarity in RecA protein-promoted branch migration. Proc. Natl. Acad. Sci. USA 78:60186022.
38. Cox, M. M.,, and I. R. Lehman. 1981. RecA protein of Escherichia coli promotes branch migration, a kinetically distinct phase of DNA strand exchange. Proc. Natl. Acad. Sci. USA 78:34333437.
39. Cox, M. M.,, K. McEntee,, and I. R. Lehman. 1981. A simple and rapid procedure for the large scale purification of the RecA protein of Escherichia coli. J. Biol. Chem. 256:46764678.
40. Cox, M. M.,, B. F. Pugh,, B. C. Schutte,, J. E. Lindsley,, J. Lee,, and S. W. Morrical,. 1987. On the mechanism of RecA protein-promoted DNA branch migration, p. 597607. In R. McMacken, and T. J. Kelly (ed.), DNA Replication and Recombination. Alan R. Liss, Inc., New York, N.Y.
41. Cox, M. M.,, D. A. Soltis,, I. R. Lehman,, C. DeBrosse,, and S. J. Benkovic. 1983. ADP-mediated dissociation of stable complexes of RecA protein and single-stranded DNA. J. Biol. Chem. 258:25862592.
42. Defais, M.,, and R. Devoret. 2000. SOS Response, vol. 2001, 1st ed. Macmillan Publishers Ltd., Basingstoke, Hampshire, England.
43. Defais, M.,, P. Fauquet,, M. Radman,, and M. Errera. 1971. Ultraviolet reactivation and ultraviolet mutagenesis of lambda in different genetic systems. Virology 43:495503.
44. Devoret, R. 1992. Les fonctions SOS ou comment les bactéries survivent aux lésions de leur ADN. Ann. Inst. Pasteur Actual. 1:1120.
45. Di Capua, E.,, A. Engel,, A. Stasiak,, and T. Koller. 1982. Characterization of complexes between RecA protein and duplex DNA by electron microscopy. J. Mol. Biol. 157:87103.
46. Di Capua, E.,, and B. Mu¨ ller. 1987. The accessibility of DNA to dimethylsulfate in complexes with RecA protein. EMBO J. 6:24932498.
47. Dombroski, D. F.,, D. G. Scraba,, R. D. Bradley,, and A. R. Morgan. 1983. Studies of the interaction of RecA protein with DNA. Nucleic Acids Res. 11:74877504.
48. Dutreix, M.,, B. Burnett,, A. Bailone,, C. M. Radding,, and R. Devoret. 1992. A partially deficient mutant, recA1730, that fails to form normal nucleoprotein filaments. Mol. Gen. Genet. 232:489497.
49. Echols, H.,, and M. F. Goodman. 1991. Fidelity mechanisms in DNA replication. Annu. Rev. Biochem. 60:477511.
50. Egelman, E. 2001. Does a stretched DNA structure dictate the helical geometry of RecA-like filaments? J. Mol. Biol. 309:539602.
51. Egelman, E. 2000. A ubiquitous structural core. Trends Biochem. 25:183184.
52. Egelman, E. H. 1998. Bacterial helicases. J. Struct. Biol. 124:123128.
53. Egelman, E. H. 1993. What do x-ray crystallographic and electron microscopic structural studies of the RecA protein tell us about recombination? Curr. Opin. Struct. Biol. 3:189197.
54. Egelman, E. H.,, and A. Stasiak. 1993. Electron microscopy of RecA-DNA complexes: two different states, their functional significance and relation to the solved crystal structure. Micron 24:309324.
55. Egelman, E. H.,, and A. Stasiak. 1986. Structure of helical RecA-DNA complexes. Complexes formed in the presence of ATP-γ-S or ATP. J. Mol. Biol. 191:677697.
56. Egelman, E. H.,, and A. Stasiak. 1988. Structure of helical RecA-DNA complexes. II. Local conformational changes visualized in bundles of RecA-ATP-γ-S filaments. J. Mol. Biol. 200:329349.
57. Egelman, E. H.,, and X. Yu. 1989. The location of DNA in RecA-DNA helical filaments. Science 245:404407.
58. Eggleston, A. K.,, A. H. Mitchell,, and S. C. West. 1997. In vitro reconstitution of the late steps of genetic recombination in E. coli. Cell 89:607617.
59. Ellouze, C.,, M. Takahashi,, P. Wittung,, K. Mortensen,, M. Schnarr,, and B. Norden. 1995. Evidence for elongation of the helical pitch of the RecA filament upon ATP and ADP binding using small-angle neutron scattering. Eur. J. Biochem. 233:579583.
60. Fishel, R. A.,, and A. Rich,. 1988. The role of left-handed Z-DNA in general genetic recombination, p. 2332. In E. C. Friedberg, and P. C. Hanawalt (ed.), Mechanisms and Consequences of DNA Damage Processing. Alan R. Liss, Inc., New York, N.Y.
61. Frank, E. G.,, J. Hauser,, A. S. Levine,, and R. Woodgate. 1993. Targeting of the UmuD, UmuD′, and MucA′ mutagenesis proteins to DNA by RecA protein. Proc. Natl. Acad. Sci. USA 90:81698173.
62. Frank-Kamenetskii, M. D.,, and S. M. Mirkin. 1995. Triplex DNA structures. Annu. Rev. Biochem. 64:6595.
63. Friedberg, E. C.,, G. C. Walker,, and W. Siede. 1995. DNA Repair and Mutagenesis. ASM Press, Washington, D.C.
64. Frischkorn, K.,, B. Springer,, E. C. Bottger,, E. O. Davis,, M. J. Colston,, and P. Sander. 2000. In vivo splicing and functional characterization of Mycobacterium leprae RecA. J. Bacteriol. 182:35903592.
65. Garvey, N.,, A. C. St. John,, and E. M. Witkin. 1985. Evidence for RecA protein association with the cell membrane and for changes in the levels of major outer membrane proteins in SOS-induced Escherichia coli cells. J. Bacteriol. 163:870876.
66. Gomis-Ruth, F. X.,, G. Moncalian,, R. Perez-Luque,, A. Gonzalez,, E. Cabezon,, F. de la Cruz,, and M. Coll. 2001. The bacterial conjugation protein TrwB resembles ring helicases and F1-ATPase. Nature 409:637641.
67. Goodman, H. J. K.,, and D. R. Woods. 1990. Molecular analysis of the Bacteroides fragilis recA gene. Gene 94:7782.
68. Goodman, M. F.,, and B. Tippin. 2000. The expanding polymerase universe. Nat. Rev. Mol. Cell. Biol. 1:101109.
69. Griffith, J.,, and C. G. Shores. 1985. RecA protein rapidly crystallizes in the presence of spermidine: a valuable step in its purification and physical characterization. Biochemistry 24:158162.
70. Gudas, L. J.,, and D. W. Mount. 1977. Identification of the recA (tif) gene product of Escherichia coli. Proc. Natl. Acad. Sci. USA 74:52805284.
71. Gupta, R. C.,, L. R. Bazemore,, E. I. Golub,, and C. M. Radding. 1997. Activities of human recombination protein Rad51. Proc. Natl. Acad. Sci. USA 94:463468.
72. Gupta, R. C.,, E. Folta-Stogniew,, S. O’Malley,, M. Takahashi,, and C. M. Radding. 1999. Rapid exchange of A:T base pairs is essential for recognition of DNA homology by human Rad51 recombination protein. Mol. Cell 4:705714.
73. Gupta, R. C.,, E. I. Golub,, M. S. Wold,, and C. M. Radding. 1998. Polarity of DNA strand exchange promoted by recombination proteins of the RecA family. Proc. Natl. Acad. Sci. USA 95:98439848.
74. Heuser, J.,, and J. Griffith. 1989. Visualization of RecA protein and its complexes with DNA by quick-freeze/deepetch electron microscopy. J. Mol. Biol. 210:473484.
75. Higashitani, N.,, A. Higashitani,, A. Roth,, and K. Horiuchi. 1992. SOS induction in Escherichia coli by infection with mutant filamentous phage that are defective in initiation of complementary-strand DNA synthesis. J. Bacteriol. 174:16121618.
76. Higgins, N. P.,, K. Kato,, and B. Strauss. 1976. A model for replication repair in mammalian cells. J. Mol. Biol. 101:417425.
77. Howard-Flanders, P.,, S. C. West,, and A. Stasiak. 1984. Role of RecA protein spiral filaments in genetic recombination. Nature 309:215219.
78. Jain, S. K.,, M. M. Cox,, and R. B. Inman. 1994. On the role of ATP hydrolysis in RecA protein-mediated DNA strand exchange. III. Unidirectional branch migration and extensive hybrid DNA formation. J. Biol. Chem. 269:2065320661.
79. Jain, S. K.,, R. B. Inman,, and M. M. Cox. 1992. Putative 3-stranded DNA pairing intermediate in RecA protein-mediated DNA strand exchange: no role for guanine N-7. J. Biol. Chem. 267:42154222.
80. Jwang, B.,, and C. M. Radding. 1992. Torsional stress generated by RecA protein during DNA strand exchange separates strands of a heterologous insert. Proc. Natl. Acad. Sci. USA 89:75967600.
81. Kahn, R.,, R. P. Cunningham,, C. Das Gupta,, and C. M. Radding. 1981. Polarity of heteroduplex formation promoted by Escherichia coli RecA protein. Proc. Natl. Acad. Sci. USA 78:47864790.
82. Karlin, S.,, and L. Brocchieri. 1996. Evolutionary conservation of RecA genes in relation to protein structure and function. J. Bacteriol. 178:18811894.
83. Kim, J. I.,, M. M. Cox,, and R. B. Inman. 1992. On the role of ATP hydrolysis in RecA protein-mediated DNA strand exchange. I. Bypassing a short heterologous insert in one DNA substrate. J. Biol. Chem. 267:1643816443.
84. Kim, J. I.,, M. M. Cox,, and R. B. Inman. 1992. On the role of ATP hydrolysis in RecA protein-mediated DNA strand exchange. II. Four-strand exchanges. J. Biol. Chem. 267:1644416449.
85. Kim, M. G.,, V. B. Zhurkin,, R. L. Jernigan,, and R. D. Camerini-Otero. 1995. Probing the structure of a putative intermediate in homologous recombination: the third strand in the parallel DNA triplex is in contact with the major groove of the duplex. J. Mol. Biol. 247:874889.
86. Kim, S. K.,, M. Takahashi,, B. Jernstrom,, and B. Norden. 1993. Enhancement of binding rate of RecA protein to DNA by carcinogenic benzo[a]pyrene derivatives and selective change of adduct conformation. Carcinogenesis 14:311313.
87. Kojima, M.,, M. Suzuki,, T. Morita,, T. Ogawa,, H. Ogawa,, and M. Tada. 1990. Interaction of RecA protein with pBR322 DNA modified by N-hydroxy-2-acetylaminofluorene and 4-hydroxyaminoquinoline 1-oxide. Nucleic Acids Res. 18:27072714.
88. Konforti, B. B.,, and R. W. Davis. 1992. ATP hydrolysis and the displaced strand are two factors that determine the polarity of RecA-promoted DNA strand exchange. J. Mol. Biol. 227:3853.
89. Kowalczykowski, S. C. 2000. Initiation of genetic recombination and recombination-dependent replication. Trends Biochem. Sci. 25:156165.
90. Kowalczykowski, S. C. 1986. Interaction of RecA protein with a photoaffinity analogue of ATP, 8-azido-ATP: determination of nucleotide cofactor binding parameters and of the relationship between ATP binding and ATP hydrolysis. Biochemistry 25:58725881.
91. Kowalczykowski, S. C.,, J. Clow,, and R. A. Krupp. 1987. Properties of the duplex DNA-dependent ATPase activity of Escherichia coli RecA protein and its role in branch migration. Proc. Natl. Acad. Sci. USA 84:31273131.
92. Kowalczykowski, S. C.,, and A. K. Eggleston. 1994. Homologous pairing and DNA strand-exchange proteins. Annu. Rev. Biochem. 63:9911043.
93. Kowalczykowski, S. C.,, and R. A. Krupp. 1995. DNA-strand exchange promoted by RecA protein in the absence of ATP: implications for the mechanism of energy transduction in protein-promoted nucleic acid transactions. Proc. Natl. Acad. Sci. USA 92:34783482.
94. Krueger, J. H.,, and G. C. Walker. 1984. groEL and dnaK genes of Escherichia coli are induced by UV irradiation and nalidixic acid in an htpR+-dependent fashion. Proc. Natl. Acad. Sci. USA 81:14991503.
95. Kubista, M.,, T. Simonson,, R. Sjöback,, H. Widlund,, and A. Johansson,. 1996. Towards an understanding of the mechanism of DNA strand exchange mediated by RecA protein, p. 4959. In R. H. Sarma, and M. H. Sarma (ed.), Biological Structure and Dynamics: Proceedings of the Ninth Conversation, vol. 1. Adenine Press, Schenectady, N.Y.
96. Kumar, K. A.,, S. Mahalakshmi,, and K. Muniyappa. 1993. DNA-induced conformational changes in RecA protein. Evidence for structural heterogeneity among nucleoprotein filaments and implications for homologous pairing. J. Biol. Chem. 268:2616226170.
97. Kumar, K. A.,, and K. Muniyappa. 1992. Use of structure-directed DNA ligands to probe the binding of recA protein to narrow and wide grooves of DNA and on its ability to promote homologous pairing. J. Biol. Chem. 267:2482424832.
98. Kumar, R. A.,, M. B. Vaze,, N. R. Chandra,, M. Vijayan,, and K. Muniyappa. 1996. Functional characterization of the precursor and spliced forms of RecA protein of Mycobacterium tuberculosis. Biochemistry 35:17931802.
99. Kuramitsu, S.,, K. Hamaguchi,, T. Ogawa,, and H. Ogawa. 1981. A large-scale preparation and some physicochemical properties of recA protein. J. Biochem. 90:10331045.
100. Kurumizaka, H.,, B. J. Rao,, T. Ogawa,, C. M. Radding,, and T. Shibata. 1994. A chimeric Rec-A protein that implicates non-Watson-Crick interactions in homologous pairing. Nucleic Acids Res. 22:33873391.
101. Kurumizaka, H.,, and T. Shibata. 1996. Homologous recognition by RecA protein using non-equivalent three DNA-strand-binding sites. J. Biochem. 119:216223.
102. Kuzminov, A. 2001. DNA replication meets genetic exchange: chromosomal damage and its repair by homologous recombination. Proc. Natl. Acad. Sci. USA 98:84618468.
103. Kuzminov, A. 1999. Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda. Microbiol. Mol. Biol. Rev. 63:751813.
104. Lauder, S. D.,, and S. C. Kowalczykowski. 1991. Asymmetry in the RecA protein-DNA filament. J. Biol. Chem. 266:54505458.
105. Leahy, M. C.,, and C. M. Radding. 1986. Topography of the interaction of RecA protein with single-stranded deoxyoligonucleotides. J. Biol. Chem. 261:69546960.
106. Lee, J. W.,, and M. M. Cox. 1990. Inhibition of RecA protein-promoted ATP hydrolysis. I. ATPγS and ADP are antagonistic inhibitors. Biochemistry 29:76667676.
107. Lee, J. W.,, and M. M. Cox. 1990. Inhibition of RecA protein-promoted ATP hydrolysis. II. Longitudinal assembly and disassembly of RecA protein filaments mediated by ATP and ADP. Biochemistry 29:76777683.
108. Li, Z. F.,, E. I. Golub,, R. Gupta,, and C. M. Radding. 1997. Recombination activities of Hsdmc1 protein, the meiotic human homolog of RecA protein. Proc. Natl. Acad. Sci. USA 94:1122111226.
109. Lindahl, T.,, and R. D. Wood. 1999. Quality control by DNA repair. Science 286:18971905.
110. Lindsley, J. E.,, and M. M. Cox. 1990. Assembly and disassembly of RecA protein filaments occurs at opposite filament ends: relationship to DNA strand exchange. J. Biol. Chem. 265:90439054.
111. Lindsley, J. E.,, and M. M. Cox. 1989. Dissociation pathway for RecA nucleoprotein filaments formed on linear duplex DNA. J. Mol. Biol. 205:695711.
112. Lindsley, J. E.,, and M. M. Cox. 1990. On RecA protein-mediated homologous alignment of 2 DNA molecules: 3 strands versus 4 strands. J. Biol. Chem. 265:1016410171.
113. Little, J. W. 1984. Autodigestion of LexA and phage lambda repressors. Proc. Natl. Acad. Sci. USA 81:13751379.
114. Little, J. W. 1991. Mechanism of specific LexA cleavage: autodigestion and the role of RecA coprotease. Biochimie 73:411422.
115. Little, J. W.,, S. H. Edmiston,, L. Z. Pacelli,, and D. W. Mount. 1980. Cleavage of the Escherichia coli LexA protein by the RecA protease. Proc. Natl. Acad. Sci. USA 77:32253229.
116. Livneh, Z.,, F. O. Cohen,, R. Skaliter,, and T. Elizur. 1993. Replication of damaged DNA and the molecular mechanism of ultraviolet light mutagenesis. Crit. Rev. Biochem. Mol. Biol. 28:465513.
117. Lu, C.,, and H. Echols. 1987. RecA protein and SOS. Correlation of mutagenesis phenotype with binding of mutant RecA proteins to duplex DNA and LexA cleavage. J. Mol. Biol. 196:497504.
118. Lu, C.,, R. H. Scheuermann,, and H. Echols. 1986. Capacity of RecA protein to bind preferentially to UV lesions and inhibit the editing subunit (e) of DNA polymerase III: a possible mechanism for SOS-induced targeted mutagenesis. Proc. Natl. Acad. Sci. USA 83:619623.
119. MacFarland, K. J.,, Q. Shan,, R. B. Inman,, and M. M. Cox. 1997. RecA as a motor protein. Testing models for the role of ATP hydrolysis in DNA strand exchange. J. Biol. Chem. 272:1767517685.
120. Madiraju, M. V.,, P. E. Lavery,, S. C. Kowalczykowski,, and A. J. Clark. 1992. Enzymatic properties of the RecA803 protein, a partial suppressor of recF mutations. Biochemistry 31:1052910535.
121. Malkov, V. A.,, I. G. Panyutin,, R. D. Neumann,, V. B. Zhurkin,, and R. D. Camerini-Otero. 2000. Radio-probing of a RecA-three-stranded DNA complex with iodine 125: evidence for recognition of homology in the major groove of the target duplex. J. Mol. Biol. 299:629640.
122. Martin, B.,, J. M. Ruellan,, J. F. Angulo,, R. Devoret,, and J. P. Claverys. 1992. Identification of the recA gene of Streptococcus pneumoniae. Nucleic Acids Res. 20:6412.
123. Masson, J. Y.,, A. A. Davies,, N. Hajibagheri,, E. Van Dyck,, F. E. Benson,, A. Z. Stasiak,, A. Stasiak,, and S. C. West. 1999. The meiosis-specific recombinase hDmc1 forms ring structures and interacts with hRad51. EMBO J. 18:65526560.
124. Masui, R.,, T. Mikawa,, R. Kato,, and S. Kuramitsu. 1998. Characterization of the oligomeric states of RecA protein: monomeric RecA protein can form a nucleoprotein filament. Biochemistry 37:1478814797.
125. Mazin, A. V.,, and S. C. Kowalczykowski. 1998. The function of the secondary DNA binding site of RecA protein during DNA strand exchange. EMBO J. 17:11611168.
126. Mazin, A. V.,, and S. C. Kowalczykowski. 1999. A novel property of the RecA nucleoprotein filament: activation of double-stranded DNA for strand exchange in trans. Genes Dev. 13:20052016.
127. Mazin, A. V.,, and S. C. Kowalczykowski. 1996. The specificity of the secondary DNA binding site of RecA protein defines its role in DNA strand exchange. Proc. Natl. Acad. Sci. USA 93:1067310678.
128. McEntee, K.,, G. M. Weinstock,, and I. R. Lehman. 1981. Binding of the recA protein of Escherichia coli to single- and double-stranded DNA. J. Biol. Chem. 256:88358844.
129. McGavin, S. 1971. Models of specifically paired like (homologous) nucleic acid structures. J. Mol. Biol. 55:293298.
130. McGlynn, P.,, R. G. Lloyd,, and K. J. Marians. 2001. Formation of Holliday junctions by regression of nascent DNA in intermediates containing stalled replication forks: RecG stimulates regression even when the DNA is negatively supercoiled. Proc. Natl. Acad. Sci. USA 98:82358240.
131. McKenzie, G. J.,, P. L. Lee,, M. J. Lombardo,, P. J. Hastings,, and S. M. Rosenberg. 2001. SOS mutator DNA polymerase IV functions in adaptive mutation and not adaptive amplification. Mol. Cell 7:571579.
132. Menetski, J. P.,, D. G. Bear,, and S. C. Kowalczykowski. 1990. Stable DNA heteroduplex formation catalyzed by the Escherichia coli RecA protein in the absence of ATP hydrolysis. Proc. Natl. Acad. Sci. USA 87:2125.
133. Menetski, J. P.,, and S. C. Kowalczykowski. 1989. Enhancement of Escherichia coli RecA protein enzymatic function by dATP. Biochemistry 28:58715881.
134. Menetski, J. P.,, and S. C. Kowalczykowski. 1985. Interaction of RecA protein with single-stranded DNA. Quantitative aspects of binding affinity modulation by nucleotide cofactors. J. Mol. Biol. 181:281295.
135. Menetski, J. P.,, and S. C. Kowalczykowski. 1987. Transfer of RecA protein from one polynucleotide to another. Kinetic evidence for a ternary intermediate during the transfer reaction. J. Biol. Chem. 262:20852092.
136. Menge, K. L.,, and F. R. Bryant. 1988. ATP-stimulated hydrolysis of GTP by RecA protein: kinetic consequences of cooperative RecA protein-ATP interactions. Biochemistry 27:26352640.
137. Menge, K. L.,, and F. R. Bryant. 1992. Effect of nucleotide cofactor structure on recA protein-promoted DNA pairing. 1. Three-strand exchange reaction. Biochemistry 31:51515157.
138. Menge, K. L.,, and F. R. Bryant. 1992. Effect of nucleotide cofactor structure on recA protein-promoted DNA pairing. 2. DNA renaturation reaction. Biochemistry 31:51585165.
139. Michel, B. 2000. Replication fork arrest and DNA recombination. Trends Biochem. Sci. 25:173178.
140. Mills, K. V.,, and H. Paulus. 2001. Reversible inhibition of protein splicing by zinc ion. J. Biol. Chem. 276:1083210838.
141. Mitchell, R. S.,, A. Zlotnick,, and S. L. Brenner. 1988. Direct evidence for two ssDNA-binding sites in a RecA nucleoprotein filament. Biophys. J. 53:220a.
142. Moran, N. A.,, and P. Baumann. 2000. Bacterial endosymbionts in animals. Curr. Opin. Microbiol. 3:270275.
143. Morel, P.,, A. Stasiak,, S. D. Ehrlich,, and E. Cassuto. 1994. Effect of length and location of heterologous sequences on RecA-mediated strand exchange. J. Biol. Chem. 269:1983019835.
144. Mount, D. W.,, K. B. Low,, and S. J. Edmiston. 1972. Dominant mutations (lex) in Escherichia coli K-12 which affect radiation sensitivity and frequency of ultraviolet light-induced mutations. J. Bacteriol. 112:886893.
145. Müller, B.,, T. Koller,, and A. Stasiak. 1990. Characterization of the DNA binding activity of stable RecA-DNA complexes: interaction between the two DNA binding sites within RecA helical filaments. J. Mol. Biol. 212:97112.
146. Murli, S.,, and G. C. Walker. 1993. SOS mutagenesis. Curr. Opin. Genet. Dev. 3:719725.
147. Namsaraev, E.,, and P. Berg. 1997. Characterization of strand exchange activity of yeast Rad51 protein. Mol. Cell. Biol. 17:53595368.
148. Namsaraev, E. A.,, and P. Berg. 1998. Branch migration during Rad51-promoted strand exchange proceeds in either direction. Proc. Natl. Acad. Sci. USA 95:1047710481.
149. Namsaraev, E. A.,, and P. Berg. 2000. Rad51 uses one mechanism to drive DNA strand exchange in both directions. J. Biol. Chem. 275:39703976.
150. Nayak, S.,, and F. R. Bryant. 1999. Differential rates of NTP hydrolysis by the mutant [S69G]RecA protein. Evidence for a coupling of NTP turnover to DNA strand exchange. J. Biol. Chem. 274:2597925982.
151. Neuendorf, S. K.,, and M. M. Cox. 1986. Exchange of RecA protein between adjacent RecA protein-single-stranded DNA complexes. J. Biol. Chem. 261:82768282.
152. Nishinaka, T.,, Y. Ito,, S. Yokoyama,, and T. Shibata. 1997. An extended DNA structure through deoxyribose-base stacking induced by RecA protein. Proc. Natl. Acad. Sci. USA 94:66236628.
153. Nishinaka, T.,, A. Shinohara,, Y. Ito,, S. Yokoyama,, and T. Shibata. 1998. Base pair switching by interconversion of sugar puckers in DNA extended by proteins of RecA-family: a model for homology search in homologous genetic recombination. Proc. Natl. Acad. Sci. USA 95:1107111076.
154. Nohmi, T.,, J. R. Battista,, L. A. Dodson,, and G. C. Walker. 1988. RecA-mediated cleavage activates UmuD for mutagenesis: mechanistic relationship between transcriptional derepression and posttranslational activation. Proc. Natl. Acad. Sci. USA 85:18161820.
155. Nordén, B.,, C. Elvingson,, M. Kubista,, B. Sjoberg,, H. Ryberg,, M. Ryberg,, K. Mortensen,, and M. Takahashi. 1992. Structure of RecA-DNA complexes studied by combination of linear dichroism and small-angle neutron scattering measurements on flow-oriented samples. J. Mol. Biol. 226:11751191.
156. Ogawa, T.,, H. Wabiko,, T. Tsurimoto,, T. Horii,, H. Masukata,, and H. Ogawa. 1979. Characteristics of purified recA protein and the regulation of its synthesis in vivo. Cold Spring Harbor Symp. Quant. Biol. 2:909915.
157. Ogawa, T.,, X. Yu,, A. Shinohara,, and E. H. Egelman. 1993. Similarity of the yeast RAD51 filament to the bacterial RecA filament. Science 259:18961899.
158. Passy, S. I.,, X. Yu,, Z. F. Li,, C. M. Radding,, J. Y. Masson,, S. C. West,, and E. H. Egelman. 1999. Human Dmc1 protein binds DNA as an octameric ring. Proc. Natl. Acad. Sci. USA 96:1068410688.
159. Pham, P.,, J. G. Bertram,, M. O’Donnell,, R. Woodgate,, and M. F. Goodman. 2001. A model for SOS-lesion-targeted mutations in Escherichia coli. Nature 409:366370.
160. Podyminogin, M. A.,, R. B. Meyer,, and H. B. Gamper. 1996. RecA-catalyzed, sequence-specific alkylation of DNA by crosslinking oligonucleotides. Effects of length and nonhomologous base substitution. Biochemistry 35:72677274.
161. Podyminogin, M. A.,, R. B. Meyer,, and H. B. Gamper. 1995. Sequence-specific covalent modification of DNA by crosslinking oligonucleotides. Catalysis by RecA and implication for the mechanism of synaptic joint formation. Biochemistry 34:1309813108.
162. Postow, L.,, C. Ullsperger,, R. W. Keller,, C. Bustamante,, A. V. Vologodskii,, and N. R. Cozzarelli. 2001. Positive torsional strain causes the formation of a four-way junction at replication forks. J. Biol. Chem. 267:27902796.
163. Pugh, B. F.,, and M. M. Cox. 1988. General mechanism for RecA protein binding to duplex DNA. J. Mol. Biol. 203:479493.
164. Pugh, B. F.,, and M. M. Cox. 1988. High salt activation of RecA protein ATPase in the absence of DNA. J. Biol. Chem. 263:7683.
165. Pugh, B. F.,, and M. M. Cox. 1987. Stable binding of RecA protein to duplex DNA. Unraveling a paradox. J. Biol. Chem. 262:13261336.
166. Pugh, B. F.,, B. C. Schutte,, and M. M. Cox. 1989. Extent of duplex DNA underwinding induced by RecA protein binding in the presence of ATP. J. Mol. Biol. 205:487492.
167. Radman, M., 1974. Phenomenology of an inducible mutagenic DNA repair pathway in Escherichia coli: SOS repair hypothesis, p. 128142. In L. Prakash,, F. Sherman,, M. Miller,, C. Lawrence,, and H. W. Tabor (ed.), Molecular and Environmental Aspects of Mutagenesis. Charles C Thomas Publisher, Springfield, Ill.
168. Register, J. C., III, and J. Griffith. 1985. The direction of RecA protein assembly onto single strand DNA is the same as the direction of strand assimilation during strand exchange. J. Biol. Chem. 260:1230812312.
169. Rehrauer, W. M.,, and S. C. Kowalczykowski. 1993. Alteration of the nucleoside triphosphate (NTP) catalytic domain within Escherichia coli recA protein attenuates NTP hydrolysis but not joint molecule formation. J. Biol. Chem. 268:12921297.
170. Rehrauer, W. M.,, and S. C. Kowalczykowski. 1996. The DNA binding site(s) of the Escherichia coli RecA protein. J. Biol. Chem. 271:119962002.
171. Reuven, N. B.,, G. Arad,, A. Maor-Shoshani,, and Z. Livneh. 1999. The mutagenesis protein UmuC is a DNA polymerase activated by UmuD′, RecA, and SSB and is specialized for translesion replication. J. Biol. Chem. 274:3176331766.
172. Reuven, N. B.,, G. Arad,, A. Z. Stasiak,, A. Stasiak,, and Z. Livneh. 2001. Lesion bypass by the Escherichia coli DNA polymerase V requires assembly of a RecA nucleoprotein filament. J. Biol. Chem. 276:55115517.
173. Rice, K. P.,, J. C. Chaput,, M. M. Cox,, and C. Y. Switzer. 2000. RecA protein promotes DNA strand exchange with substrates containing isoguanine and 5-methyl isocytosine. Biochemistry 39:1017710188.
174. Rice, K. P.,, A. L. Eggler,, P. Sung,, and M. M. Cox. 2001. DNA pairing and strand exchange by the Escherichia coli RecA and yeast Rad51 proteins without ATP hydrolysis: on the importance of not getting stuck. J. Biol. Chem. 276:3857038581.
175. Roberts, J. W.,, C. W. Roberts,, and N. L. Craig. 1978. Escherichia coli recA gene product inactivates phage lambda repressor. Proc. Natl. Acad. Sci. USA 75:47144718.
176. Robu, M. E.,, R. B. Inman,, and M. M. Cox. 2001. RecA protein promotes the regression of stalled replication forks in vitro. Proc. Natl. Acad. Sci. USA 98:82118218.
177. Roca, A. I.,, and M. M. Cox. 1990. The RecA protein: structure and function. Crit. Rev. Biochem. Mol. Biol. 25:415456.
178. Roca, A. I.,, and M. M. Cox. 1997. RecA protein: structure, function, and role in recombinational DNA repair. Prog. Nucleic Acid Res. Mol. Biol. 56:129223.
179. Rosselli, W.,, and A. Stasiak. 1991. The ATPase activity of RecA is needed to push the DNA strand exchange through heterologous regions. EMBO J. 10:43914396.
180. Rould, E.,, K. Muniyappa,, and C. M. Radding. 1992. Unwinding of heterologous DNA by RecA protein during the search for homologous sequences. J. Mol. Biol. 226:127139.
181. Saves, I.,, M. A. Laneelle,, M. Daffe,, and J. M. Masson. 2000. Inteins invading mycobacterial RecA proteins. FEBS Lett. 480:221225.
182. Schutte, B. C.,, and M. M. Cox. 1987. Homology-dependent changes in adenosine 50-triphosphate hydrolysis during RecA protein promoted DNA strand exchange: evidence for long paranemic complexes. Biochemistry 26:56165625.
183. Schutte, B. C.,, and M. M. Cox. 1988. Homology-dependent underwinding of duplex DNA in RecA protein generated paranemic complexes. Biochemistry 27:78867894.
184. Sedgwick, S. G. 1976. Misrepair of overlapping daughter strand gaps as a possible mechanism for UV induced mutagenesis in UVR strains of Escherichia coli: a general model for induced mutagenesis by misrepair (SOS repair) of closely spaced DNA lesions. Mutat. Res. 41:185200.
185. Seigneur, M.,, S. D. Ehrlich,, and B. Michel. 2000. Ruv-ABC-dependent double-strand breaks in dnaBts mutants require RecA. Mol. Microbiol. 38:565574.
186. Seitz, E. M.,, J. P. Brockman,, S. J. Sandler,, A. J. Clark,, and S. C. Kowalczykowski. 1998. RadA protein is an archaeal RecA protein homolog that catalyzes DNA strand exchange. Genes Dev. 12:12481253.
187. Shan, Q.,, J. M. Bork,, B. L. Webb,, R. B. Inman,, and M. M. Cox. 1997. RecA protein filaments: end-dependent dissociation from ssDNA and stabilization by RecO and RecR proteins. J. Mol. Biol. 265:519540.
188. Shan, Q.,, and M. M. Cox. 1998. On the mechanism of RecA-mediated repair of double-strand breaks: no role for four-strand DNA pairing intermediates. Mol. Cell 1:309317.
189. Shan, Q.,, and M. M. Cox. 1997. RecA filament dynamics during DNA strand exchange reactions. J. Biol. Chem. 272:1106311073.
190. Shan, Q.,, and M. M. Cox. 1996. RecA protein dynamics in the interior of RecA nucleoprotein filaments. J. Mol. Biol. 257:756774.
191. Shan, Q.,, M. M. Cox,, and R. B. Inman. 1996. DNA strand exchange promoted by RecA K72R. Two reaction phases with different Mg2+ requirements. J. Biol. Chem. 271:57125724.
192. Shibata, T.,, R. P. Cunningham,, and C. M. Radding. 1981. Homologous pairing in genetic recombination. Purification and characterization of Escherichia coli RecA protein. J. Biol. Chem. 256:75577564.
193. Shinagawa, H. 1996. SOS response as an adaptive response to DNA damage in prokaryotes. EXS 77:221235.
194. Shinagawa, H.,, H. Iwasaki,, T. Kato,, and A. Nakata. 1988. RecA protein-dependent cleavage of UmuD protein and SOS mutagenesis. Proc. Natl. Acad. Sci. USA 85:18061810.
195. Shingledecker, K.,, S. Jiang,, and H. Paulus. 2000. Reactivity of the cysteine residues in the protein splicing active center of the Mycobacterium tuberculosis RecA intein. Arch. Biochem. Biophys. 375:138144.
196. Shinohara, A.,, H. Ogawa,, and T. Ogawa. 1992. Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell 69:457470.
197. Sigurdsson, S.,, K. Trujillo,, B. W. Song,, S. Stratton,, and P. Sung. 2001. Basis for avid homologous DNA strand exchange by human Rad51 and RPA. J. Biol. Chem. 276:87988806.
198. Simonson, T.,, M. Kubista,, R. Sjoback,, H. Ryberg,, and M. Takahashi. 1994. Properties of RecA-oligonucleotide complexes. J. Mol. Recogn. 7:199206.
199. Smith, B. T.,, and G. C. Walker. 1998. Mutagenesis and more: umuDC and the Escherichia coli SOS response. Genetics 148:15991610.
200. Sommer, S.,, F. Boudsocq,, R. Devoret,, and A. Bailone. 1998. Specific RecA amino acid changes affect RecA-UmuD′C interaction. Mol. Microbiol. 28:281291.
201. Stasiak, A.,, and E. Di Capua. 1982. The helicity of DNA in complexes with RecA protein. Nature 299:185186.
202. Stasiak, A.,, and E. H. Egelman,. 1988. Visualization of recombination reactions, p. 265307. In R. Kucherlapati, and G. R. Smith (ed.), Genetic Recombination. American Society for Microbiology, Washington, D.C.
203. Stasiak, A.,, E. H. Egelman,, and P. Howard-Flanders. 1988. Structure of helical RecA-DNA complexes. III. The structural polarity of RecA filaments and functional polarity in the RecA-mediated strand exchange reaction. J. Mol. Biol. 202:659662.
204. Story, R. M.,, and T. A. Steitz. 1992. Structure of the RecA protein-ADP complex. Nature 355:374376.
205. Story, R. M.,, I. T. Weber,, and T. A. Steitz. 1992. The structure of the E. coli RecA protein monomer and polymer. Nature 355:318325.
206. Sung, P. 1994. Catalysis of ATP-dependent homologous DNA pairing and strand exchange by yeast RAD51 protein. Science 265:12411243.
207. Sung, P.,, and D. L. Robberson. 1995. DNA strand exchange mediated by a RAD51-ssDNA nucleoprotein filament with polarity opposite to that of RecA. Cell 82:453461.
208. Sung, P.,, and S. A. Stratton. 1996. Yeast Rad51 recombinase mediates polar DNA strand exchange in the absence of ATP hydrolysis. J. Biol. Chem. 271:2798327986.
209. Sweasy, J. B.,, E. M. Witkin,, N. Sinha,, and V. Roegnermaniscalco. 1990. RecA protein of Escherichia coli has a 3rd essential role in SOS mutator activity. J. Bacteriol. 172:30303036.
210. Takahashi, M. 1989. Analysis of DNA-RecA protein interactions involving the protein self-association reaction. J. Biol. Chem. 264:288295.
211. Takahashi, M.,, M. Kubista,, and B. Nordén. 1991. Coordination of multiple DNA molecules in RecA fiber evidenced by linear dichroism spectroscopy. Biochimie 73:219226.
212. Takahashi, M.,, and B. Norde´n. 1994. Structure of RecA-DNA complex and mechanism of DNA strand exchange reaction in homologous recombination. Adv. Biophys. 30:135.
213. Tang, M. J.,, X. Shen,, E. G. Frank,, M. O’Donnell,, R. Woodgate,, and M. F. Goodman. 1999. UmuD′2C is an error-prone DNA polymerase, Escherichia coli pol V. Proc. Natl. Acad. Sci. USA 96:89198924.
214. Tateishi, S.,, T. Horii,, T. Ogawa,, and H. Ogawa. 1992. C-terminal truncated Escherichia coli RecA protein RecA5327 has enhanced binding affinities to single- and double-stranded DNAs. J. Mol. Biol. 223:115129.
215. Thompson, T. B.,, M. G. Thomas,, J. C. Escalante-Semerena,, and I. Rayment. 1999. Three-dimensional structure of adenosylcobinamide kinase/adenosylcobinamide phosphate guanylyltransferase (CobU) complexed with GMP: evidence for a substrate-induced transferase active site. Biochemistry 38:1299513005.
216. Tracy, R. B.,, F. Chedin,, and S. C. Kowalczykowski. 1997. The recombination hot spot chi is embedded within islands of preferred DNA pairing sequences in the E. coli genome. Cell 90:205206.
217. Tracy, R. B.,, and S. C. Kowalczykowski. 1996. In vitro selection of preferred DNA pairing sequences by the Escherichia coli RecA protein. Genes Dev. 10:18901903.
218. Ullsperger, C. J.,, and M. M. Cox. 1995. Quantitative RecA protein binding to the hybrid duplex product of DNA strand exchange. Biochemistry 34:1085910866.
219. Umezu, K.,, and R. D. Kolodner. 1994. Protein interactions in genetic recombination in Escherichia coli. Interactions involving RecO and RecR overcome the inhibition of RecA by single-stranded DNA-binding protein. J. Biol. Chem. 269:3000530013.
220. Wagner, J.,, and T. Nohmi. 2000. Escherichia coli DNA polymerase IV mutator activity: genetic requirements and mutational specificity. J. Bacteriol. 182:45874595.
221. Walker, G. C. 1985. Inducible DNA repair systems. Annu. Rev. Biochem. 54:425457.
222. Walker, G. C., 1987. The SOS response of Escherichia coli, p. 13461357. In F. C. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium:Cellular and Molecular Biology, vol. 2. American Society for Microbiology, Washington, D.C.
223. Walker, G. C. 1995. SOS-regulated proteins in translesion DNA synthesis and mutagenesis. Trends Biochem. Sci. 20:416420.
224. Walker, G. C.,, B. T. Smith,, and M. D. Sutton,. 2000. The SOS response to DNA damage, p. 131144. In G. Storz, and R. Hengge-Aronis (ed.), Bacterial Stress Responses. American Society for Microbiology, Washington, D.C.
225. Wang, Y. H.,, C. D. Bortner,, and J. Griffith. 1993. RecA binding to bulge- and mismatch-containing DNAs. Certain single base mismatches provide strong signals for RecA binding equal to multiple base bulges. J. Biol. Chem. 268:1757117577.
226. Weinstock, G. M.,, K. McEntee,, and I. R. Lehman. 1981. Hydrolysis of nucleoside triphosphates catalyzed by the recA protein of Escherichia coli. Characterization of ATP hydrolysis. J. Biol. Chem. 256:88298834.
227. Wernegreen, J. J.,, H. Ochman,, I. B. Jones,, and N. A. Moran. 2000. Decoupling of genome size and sequence divergence in a symbiotic bacterium. J. Bacteriol. 182:38673869.
228. West, S. C. 1992. Enzymes and molecular mechanisms of genetic recombination. Annu. Rev. Biochem. 61:603640.
229. West, S. C.,, E. Cassuto,, and P. Howard-Flanders. 1981. Heteroduplex formation by RecA protein: polarity of strand exchanges. Proc. Natl. Acad. Sci. USA 78:61496153.
230. Wilson, D. H.,, and A. S. Benight. 1990. Kinetic analysis of the pre-equilibrium steps in the self-assembly of RecA protein from Escherichia coli. J. Biol. Chem. 265:73517359.
231. Wilson, J. H. 1979. Nick-free formation of reciprocal heteroduplexes: a simple solution to the topological problem. Proc. Natl. Acad. Sci. USA 76:36413645.
232. Witkin, E. M. 1976. Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli. Bacteriol. Rev. 40:869907.
233. Wittung, P.,, B. Norde´n,, S. K. Kim,, and M. Takahashi. 1994. Interactions between DNA molecules bound to RecA filament. Effects of base complementarity. J. Biol. Chem. 269:57995803.
234. Wittung, P.,, B. Norden,, and M. Takahashi. 1995. Secondary structure of RecA in solution. The effects of cofactor, DNA and ionic conditions. Eur. J. Biochem. 228:149154.
235. Wu, A. M.,, M. Bianchi,, C. Das Gupta,, and C. M. Radding. 1983. Unwinding associated with synapsis of DNA molecules by RecA protein. Proc. Natl. Acad. Sci. USA 80:12561260.
236. Yancey-Wrona, J. E.,, and R. D. Camerini-Otero. 1995. The search for DNA homology does not limit stable homologous pairing promoted by RecA protein. Curr. Biol. 5:11491158.
237. Yu, X.,, and E. H. Egelman. 1992. Direct visualization of dynamics and co-operative conformational changes within RecA filaments that appear to be associated with the hydrolysis of adenosine 5′-O-(3-thiotriphosphate). J. Mol. Biol. 225:193216.
238. Yu, X.,, and E. H. Egelman. 1993. The LexA repressor binds within the deep helical groove of the activated RecA filament. J. Mol. Biol. 231:2940.
239. Yu, X.,, and E. H. Egelman. 1997. The RecA hexamer is a structural homologue of ring helicases. Nat. Struct. Biol. 4:101104.
240. Yu, X.,, and E. H. Egelman. 1992. Structural data suggest that the active and inactive forms of the RecA filament are not simply interconvertible. J. Mol. Biol. 227:334346.
241. Zaitsev, E. N.,, and S. C. Kowalczykowski. 2000. A novel pairing process promoted by Escherichia coli RecA protein: inverse DNA and RNA strand exchange. Genes Dev. 14:740749.
242. Zhou, X.,, and K. Adzuma. 1997. DNA strand exchange mediated by the Escherichia coli RecA protein initiates in the minor groove of double-stranded DNA. Biochemistry 36:46504661.
243. Zhurkin, V. B.,, G. Raghunathan,, N. B. Ulyanov,, O. R. Camerini,, and R. L. Jernigan. 1994. A parallel DNA triplex as a model for the intermediate in homologous recombination. J. Mol. Biol. 239:181200.
244. Zlotnick, A.,, R. S. Mitchell,, R. K. Steed,, and S. L. Brenner. 1993. Analysis of two distinct single-stranded DNA binding sites on the recA nucleoprotein filament. J. Biol. Chem. 268:2252522530.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error