1887

Chapter 22 : Recombination Machinery: Holliday Junction-Resolving Enzymes

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Recombination Machinery: Holliday Junction-Resolving Enzymes, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817640/9781555812324_Chap22-1.gif /docserver/preview/fulltext/10.1128/9781555817640/9781555812324_Chap22-2.gif

Abstract:

Holliday junctions are resolved into recombinant duplex DNA species by a class of structure-specific endonucleases known as the Holliday junction-resolving enzymes. The primary cellular resolving enzyme in bacteria is RuvC, which is the main focus of this chapter. The author also talks about the RusA protein, which may act as an alternative to RuvC in some bacterial species, and attempts to place RuvC in a wider context based on our knowledge of other junction-resolving enzymes. The first cellular Holliday junction-resolving enzyme identified was RuvC from . Homologous recombination is ubiquitous among cellular life forms and many prokaryotic and eukaryotic viruses, and wherever Holliday junctions are formed, junction-resolving enzymes can be confidently expected. Resolving enzymes recognize the branched structure of the Holliday junction and introduce paired phosphodiester bond cleavages in opposing strands to collapse the junction, releasing nicked duplex DNA products. The study of homologous recombination and the Holliday junction was for many years the realm of geneticists. Holliday junction migration work has largely been driven by studies of the RuvABC resolvasome, emphasizing the continuing utility of bacteria as a model system to study some of the most interesting problems in biology.

Citation: White M. 2005. Recombination Machinery: Holliday Junction-Resolving Enzymes, p 405-412. In Higgins N (ed), The Bacterial Chromosome. ASM Press, Washington, DC. doi: 10.1128/9781555817640.ch22

Key Concept Ranking

DNA Polymerase I
0.50961536
0.50961536
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Sequence alignment of a diverse selection of RuvC homologues: ECOLI (, Swiss-Prot database accession number P24239), YERPE (, Q8ZEU7), VIBCH (, Q9KR00), NEIMA (, Q9JTU3), TREPA (, O83530), RHILO (, Q98F72), THEMA (, Q9WZ45), DEIRA (, Q9RX75), STRCO (, Q9L289), ANASP ( sp., O52751), HELPY (, O25544), CAMJE (, Q9PLU8), MYCLE (, P40834), and SYNY3 ( sp., Q55506).

Citation: White M. 2005. Recombination Machinery: Holliday Junction-Resolving Enzymes, p 405-412. In Higgins N (ed), The Bacterial Chromosome. ASM Press, Washington, DC. doi: 10.1128/9781555817640.ch22
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Sequence alignment of a selection of cellular and viral RusA homologues: AQUAE (, Swiss-Prot database accession number O67766), LEGPN (, Q9AKY6), BACSU (, Q8X556), ECOLI (, P40116), CP9330 (phage CP-933O from O157:H7, AAL89445), CP933X (phage CP-933X from O157:H7, Q8X707), and BP82 (phage BP-82, Q37873).

Citation: White M. 2005. Recombination Machinery: Holliday Junction-Resolving Enzymes, p 405-412. In Higgins N (ed), The Bacterial Chromosome. ASM Press, Washington, DC. doi: 10.1128/9781555817640.ch22
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817640.chap22
1. Aravind, L.,, K. S. Makarova,, and E. V. Koonin. 2000. Survey and summary: Holliday junction resolvases and related nucleases: identification of new families, phyletic distribution and evolutionary trajectories. Nucleic Acids Res. 28: 3417 3432.
2. Ariyoshi, M.,, D. G. Vassylyev,, H. Iwasaki,, H. Nakamura,, H. Shinagawa,, and K. Morikawa. 1994. Atomic structure of the RuvC resolvase: a Holliday junction-specific endonuclease from E. coli. Cell 78: 1063 1072.
3. Beese, L. S.,, and T. A. Steitz. 1991. Structural basis for the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism. EMBO J. 10: 25 33.
4. Bennett, R. J.,, H. J. Dunderdale,, and S. C. West. 1993. Resolution of Holliday junctions by RuvC resolvase: cleavage specificity and DNA distortion. Cell 74: 1021 1031.
5. Bennett, R. J.,, and S. C. West. 1996. Resolution of Holliday junctions in genetic recombination: RuvC protein nicks DNA at the point of strand exchange. Proc. Natl. Acad. Sci. USA 93: 12217 12222.
6. Bennett, R. J.,, and S. C. West. 1995. Structural analysis of the RuvC-Holliday junction complex reveals an unfolded junction. J. Mol. Biol. 252: 213 226.
7. Bolt, E. L.,, G. J. Sharples,, and R. G. Lloyd. 1999. Identification of three aspartic acid residues essential for catalysis by the RusA Holliday junction resolvase. J. Mol. Biol. 286: 403 415.
8. Ceschini, S.,, A. Keeley,, M. S. McAlister,, M. Oram,, J. Phelan,, L. H. Pearl,, I. R. Tsaneva,, and T. E. Barrett. 2001. Crystal structure of the fission yeast mitochondrial Holliday junction resolvase Ydc2. EMBO J. 20: 6601 6611.
9. Connolly, B.,, C. Parsons,, F. Benson,, H. Dunderdale,, R. Lloyd,, and S. West. 1991. Resolution of Holliday junctions in vitro requires the Escherichia coli ruvC gene product. Proc. Natl. Acad. Sci. USA 88: 6063 6067.
10. Connolly, B.,, and S. C. West. 1990. Genetic recombination in Escherichia coli: Holliday junctions made by RecA protein are resolved by fractionated cell-free extracts. Proc. Natl. Acad. Sci. USA 87: 8476 8480.
11. Constantinou, A.,, A. A. Davies,, and S. C. West. 2001. Branch migration and Holliday junction resolution catalyzed by activities from mammalian cells. Cell 104: 259 268.
12. Declais, A. C.,, and D. M. Lilley. 2000. Extensive central disruption of a four-way junction on binding CCE1 resolving enzyme. J. Mol. Biol. 296: 421 433.
13. de Massey, B.,, R. A. Weisberg,, and F. W. Studier. 1987. Gene 3 endonuclease of bacteriophage T7 resolves conformationally branched structures in double-stranded DNA. J. Mol. Biol. 193: 359 376.
14. Dunderdale, H. J.,, F. E. Benson,, C. A. Parsons,, G. J. Sharples,, R. G. Lloyd,, and S. C. West. 1991. Formation and resolution of recombination intermediates by E. coli RecA and RuvC proteins. Nature 354: 506 510.
15. Eggleston, A. K.,, A. H. Mitchell,, and S. C. West. 1997. In vitro reconstitution of the late steps of genetic recombination in E. coli. Cell 89: 607 617.
16. Fogg, J.,, M. J. Schofield,, M. F. White,, and D. M. J. Lilley. 1999. Sequence and functional-group specificity for cleavage of DNA junctions by RuvC of Escherichia coli. Biochemistry 38: 11349 11358.
17. Fogg, J. M.,, M. Kvaratskhelia,, M. F. White,, and D. M. Lilley. 2001. Distortion of DNA junctions imposed by the binding of resolving enzymes: a fluorescence study. J. Mol. Biol. 313: 751 764.
18. Fogg, J. M.,, and D. M. Lilley. 2000. Ensuring productive resolution by the junction-resolving enzyme RuvC: large enhancement of the second-strand cleavage rate. Biochemistry 39: 16125 16134.
19. Garcia, A. D.,, L. Aravind,, E. Koonin,, and B. Moss. 2000. Bacterial-type DNA Holliday junction resolvases in eukaryotic viruses. Proc. Natl. Acad. Sci. USA 97: 8926 8931.
20. Giraud-Panis, M. J.,, and D. M. Lilley. 1998. Structural recognition and distortion by the DNA junction-resolving enzyme RusA. J. Mol. Biol. 278: 117 133.
21. Goedken, E. R.,, and S. Marqusee. 2001. Co-crystal of Escherichia coli RNase HI with Mn 2+ ions reveals two divalent metals bound in the active site. J. Biol. Chem. 276: 7266 7271.
22. Holliday, R. 1964. A mechanism for gene conversion in fungi. Genet. Res. 5: 282 304.
23. Ichiyanagi, K.,, H. Iwasaki,, T. Hishida,, and H. Shinagawa. 1998. Mutational analysis on structure-function relationship of a Holliday junction specific endonuclease RuvC. Genes Cells 3: 575 586.
24. Iwasaki, H.,, M. Takahagi,, T. Shiba,, A. Nakata,, and H. Shinagawa. 1991. Escherichia coli RuvC protein is an endonuclease that resolves the Holliday structure. EMBO J. 10: 4381 4389.
25. Katayanagi, K.,, M. Miyagawa,, M. Matsuchima,, M. Ishikawa,, S. Kanaya,, H. Nakamura,, M. Ikehara,, T. Matsuzaki,, and K. Morikawa. 1992. Structural details of ribonuclease H from Escherichia coli as refined to an atomic resolution. J. Mol. Biol. 223: 1029 1052.
26. Kemper, B., 1997. Branched DNA resolving enzymes (X-solvases), p. 179 204. In J. A. Nickoloff, and M. Hoekstra (ed.), DNA Damage and Repair: Biochemistry, Genetics and Cell Biology. Humana Press, Ottawa, Ontario, Canada.
27. Kemper, B.,, and D. T. Brown. 1976. Function of gene 49 of bacteriophage T4. II. Analysis of intracellular development and the structure of very fast sedimenting DNA. J. Virol. 18: 1000 1015.
28. Kemper, B.,, and E. Janz. 1976. Function of gene 49 of bacteriophage T4. 1. Isolation and biochemical charcterisation of very fast sedimenting DNA. J. Virol. 18: 992 999.
29. Kvaratskhelia, M.,, S. George,, A. Cooper,, and M. F. White. 1999. Quantitation of binding of metal ions and DNA junctions by the Holliday junction resolving enzyme Cce1. Biochemistry 38: 16613 16619.
30. Kvaratskhelia, M.,, B. N. Wardleworth,, D. G. Norman,, and M. F. White. 2000. A conserved nuclease domain in the archaeal Holliday junction resolving enzyme Hjc. J. Biol. Chem. 275: 25540 25546.
31. Lilley, D. M.,, and D. G. Norman. 1999. The Holliday junction is finally seen with crystal clarity. Nat. Struct. Biol. 6: 897 899.
32. Lilley, D. M. J.,, and M. F. White. 2001. The junction-resolving enzymes. Nat. Rev. Mol. Cell. Biol. 2: 433 443.
33. Lilley, D. M. J.,, and M. F. White. 2000. Resolving the relationships of resolving enzymes. Proc. Natl. Acad. Sci. USA 97: 9351 9353.
34. Lloyd, R. G.,, F. E. Benson,, and C. E. Shurvington. 1984. Effect of ruv mutations on recombination and DNA repair in Escherichia coli K12. Mol. Gen. Genet. 194: 303 309.
35. Lloyd, R. G.,, and G. J. Sharples. 1993. Dissociation of synthetic Holliday junctions by E. coli RecG protein. EMBO J. 12: 17 22.
36. Mahdi, A. A.,, G. J. Sharples,, T. N. Mandal,, and R. G. Lloyd. 1996. Holliday junction resolvases encoded by homologous rusA genes in Escherichia coli K-12 and phage 82. J. Mol. Biol. 257: 561 573.
37. Mandal, T.,, A. Mahdi,, G. Sharples,, and R. Lloyd. 1993. Resolution of Holliday intermediates in recombination and DNA repair: indirect suppression of ruvA, ruvB, and ruvC mutations. J. Bacteriol. 175: 4325 4334.
38. Michel, B.,, G. D. Recchia,, M. Penel-Colin,, S. D. Ehrlich,, and D. J. Sherratt. 2000. Resolution of Holliday junctions by RuvABC prevents dimer formation in rep mutants and UV-irradiated cells. Mol. Microbiol. 37: 180 191.
39. Nishimoto, H.,, M. Takayama,, and T. Minagawa. 1979. Purification and some properties of a deoxyribonuclease whose synthesis is controlled by gene 49 of bacteriophage T4. J. Biochem. 100: 433 440.
40. Rice, P.,, and K. Mizuuchi. 1995. Structure of the bacteriophage Mu transposase core: a common structural motif for DNA transposition and retroviral integration. Cell 82: 209 220.
41. Saito, A.,, H. Iwasaki,, M. Ariyoshi,, K. Morikawa,, and H. Shinagawa. 1995. Identification of four acidic amino acids that constitute the catalytic centre of the RuvC Holliday junction resolvase. Proc. Natl. Acad. Sci. USA 92: 7470 7474.
42. Schofield, M. J.,, D. M. J. Lilley,, and M. F. White. 1998. Dissection of the sequence specificity of the Holliday junction endonuclease CCE1. Biochemistry 37: 7733 7740.
43. Shah, R.,, R. J. Bennett,, and S. C. West. 1994. Genetic recombination in E. coli: RuvC protein cleaves Holliday junctions at resolution hotspots in vitro. Cell 79: 853 864.
44. Shah, R.,, R. Cosstick,, and S. C. West. 1997. The RuvC protein dimer resolves Holliday junctions by a dual incision mechanism that involves base-specific contacts. EMBO J. 16: 1464 1472.
45. Sharples, G. J. 2001. The X philes: structure-specific endonucleases that resolve Holliday junctions. Mol. Microbiol. 39: 823 834.
46. Sharples, G. J.,, F. E. Benson,, G. T. Iling,, and R. G. Lloyd. 1990. Molecular and functional analysis of the ruv region of Escherichia coli K-12 reveals three genes involved in DNA repair and recombination. Mol. Gen. Genet. 221: 219 226.
47. Sharples, G. J.,, E. L. Bolt,, and R. G. Lloyd. 2002. RusA proteins from the extreme thermophile Aquifex aeolicus and lactococcal phage r1t resolve Holliday junctions. Mol. Microbiol. 44: 549 559.
48. Sharples, G. J.,, S. N. Chan,, A. A. Mahdi,, M. C. Whitby,, and R. G. Lloyd. 1994. Processing of intermediates in recombination and DNA repair: identification of a new endonuclease that specifically cleaves Holliday junctions. EMBO J. 13: 6133 6142.
49. Sharples, G. J.,, and R. G. Lloyd. 1991. Resolution of Holliday junctions in Escherichia coli: identification of the ruvC gene product as a 19-kilodalton protein. J. Bacteriol. 173: 7711 7715.
50. Stuart, D.,, K. Ellison,, K. Graham,, and G. McFadden. 1992. In vitro resolution of poxvirus replicative intermediates into linear minichromosomes with hairpin termini by a virally induced Holliday junction endonuclease. J. Virol. 66: 1551 1563.
51. Takahagi, M.,, H. Iwasaki,, A. Nakata,, and H. Shinagawa. 1991. Molecular analysis of the Escherichia coli ruvC gene, which encodes a Holliday junction-specific endonuclease. J. Bacteriol. 173: 5747 5753.
52. Tsujimoto, Y.,, and H. Ogawa. 1978. Intermediates in genetic recombination of bacteriophage T7 DNA. Biological activity and the roles of gene 3 and gene 5. J. Mol. Biol. 125: 255 273.
53. van Gool, A. J.,, N. M. Hajibagheri,, A. Stasiak,, and S. C. West. 1999. Assembly of the Escherichia coli RuvABC resolvasome directs the orientation of Holliday junction resolution. Genes Dev. 13: 1861 1870.
54. van Gool, A. J.,, R. Shah,, C. Mezard,, and S. C. West. 1998. Functional interactions between the Holliday junction resolvase and the branch migration motor of Escherichia coli. EMBO J. 17: 1838 1845.
55. Whitby, M. C.,, E. L. Bolt,, S. N. Chan,, and R. G. Lloyd. 1996. Interactions between RuvA and RuvC at Holliday junctions: inhibition of junction cleavage and formation of a RuvA- RuvC-DNA complex. J. Mol. Biol. 264: 878 890.
56. Whitby, M. C.,, L. Ryder,, and R. G. Lloyd. 1993. Reverse branch migration of Holliday junctions by RecG protein—a new mechanism for resolution of intermediates in recombination and DNA repair. Cell 75: 341 350.
57. White, M. F.,, M.-J. E. Giraud-Panis,, J. R. G. Pohler,, and D. M. J. Lilley. 1997. Recognition and manipulation of branched DNA structures by junction resolving enzymes. J. Mol. Biol. 269: 647 664.
58. White, M. F.,, and D. M. Lilley. 1998. Interaction of the resolving enzyme YDC2 with the four-way DNA junction. Nucleic Acids Res. 26: 5609 5616.
59. White, M. F.,, and D. M. Lilley. 1997. The resolving enzyme CCE1 of yeast opens the structure of the four-way DNA junction. J. Mol. Biol. 266: 122 134.
60. Yoshikawa, M.,, H. Iwasaki,, K. Kinoshita,, and H. Shinagawa. 2000. Two basic residues, Lys-107 and Lys-118, of RuvC resolvase are involved in critical contacts with the Holliday junction for its resolution. Genes Cells 5: 803 813.
61. Yoshikawa, M.,, H. Iwasaki,, and H. Shinagawa. 2001. Evidence that phenylalanine 69 in Escherichia coli RuvC resolvase forms a stacking interaction during binding and destabilization of a Holliday junction DNA substrate. J. Biol. Chem. 276: 10432 10436.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error