Chapter 27 : Potential Mechanisms for Linking Phage Mu Transposition with Cell Physiology

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Potential Mechanisms for Linking Phage Mu Transposition with Cell Physiology, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817640/9781555812324_Chap27-1.gif /docserver/preview/fulltext/10.1128/9781555817640/9781555812324_Chap27-2.gif


This chapter discusses potential mechanisms for linking phage Mu transposition with cell physiology. Derepression of transposition can potentially benefit the host under conditions of stress, and these mechanisms can be part of the cellular stress response. Bacteriophage Mu is a model of regulated transposition, for it functions within its host as a fully active transposon as well as a virus. Transposition of the Mu genome into the host chromosome establishes lysogeny and replicates Mu DNA for lytic development. Upon completion of strand exchange, the transpososome remains in a tight complex with the two Mu ends in what is known as the type II transpososome or the strand-transfer complex (STC), posing as an impediment to the assembly of a replisome. The processes in DNA replication relevant to potential mechanisms in Mu derepression and those properties providing insights about Mu's relationship with its host are summarized in this chapter. Two types of repressor mutants which induce lytic development in Mu lysogens have provided insight as to how Mu derepression may be triggered. The C-terminal domain (CTD) of Rep plays an important role not only in eliciting thermolability of DNA binding domain (DBD) mutations present in but also in promoting Rep degradation induced by Vir expressed in . Recent evidence implicates a role for the Mu repressor CTD in S derepression and regulation of transposition. The CTD’s influence on DNA binding as well as repressor degradation represents two potential pathways by which derepression may be triggered.

Citation: North S, Nakai H. 2005. Potential Mechanisms for Linking Phage Mu Transposition with Cell Physiology, p 499-512. In Higgins N (ed), The Bacterial Chromosome. ASM Press, Washington, DC. doi: 10.1128/9781555817640.ch27

Key Concept Ranking

DNA Synthesis
DNA Polymerase III
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Bacteriophage Mu genome. Regions for Mu DNA transposition include a 200-bp left-end () sequence and a 100- bp right-end () sequence, which contain binding sites for domain Ibg of MuA and make up attachment sites to host DNA. The operator sequences (O1, O2, and O3) are contained within a 200-bp region and regulate the P and P promoters. They contain binding sites for the Mu repressor, encoded by the c gene. O1 and O2 also include an internal transpositional enhancer that is recognized by domain Ia of MuA and required for the assembly of transposase under physiological conditions.

Citation: North S, Nakai H. 2005. Potential Mechanisms for Linking Phage Mu Transposition with Cell Physiology, p 499-512. In Higgins N (ed), The Bacterial Chromosome. ASM Press, Washington, DC. doi: 10.1128/9781555817640.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Mu replicative transposition. The Mu transposition reaction catalyzed in vitro is depicted. (a) MuA transposase binds to sites on the left and right ends of mini-Mu DNA, which is harbored on a supercoiled plasmid vector (thick black lines). In the presence of the histone-like protein HU, MuA is assembled into a stable tetramer that holds the two Mu ends together in a synaptic complex. MuB plays an accessory role, functioning in target DNA capture and activating transposase activity. (b) MuA introduces nicks at the Mu ends and transfers them to phosphodiester linkages that are 5 bp apart (indicated by full arrows) on target DNA (thick gray lines) to form STC1. (c) Strand exchange produces a fork at each Mu end, the target DNA providing 30-OH ends (indicated by half arrows) that can be potentially used as primer for leading strand synthesis. The molecular chaperone ClpX then destabilizes the quaternary interactions of the MuA transpososome to convert STC1 to STC2. (d) Factors present in a host extract (MRFα2) displace the transpososome and form the prereplisome STC3. PriA binds to one of the forked structures formed by strand exchange (e), and this initiates the assembly of the primosome by bringing PriB, DnaT, and DnaBC to the fork (f and g). (f) The 3′ to 5′ helicase of PriA can function to unwind the lagging strand arm of the fork to create a binding site for the DnaB helicase. DnaC disassembles from the DnaBC complex as the DnaB is loaded onto the lagging strand template (g), and DNA polymerase III holoenzyme is bound to the fork to complete the formation of the replisome (h).

Citation: North S, Nakai H. 2005. Potential Mechanisms for Linking Phage Mu Transposition with Cell Physiology, p 499-512. In Higgins N (ed), The Bacterial Chromosome. ASM Press, Washington, DC. doi: 10.1128/9781555817640.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Domains of the Mu repressor. Depicted are the DNA binding domain (DBD), which makes up approximately 80 Nterminal residues; the leucine-rich domain (LRD [L121 to L162]), which is thought to function in repressor oligomerization; and the C-terminal domain (CTD), which modulates repressor degradation by ClpXP protease and DNA binding (I170 to V196). The indicated mutations in the DBD result in temperature-sensitive DNA binding (). Deletion of the last 18 amino acids () from the C terminus suppresses the DBD mutations and confers dominance over .

Citation: North S, Nakai H. 2005. Potential Mechanisms for Linking Phage Mu Transposition with Cell Physiology, p 499-512. In Higgins N (ed), The Bacterial Chromosome. ASM Press, Washington, DC. doi: 10.1128/9781555817640.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Dominant-negative forms of repressor. The sequence within the Rep CTD is shown. Vir3060 and Vir3051 are produced by frameshift mutations that alter the last 11 to 26 residues of the C terminus. The residues of the Vir proteins that differ from Rep are marked with an asterisk.

Citation: North S, Nakai H. 2005. Potential Mechanisms for Linking Phage Mu Transposition with Cell Physiology, p 499-512. In Higgins N (ed), The Bacterial Chromosome. ASM Press, Washington, DC. doi: 10.1128/9781555817640.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Abo, T.,, T. Inada,, K. Ogawa,, and H. Aiba. 2000. SsrAmediated tagging and proteolysis of LacI and its role in the regulation of lac operon. EMBO J. 19:37623769.
2. Alazard, R.,, M. Bétermier,, and M. Chandler. 1992. Escherichia coli integration host factor stabilizes bacteriophage Mu repressor interactions with operator DNA in vitro. Mol. Microbiol. 6:17071714.
3. Alazard, R.,, C. Ebel,, V. Venien-Bryan,, L. Mourey,, J. P. Samama,, and M. Chandler. 1998. Oligomeric structure of the repressor of the bacteriophage Mu early operon. Eur. J. Biochem. 252:408415.
4. Atkins, J. F.,, and R. F. Gesteland. 1996. A case for trans translation. Nature 379:769771.
5. Baker, T. A.,, and K. Mizuuchi. 1992. DNA-promoted assembly of the active tetramer of the Mu transposase. Genes Dev. 6:22212232.
6. Baker, T. A.,, M. Mizuuchi,, and K. Mizuuchi. 1991. MuB protein allosterically activates strand transfer by the transposase of phage Mu. Cell 65:10031013.
7. Bétermier, M.,, P. Rousseau,, R. Alazard,, and M. Chandler. 1995. Mutual stabilisation of bacteriophage Mu repressor and histone-like proteins in a nucleoprotein structure. J. Mol. Biol. 249:332341.
8. Burton, B. M.,, T. L. Williams,, and T. A. Baker. 2001. ClpXmediated remodeling of Mu transpososomes: selective unfolding of subunits destabilizes the entire complex. Mol. Cell 8:449454.
9. Casadaban, M. J. 1976. Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and Mu. J. Mol. Biol. 104:541555.
10. Chaconas, G.,, E. B. Giddens,, J. L. Miller,, and G. Gloor. 1985. A truncated form of the bacteriophage Mu B protein promotes conservative integration, but not replicative transposition, of Mu DNA. Cell 41:857865.
11. Chaconas, G.,, G. Gloor,, and J. L. Miller. 1985. Amplification and purification of the bacteriophage Mu encoded B transposition protein. J. Biol. Chem. 260:26622669.
12. Chaconas, G.,, and R. M. Harshey,. 2002. Transposition of phage Mu DNA, p. 384402. In N. L. Craig,, R. Craigie,, M. Gellert,, and A. M. Lambowitz (ed.), Mobile DNA II. ASM Press, Washington, D.C.
13. Clubb, R. T.,, J. G. Omichinski,, H. Savilahti,, K. Mizuuchi,, A. M. Gronenborn,, and G. M. Clore. 1994. A novel class of winged helix-turn-helix protein: the DNA binding domain of Mu transposase. Structure 2:10411048.
14. Cox, M. M. 1998. A broadening view of recombinational DNA repair in bacteria. Genes Cells 3:6578.
15. Cox, M. M.,, M. F. Goodman,, K. N. Kreuzer,, D. J. Sherratt,, S. J. Sandler,, and K. J. Marians. 2000. The importance of repairing stalled replication forks. Nature 404:3741.
16. Craigie, R.,, and K. Mizuuchi. 1985. Mechanism of transposition of bacteriophage Mu: structure of a transposition intermediate. Cell 41:867876.
16a.. Defenbaugh, D. A.,, and H. Nakai. 2003. A context-dependent ClpX recognition determinant located at the C terminus of phage Mu repressor. J. Biol. Chem. 278:5233352339.
17. Edlin, G.,, L. Lin,, and R. Bitner. 1977. Reproductive fitness of P1, P2, and Mu lysogens of Escherichia coli. J. Virol. 21:560564.
18. Faelen, M.,, and A. Toussaint. 1978. Stimulation of deletions in the Escherichia coli chromosome by partially induced Mucts62 prophages. J. Bacteriol. 136:477483.
19. Felden, B.,, K. Hanawa,, J. F. Atkins,, H. Himeno,, A. Muto,, R. F. Gesteland,, J. A. McCloskey,, and P. F. Crain. 1998. Presence and location of modified nucleotides in Escherichia coli tmRNA: structural mimicry with tRNA acceptor branches. EMBO J. 17:31883196.
20. Felden, B.,, H. Himeno,, A. Muto,, J. P. McCutcheon,, J. F. Atkins,, and R. F. Gesteland. 1997. Probing the structure of the Escherichia coli 10Sa RNA (tmRNA). RNA 3:89103.
21. Flynn, J. M.,, I. Levchenko,, M. Seidel,, S. H. Wickner,, R. T. Sauer,, and T. A. Baker. 2001. Overlapping recognition determinants within the ssrA degradation tag allow modulation of proteolysis. Proc. Natl. Acad. Sci. USA 98:1058410589.
22. Flynn, J. M.,, S. B. Neher,, Y. I. Kim,, R. T. Sauer,, and T. A. Baker. 2003. Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals. Mol. Cell 11:671683.
23. Gama, M. J.,, A. Toussaint,, and N. P. Higgins. 1992. Stabilization of bacteriophage Mu repressor-operator complexes by the Escherichia coli integration host factor protein. Mol. Microbiol. 6:17151722.
24. Geuskens, V.,, A. Mhammedi-Alaoui,, L. Desmet,, and A. Toussaint. 1992. Virulence in bacteriophage Mu: a case of trans-dominant proteolysis by the Escherichia coli Clp serine protease. EMBO J. 11:51215127.
25. Geuskens, V.,, J. L. Vogel,, R. Grimaud,, L. Desmet,, N. P. Higgins,, and A. Toussaint. 1991. Frameshift mutations in the bacteriophage Mu repressor gene can confer a transdominant virulent phenotype to the phage. J. Bacteriol. 173:65786585.
26. Giphart-Gassler, M.,, J. Reeve,, and P. van de Putte. 1981. Polypeptides encoded by the early region of bacteriophage Mu synthesized in minicells of Escherichia coli. J. Mol. Biol. 145:165191.
27. Gonciarz-Swiatek, M.,, A. Wawrzynow,, S. J. Um,, B. A. Learn,, R. McMacken,, W. L. Kelley,, C. Georgopoulos,, O. Sliekers,, and M. Zylicz. 1999. Recognition, targeting, and hydrolysis of the lambda O replication protein by the ClpP/ClpX protease. J. Biol. Chem. 274:1399914005.
28. Goosen, N.,, and P. van de Putte,. 1987. Regulation of transcription, p. 4152. In N. Symonds,, A. Toussaint,, P. van de Putte,, and M. M. Howe (ed.), Phage Mu. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
29. Gottesman, S.,, W. P. Clark,, V. de Crécy-Lagard,, and M. R. Maurizi. 1993. ClpX, an alternative subunit for the ATPdependent Clp protease of Escherichia coli: sequence and in vivo activities. J. Biol. Chem. 268:2261822626.
30. Grimaud, R.,, M. Kessel,, F. Beuron,, A. C. Steven,, and M. R. Maurizi. 1998. Enzymatic and structural similarities between the Escherichia coli ATP-dependent proteases, ClpXP and ClpAP. J. Biol. Chem. 273:1247612481.
31. Harshey, R. M. 1984. Transposition without duplication of infecting bacteriophage Mu DNA. Nature 311:580581.
32. Harshey, R. M.,, E. D. Getzoff,, D. L. Baldwin,, J. L. Miller,, and G. Chaconas. 1985. Primary structure of phage Mu transposase: homology to Mu repressor. Proc. Natl. Acad. Sci. USA 82:76767680.
33. Hartl, D. L.,, D. E. Dykhuizen,, R. D. Miller,, L. Green,, and J. de Framond. 1983. Transposable element IS50 improves growth rate of E. coli cells without transposition. Cell 35:503510.
34. Hayes, C. S.,, B. Bose,, and R. T. Sauer. 2002. Stop codons preceded by rare arginine codons are efficient determinants of SsrA tagging in Escherichia coli. Proc. Natl. Acad. Sci. USA 99:34403445.
35. Hoskins, J. R.,, S. K. Singh,, M. R. Maurizi,, and S. Wickner. 2000. Protein binding and unfolding by the chaperone ClpA and degradation by the protease ClpAP. Proc. Natl. Acad. Sci. USA 97:88928897.
36. Howe, M. M., 1987. Phage Mu: an overview, p. 2539. In N. Symonds,, A. Toussaint,, P. van de Putte,, and M. M. Howe (ed.), Phage Mu. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
37. Howe, M. M. 1973. Prophage deletion mapping of bacteriophage Mu-1. Virology 54:93101.
38. Iida, H. 1988. Multistress resistance of Saccharomyces cerevisiae is generated by insertion of retrotransposon Ty into the 5′ coding region of the adenylate cyclase gene. Mol. Cell. Biol. 8:55555560.
39. Ilangovan, U.,, J. M. Wojciak,, K. M. Connolly,, and R. T. Clubb. 1999. NMR structure and functional studies of the Mu repressor DNA-binding domain. Biochemistry 38:83678376.
40. Jentsch, S. 1996. When proteins receive deadly messages at birth. Science 271:955956.
41. Jones, J. M.,, and H. Nakai. 1999. Duplex opening by primosome protein PriA for replisome assembly on a recombination intermediate. J. Mol. Biol. 289:503515.
42. Jones, J. M.,, and H. Nakai. 2001. Escherichia coli PriA helicase: synergism between fork binding and helicase activity stimulates unwinding of arrested forks. J. Mol. Biol. 312: 935947.
43. Jones, J. M.,, and H. Nakai. 1997. The fX174-type primosome promotes replisome assembly at the site of recombination in bacteriophage Mu transposition. EMBO J. 16: 68866895.
44. Jones, J. M.,, and H. Nakai. 2000. PriA and T4 gp59: factors that promote DNA replication on forked DNA substrates. Mol. Microbiol. 36:519527.
45. Jones, J. M.,, D. J. Welty,, and H. Nakai. 1998. Versatile action of Escherichia coli ClpXP as protease or molecular chaperone for bacteriophage Mu transposition. J. Biol. Chem. 273:459465.
46. Keiler, K. C.,, P. R. H. Waller,, and R. T. Sauer. 1996. Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science 271:990993.
47. Kim, Y. I.,, R. E. Burton,, B. M. Burton,, R. T. Sauer,, and T. A. Baker. 2000. Dynamics of substrate denaturation and translocation by the ClpXP degradation machine. Mol. Cell 5:639648.
48. Komine, Y.,, M. Kitabatake,, and H. Inokuchi. 1996. 10Sa RNA is associated with 70S ribosome particles in Escherichia coli. J. Biochem. (Tokyo) 119:463467.
49. Komine, Y.,, M. Kitabatake,, T. Yokogawa,, K. Nishikawa,, and H. Inokuchi. 1994. A tRNA-like structure is present in 10Sa RNA, a small stable RNA from Escherichia coli. Proc. Natl. Acad. Sci. USA 91:92239227.
50. Krause, H. M.,, and N. P. Higgins. 1986. Positive and negative regulation of the Mu operator by Mu repressor and Escherichia coli integration host factor. J. Biol. Chem. 261:37443752.
51. Kruklitis, R.,, and H. Nakai. 1994. Participation of bacteriophage Mu A protein and host factors in initiation of Mu DNA synthesis in vitro. J. Biol. Chem. 269:1646916477.
52. Kruklitis, R.,, D. J. Welty,, and H. Nakai. 1996. ClpX protein of Escherichia coli activates bacteriophage Mu transposase in the strand transfer complex for initiation of Mu DNA synthesis. EMBO J. 15:935944.
53. Kuo, C.-F.,, A. Zou,, M. Jayaram,, E. Getzoff,, and R. Harshey. 1991. DNA-protein complexes during attachment-site synapsis in Mu DNA transposition. EMBO J. 10:15851591.
54. Laachouch, J. E.,, L. Desmet,, V. Geuskens,, R. Grimaud,, and A. Toussaint. 1996. Bacteriophage Mu repressor as a target for the Escherichia coli ATP-dependent Clp protease. EMBO J. 15:437444.
55. Lamrani, S.,, C. Ranquet,, M. J. Gama,, H. Nakai,, J. A. Shapiro,, A. Toussaint,, and G. Maenhaut-Michel. 1999. Starvation- induced Mucts62-mediated coding sequence fusion: a role for ClpXP, Lon, RpoS and Crp. Mol. Microbiol. 32:327343.
56. Lavoie, B. D.,, B. S. Chan,, R. G. Allison,, and G. Chaconas. 1991. Structural aspects of a higher order nucleoprotein complex: induction of an altered DNA structure at the Muhost junction of the Mu Type 1 transpososome. EMBO J. 10:30513059.
57. Leung, D. W.,, F. Chen,, and D. V. Goeddel. 1989. A method for random mutagenesis of a defined DNA segment using a modified polymerase chain reaction. Technique 1:1115.
58. Leung, P. C.,, D. B. Teplow,, and R. M. Harshey. 1989. Interaction of distinct domains in Mu transposase with Mu DNA ends and an internal transpositional enhancer. Nature 338:656658.
59. Levchenko, I.,, L. Luo,, and T. A. Baker. 1995. Disassembly of the Mu transposase tetramer by the ClpX chaperone. Genes Dev. 9:23992408.
60. Levchenko, I.,, M. Seidel,, R. T. Sauer,, and T. A. Baker. 2000. A specificity-enhancing factor for the ClpXP degradation machine. Science 289:23542356.
61. Levchenko, I.,, C. K. Smith,, N. P. Walsh,, R. T. Sauer,, and T. A. Baker. 1997. PDZ-like domains mediate binding specificity in the Clp/Hsp100 family of chaperones and protease regulatory subunits. Cell 91:939947.
62. Levchenko, I.,, M. Yamauchi,, and T. A. Baker. 1997. ClpX and MuB interact with overlapping regions of Mu transposase: implications for control of the transposition pathway. Genes Dev. 11:15611572.
63. Liu, J.,, and K. J. Marians. 1999. PriA-directed assembly of a primosome on D loop DNA. J. Biol. Chem. 274:2503325041.
64. Maenhaut-Michel, G.,, C. E. Blake,, D. R. Leach,, and J. A. Shapiro. 1997. Different structures of selected and unselected araB-lacZ fusions. Mol. Microbiol. 23:11331145.
65. Maenhaut-Michel, G.,, and J. A. Shapiro. 1994. The roles of starvation and selective substrates in the emergence of araBlacZ fusion clones. EMBO J. 13:52295239.
66. Marians, K. J. 2000. PriA-directed replication fork restart in Escherichia coli. Trends Biochem. Sci. 25:185189.
67. Marshall-Batty, K.,, and H. Nakai. 2003. Trans-targeting of the phage Mu repressor is promoted by conformational changes that expose its ClpX recognition determinant. J. Biol. Chem. 278:16121617.
68. Maxwell, A.,, R. Craigie,, and K. Mizuuchi. 1987. B protein of bacteriophage Mu is an ATPase that preferentially stimulates intermolecular DNA strand transfer. Proc. Natl. Acad. Sci. USA 84:699703.
69. McGlynn, P.,, A. A. Al-Deib,, J. Liu,, K. J. Marians,, and R. G. Lloyd. 1997. The DNA replication protein PriA and the recombination protein RecG bind D-loops. J. Mol. Biol. 270:212221.
70. Mhammedi-Alaoui, A.,, M. Pato,, M.-J. Gama,, and A. Toussaint. 1994. A new component of bacteriophage Mu replicative transposition machinery: the Escherichia coli ClpX protein. Mol. Microbiol. 11:11091116.
71. Mittler, J.,, and R. E. Lenski. 1990. Further experiments on excisions of Mu from Escherichia coli MCS2 cast doubt on directed mutation hypothesis. Nature 344:173175.
72. Mizuuchi, K.,, and K. Adzuma. 1991. Inversion of the phosphate chirality at the target site of Mu DNA strand transfer: evidence for a one-step transesterification mechanism. Cell 66:129140.
73. Mizuuchi, M.,, T. A. Baker,, and K. Mizuuchi. 1992. Assembly of the active form of the transposase-Mu DNA complex: a critical control point in Mu transposition. Cell 70:303311.
74. Mizuuchi, M.,, and K. Mizuuchi. 1989. Efficient Mu transposition requires interaction of transposase with a DNA sequence at the Mu operator: implications for regulation. Cell 58:399408.
75. Morgan, G. J.,, G. F. Hatfull,, S. Casjens,, and R. W. Hendrix. 2002. Bacteriophage Mu genome sequence: analysis and comparison with Mu-like prophages in Haemophilus, Neisseria and Deinococcus. J. Mol. Biol. 317:337359.
76. Mukhopadhyay, B.,, K. R. Marshall-Batty,, B. D. Kim,, D. O’Handley,, and H. Nakai. 2003. Modulation of phage Mu repressor DNA binding and degradation by distinct determinants in its C-terminal domain. Mol. Microbiol. 47:171182.
77. Naigamwalla, D. Z.,, and G. Chaconas. 1997. A new set of Mu DNA transposition intermediates: alternate pathways of target capture preceding strand transfer. EMBO J. 16:52275234.
78. Nakai, H.,, V. Doseeva,, and J. M. Jones. 2001. Handoff from recombinase to replisome: insights from transposition. Proc. Natl. Acad. Sci. USA 98:82478254.
79. Nakai, H.,, and R. Kruklitis. 1995. Disassembly of the bacteriophage Mu transposase for the initiation of Mu DNA replication. J. Biol. Chem. 270:1959119598.
80. Nakayama, C.,, D. B. Teplow,, and R. M. Harshey. 1987. Structural domains in phage Mu transposase: identification of the site-specific DNA-binding domain. Proc. Natl. Acad. Sci. USA 84:18091813.
81. O’Day, K. J.,, D. W. Schultz,, and M. M. Howe,. 1978. Search for integration-deficient mutants of bacteriophage Mu, p. 4851. In D. Schlessinger (ed.), Microbiology—1978. American Society for Microbiology, Washington, D.C.
82. O’Handley, D.,, and H. Nakai. 2002. Derepression of bacteriophage Mu transposition functions by truncated forms of the immunity repressor. J. Mol. Biol. 322:311324.
83. Ortega, J.,, S. K. Singh,, T. Ishikawa,, M. R. Maurizi,, and A. C. Steven. 2000. Visualization of substrate binding and translocation by the ATP-dependent protease, ClpXP. Mol. Cell 6:15151521.
84. Rai, S. S.,, D. O’Handley,, and H. Nakai. 2001. Conformational dynamics of a transposition repressor in modulating DNA binding. J. Mol. Biol. 312:311322.
85. Ranquet, C.,, J. Geiselmann,, and A. Toussaint. 2001. The tRNA function of SsrA contributes to controlling repression of bacteriophage Mu prophage. Proc. Natl. Acad. Sci. USA 98:1022010225.
86. Roberts, J. W.,, and C. W. Roberts. 1975. Proteolytic cleavage of bacteriophage lambda repressor in induction. Proc. Natl. Acad. Sci. USA 72:147151.
87. Roche, E. D.,, and R. T. Sauer. 2001. Identification of endogenous SsrA-tagged proteins reveals tagging at positions corresponding to stop codons. J. Biol. Chem. 276:2850928515.
88. Roldan, L. A.,, and T. A. Baker. 2001. Differential role of the Mu B protein in phage Mu integration vs. replication: mechanistic insights into two transposition pathways. Mol. Microbiol. 40:141155.
89. Rousseau, P.,, M. Bétermier,, M. Chandler,, and R. Alazard. 1996. Interactions between the repressor and the early operator region of bacteriophage Mu. J. Biol. Chem. 271:97399745.
90. Rousseau, P.,, J. E. Laachouch,, M. Chandler,, and A. Toussaint. 2002. Characterization of the cts4 repressor mutation in transposable bacteriophage Mu. Res. Microbiol. 153:511518.
91. Sassanfar, M.,, and J. W. Roberts. 1990. Nature of the SOSinducing signal in Escherichia coli: the involvement of DNA replication. J. Mol. Biol. 212:7996.
92. Shapiro, J. A. 1979. Molecular model for the transposition and replication of bacteriophage Mu and other transposable elements. Proc. Natl. Acad. Sci. USA 76:19331937.
93.. Shapiro, J. A. 1984. Observations on the formation of clones containing araB-lacZ cistron fusions. Mol. Gen. Genet. 194:7990.
94. Shapiro, J. A. 1993. A role for the Clp protease in activating Mu-mediated DNA rearrangements. J. Bacteriol. 175:26252631.
95. Shapiro, J. A.,, and N. P. Higgins. 1989. Differential activity of a transposable element in Escherichia coli colonies. J. Bacteriol. 171:59755986.
96. Shapiro, J. A.,, and D. Leach. 1990. Action of a transposable element in coding sequence fusions. Genetics 126:293299.
97. Singh, S. K.,, R. Grimaud,, J. R. Hoskins,, S. Wickner,, and M. R. Maurizi. 2000. Unfolding and internalization of proteins by the ATP-dependent proteases ClpXP and ClpAP. Proc. Natl. Acad. Sci. USA 97:88988903.
98. Surette, M. G.,, S. J. Buch,, and G. Chaconas. 1987. Transpososomes: stable protein-DNA complexes involved in the in vitro transposition of bacteriophage Mu DNA. Cell 49:253262.
99. Surette, M. G.,, and G. Chaconas. 1992. The Mu transpositional enhancer can function in trans: requirement of the enhancer for synapsis but not strand cleavage. Cell 68:11011108.
100. Surette, M. G.,, and G. Chaconas. 1991. Stimulation of the Mu DNA strand cleavage and intramolecular strand transfer reactions by the Mu B protein is independent of stable binding of Mu B protein to DNA. J. Biol. Chem. 266:1730617313.
101. Surette, M. G.,, T. Harkness,, and G. Chaconas. 1991. Stimulation of the Mu A protein-mediated strand cleavage reaction by the Mu B protein, and the requirement of DNA nicking for stable Type 1 transpososome formation. J. Biol. Chem. 266:31183124.
102. Surette, M. G.,, B. D. Lavoie,, and G. Chaconas. 1989. Action at a distance in Mu DNA transposition: an enhancer-like element is the site of action of supercoiling relief activity by integration host factor (IHF). EMBO J. 8:34833489.
103. Symonds, N.,, A. Toussaint,, P. van de Putte,, and M. M. Howe (ed.). 1987. Phage Mu. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
104. Taylor, A. L. 1963. Bacteriophage-induced mutation in E. coli. Proc. Natl. Acad. Sci. USA 50:10431051.
105.. Toussaint, A.,, M. J. Gama,, J. Laachouch,, G. Maenhaut- Michel,, and A. Mhammedi-Alaoui. 1994. Regulation of bacteriophage Mu transposition. Genetica 93:2739.
106. van Vliet, F.,, M. Couturier,, L. Desmet,, M. Faelen,, and A. Toussaint. 1978. Virulent mutants of temperate phage Mu-1. Mol. Gen. Genet. 160:195202.
107. Vogel, J. L.,, V. Geuskens,, L. Desmet,, N. P. Higgins,, and A. Toussaint. 1996. C-terminal deletions can suppress temperature- sensitive mutations and change dominance in the phage Mu repressor. Genetics 142:661672.
108. Vogel, J. L.,, Z. J. Li,, M. M. Howe,, A. Toussaint,, and N. P. Higgins. 1991. Temperature-sensitive mutations in bacteriophage Mu c repressor locate a 63-amino-acid DNAbinding domain. J. Bacteriol. 173:65686577.
109. Wang, J.,, J. A. Hartling,, and J. M. Flanagan. 1997. The structure of ClpP at 2.3 A resolution suggests a model for ATP-dependent proteolysis. Cell 91:447456.
110. Wawrzynow, A.,, D. Wojtkowiak,, J. Marszalek,, B. Banecki,, M. Jonsen,, B. Graves,, C. Georgopoulos,, and M. Zylicz. 1995. The ClpX heat-shock protein of Escherichia coli, the ATP-dependent substrate specificity component of the ClpPClpX protease, is a novel molecular chaperone. EMBO J. 14:18671877.
111. Welty, D. J.,, J. M. Jones,, and H. Nakai. 1997. Communication of ClpXP protease hypersensitivity to bacteriophage Mu repressor isoforms. J. Mol. Biol. 272:3141.
112. Wijffelman, C.,, and B. Lotterman. 1977. Kinetics of Mu DNA synthesis. Mol. Gen. Genet. 151:169174.
113. Williams, K. P.,, and D. P. Bartel. 1996. Phylogenetic analysis of tmRNA secondary structure. RNA 2:13061310.
114. Williams, M. D.,, T. X. Ouyang,, and M. C. Flickinger. 1994. Starvation-induced expression of SspA and SspB: the effects of a null mutation in sspA on Escherichia coli protein synthesis and survival during growth and prolonged starvation. Mol. Microbiol. 11:10291043.
115. Wojciak, J. M.,, J. Iwahara,, and R. T. Clubb. 2001. The Mu repressor-DNA complex contains an immobilized "wing" within the minor groove. Nat. Struct. Biol. 8:8490.
116. Wojtkowiak, D.,, C. Georgopoulos,, and M. Zylicz. 1993. Isolation and characterization of ClpX, a new ATP-dependent specificity component of the Clp protease of Escherichia coli. J. Biol. Chem. 268:2260922617.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error