1887

Chapter 27 : Potential Mechanisms for Linking Phage Mu Transposition with Cell Physiology

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Potential Mechanisms for Linking Phage Mu Transposition with Cell Physiology, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817640/9781555812324_Chap27-1.gif /docserver/preview/fulltext/10.1128/9781555817640/9781555812324_Chap27-2.gif

Abstract:

This chapter discusses potential mechanisms for linking phage Mu transposition with cell physiology. Derepression of transposition can potentially benefit the host under conditions of stress, and these mechanisms can be part of the cellular stress response. Bacteriophage Mu is a model of regulated transposition, for it functions within its host as a fully active transposon as well as a virus. Transposition of the Mu genome into the host chromosome establishes lysogeny and replicates Mu DNA for lytic development. Upon completion of strand exchange, the transpososome remains in a tight complex with the two Mu ends in what is known as the type II transpososome or the strand-transfer complex (STC), posing as an impediment to the assembly of a replisome. The processes in DNA replication relevant to potential mechanisms in Mu derepression and those properties providing insights about Mu's relationship with its host are summarized in this chapter. Two types of repressor mutants which induce lytic development in Mu lysogens have provided insight as to how Mu derepression may be triggered. The C-terminal domain (CTD) of Rep plays an important role not only in eliciting thermolability of DNA binding domain (DBD) mutations present in but also in promoting Rep degradation induced by Vir expressed in . Recent evidence implicates a role for the Mu repressor CTD in S derepression and regulation of transposition. The CTD’s influence on DNA binding as well as repressor degradation represents two potential pathways by which derepression may be triggered.

Citation: North S, Nakai H. 2005. Potential Mechanisms for Linking Phage Mu Transposition with Cell Physiology, p 499-512. In Higgins N (ed), The Bacterial Chromosome. ASM Press, Washington, DC. doi: 10.1128/9781555817640.ch27

Key Concept Ranking

DNA Synthesis
0.5103065
DNA Polymerase III
0.49336714
0.5103065
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Bacteriophage Mu genome. Regions for Mu DNA transposition include a 200-bp left-end () sequence and a 100- bp right-end () sequence, which contain binding sites for domain Ibg of MuA and make up attachment sites to host DNA. The operator sequences (O1, O2, and O3) are contained within a 200-bp region and regulate the P and P promoters. They contain binding sites for the Mu repressor, encoded by the c gene. O1 and O2 also include an internal transpositional enhancer that is recognized by domain Ia of MuA and required for the assembly of transposase under physiological conditions.

Citation: North S, Nakai H. 2005. Potential Mechanisms for Linking Phage Mu Transposition with Cell Physiology, p 499-512. In Higgins N (ed), The Bacterial Chromosome. ASM Press, Washington, DC. doi: 10.1128/9781555817640.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Mu replicative transposition. The Mu transposition reaction catalyzed in vitro is depicted. (a) MuA transposase binds to sites on the left and right ends of mini-Mu DNA, which is harbored on a supercoiled plasmid vector (thick black lines). In the presence of the histone-like protein HU, MuA is assembled into a stable tetramer that holds the two Mu ends together in a synaptic complex. MuB plays an accessory role, functioning in target DNA capture and activating transposase activity. (b) MuA introduces nicks at the Mu ends and transfers them to phosphodiester linkages that are 5 bp apart (indicated by full arrows) on target DNA (thick gray lines) to form STC1. (c) Strand exchange produces a fork at each Mu end, the target DNA providing 30-OH ends (indicated by half arrows) that can be potentially used as primer for leading strand synthesis. The molecular chaperone ClpX then destabilizes the quaternary interactions of the MuA transpososome to convert STC1 to STC2. (d) Factors present in a host extract (MRFα2) displace the transpososome and form the prereplisome STC3. PriA binds to one of the forked structures formed by strand exchange (e), and this initiates the assembly of the primosome by bringing PriB, DnaT, and DnaBC to the fork (f and g). (f) The 3′ to 5′ helicase of PriA can function to unwind the lagging strand arm of the fork to create a binding site for the DnaB helicase. DnaC disassembles from the DnaBC complex as the DnaB is loaded onto the lagging strand template (g), and DNA polymerase III holoenzyme is bound to the fork to complete the formation of the replisome (h).

Citation: North S, Nakai H. 2005. Potential Mechanisms for Linking Phage Mu Transposition with Cell Physiology, p 499-512. In Higgins N (ed), The Bacterial Chromosome. ASM Press, Washington, DC. doi: 10.1128/9781555817640.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Domains of the Mu repressor. Depicted are the DNA binding domain (DBD), which makes up approximately 80 Nterminal residues; the leucine-rich domain (LRD [L121 to L162]), which is thought to function in repressor oligomerization; and the C-terminal domain (CTD), which modulates repressor degradation by ClpXP protease and DNA binding (I170 to V196). The indicated mutations in the DBD result in temperature-sensitive DNA binding (). Deletion of the last 18 amino acids () from the C terminus suppresses the DBD mutations and confers dominance over .

Citation: North S, Nakai H. 2005. Potential Mechanisms for Linking Phage Mu Transposition with Cell Physiology, p 499-512. In Higgins N (ed), The Bacterial Chromosome. ASM Press, Washington, DC. doi: 10.1128/9781555817640.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Dominant-negative forms of repressor. The sequence within the Rep CTD is shown. Vir3060 and Vir3051 are produced by frameshift mutations that alter the last 11 to 26 residues of the C terminus. The residues of the Vir proteins that differ from Rep are marked with an asterisk.

Citation: North S, Nakai H. 2005. Potential Mechanisms for Linking Phage Mu Transposition with Cell Physiology, p 499-512. In Higgins N (ed), The Bacterial Chromosome. ASM Press, Washington, DC. doi: 10.1128/9781555817640.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817640.chap27
1. Abo, T.,, T. Inada,, K. Ogawa,, and H. Aiba. 2000. SsrAmediated tagging and proteolysis of LacI and its role in the regulation of lac operon. EMBO J. 19: 3762 3769.
2. Alazard, R.,, M. Bétermier,, and M. Chandler. 1992. Escherichia coli integration host factor stabilizes bacteriophage Mu repressor interactions with operator DNA in vitro . Mol. Microbiol. 6: 1707 1714.
3. Alazard, R.,, C. Ebel,, V. Venien-Bryan,, L. Mourey,, J. P. Samama,, and M. Chandler. 1998. Oligomeric structure of the repressor of the bacteriophage Mu early operon. Eur. J. Biochem. 252: 408 415.
4. Atkins, J. F.,, and R. F. Gesteland. 1996. A case for trans translation. Nature 379: 769 771.
5. Baker, T. A.,, and K. Mizuuchi. 1992. DNA-promoted assembly of the active tetramer of the Mu transposase. Genes Dev. 6: 2221 2232.
6. Baker, T. A.,, M. Mizuuchi,, and K. Mizuuchi. 1991. MuB protein allosterically activates strand transfer by the transposase of phage Mu. Cell 65: 1003 1013.
7. Bétermier, M.,, P. Rousseau,, R. Alazard,, and M. Chandler. 1995. Mutual stabilisation of bacteriophage Mu repressor and histone-like proteins in a nucleoprotein structure. J. Mol. Biol. 249: 332 341.
8. Burton, B. M.,, T. L. Williams,, and T. A. Baker. 2001. ClpXmediated remodeling of Mu transpososomes: selective unfolding of subunits destabilizes the entire complex. Mol. Cell 8: 449 454.
9. Casadaban, M. J. 1976. Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and Mu. J. Mol. Biol. 104: 541 555.
10. Chaconas, G.,, E. B. Giddens,, J. L. Miller,, and G. Gloor. 1985. A truncated form of the bacteriophage Mu B protein promotes conservative integration, but not replicative transposition, of Mu DNA. Cell 41: 857 865.
11. Chaconas, G.,, G. Gloor,, and J. L. Miller. 1985. Amplification and purification of the bacteriophage Mu encoded B transposition protein. J. Biol. Chem. 260: 2662 2669.
12. Chaconas, G.,, and R. M. Harshey,. 2002. Transposition of phage Mu DNA, p. 384 402. In N. L. Craig,, R. Craigie,, M. Gellert,, and A. M. Lambowitz (ed.), Mobile DNA II. ASM Press, Washington, D.C.
13. Clubb, R. T.,, J. G. Omichinski,, H. Savilahti,, K. Mizuuchi,, A. M. Gronenborn,, and G. M. Clore. 1994. A novel class of winged helix-turn-helix protein: the DNA binding domain of Mu transposase. Structure 2: 1041 1048.
14. Cox, M. M. 1998. A broadening view of recombinational DNA repair in bacteria. Genes Cells 3: 65 78.
15. Cox, M. M.,, M. F. Goodman,, K. N. Kreuzer,, D. J. Sherratt,, S. J. Sandler,, and K. J. Marians. 2000. The importance of repairing stalled replication forks. Nature 404: 37 41.
16. Craigie, R.,, and K. Mizuuchi. 1985. Mechanism of transposition of bacteriophage Mu: structure of a transposition intermediate. Cell 41: 867 876.
16a.. Defenbaugh, D. A.,, and H. Nakai. 2003. A context-dependent ClpX recognition determinant located at the C terminus of phage Mu repressor. J. Biol. Chem. 278: 52333 52339.
17. Edlin, G.,, L. Lin,, and R. Bitner. 1977. Reproductive fitness of P1, P2, and Mu lysogens of Escherichia coli. J. Virol. 21: 560 564.
18. Faelen, M.,, and A. Toussaint. 1978. Stimulation of deletions in the Escherichia coli chromosome by partially induced Mucts62 prophages. J. Bacteriol. 136: 477 483.
19. Felden, B.,, K. Hanawa,, J. F. Atkins,, H. Himeno,, A. Muto,, R. F. Gesteland,, J. A. McCloskey,, and P. F. Crain. 1998. Presence and location of modified nucleotides in Escherichia coli tmRNA: structural mimicry with tRNA acceptor branches. EMBO J. 17: 3188 3196.
20. Felden, B.,, H. Himeno,, A. Muto,, J. P. McCutcheon,, J. F. Atkins,, and R. F. Gesteland. 1997. Probing the structure of the Escherichia coli 10Sa RNA (tmRNA). RNA 3: 89 103.
21. Flynn, J. M.,, I. Levchenko,, M. Seidel,, S. H. Wickner,, R. T. Sauer,, and T. A. Baker. 2001. Overlapping recognition determinants within the ssrA degradation tag allow modulation of proteolysis. Proc. Natl. Acad. Sci. USA 98: 10584 10589.
22. Flynn, J. M.,, S. B. Neher,, Y. I. Kim,, R. T. Sauer,, and T. A. Baker. 2003. Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals. Mol. Cell 11: 671 683.
23. Gama, M. J.,, A. Toussaint,, and N. P. Higgins. 1992. Stabilization of bacteriophage Mu repressor-operator complexes by the Escherichia coli integration host factor protein. Mol. Microbiol. 6: 1715 1722.
24. Geuskens, V.,, A. Mhammedi-Alaoui,, L. Desmet,, and A. Toussaint. 1992. Virulence in bacteriophage Mu: a case of trans-dominant proteolysis by the Escherichia coli Clp serine protease. EMBO J. 11: 5121 5127.
25. Geuskens, V.,, J. L. Vogel,, R. Grimaud,, L. Desmet,, N. P. Higgins,, and A. Toussaint. 1991. Frameshift mutations in the bacteriophage Mu repressor gene can confer a transdominant virulent phenotype to the phage. J. Bacteriol. 173: 6578 6585.
26. Giphart-Gassler, M.,, J. Reeve,, and P. van de Putte. 1981. Polypeptides encoded by the early region of bacteriophage Mu synthesized in minicells of Escherichia coli. J. Mol. Biol. 145: 165 191.
27. Gonciarz-Swiatek, M.,, A. Wawrzynow,, S. J. Um,, B. A. Learn,, R. McMacken,, W. L. Kelley,, C. Georgopoulos,, O. Sliekers,, and M. Zylicz. 1999. Recognition, targeting, and hydrolysis of the lambda O replication protein by the ClpP/ClpX protease. J. Biol. Chem. 274: 13999 14005.
28. Goosen, N.,, and P. van de Putte,. 1987. Regulation of transcription, p. 41 52. In N. Symonds,, A. Toussaint,, P. van de Putte,, and M. M. Howe (ed.), Phage Mu. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
29. Gottesman, S.,, W. P. Clark,, V. de Crécy-Lagard,, and M. R. Maurizi. 1993. ClpX, an alternative subunit for the ATPdependent Clp protease of Escherichia coli: sequence and in vivo activities. J. Biol. Chem. 268: 22618 22626.
30. Grimaud, R.,, M. Kessel,, F. Beuron,, A. C. Steven,, and M. R. Maurizi. 1998. Enzymatic and structural similarities between the Escherichia coli ATP-dependent proteases, ClpXP and ClpAP. J. Biol. Chem. 273: 12476 12481.
31. Harshey, R. M. 1984. Transposition without duplication of infecting bacteriophage Mu DNA. Nature 311: 580 581.
32. Harshey, R. M.,, E. D. Getzoff,, D. L. Baldwin,, J. L. Miller,, and G. Chaconas. 1985. Primary structure of phage Mu transposase: homology to Mu repressor. Proc. Natl. Acad. Sci. USA 82: 7676 7680.
33. Hartl, D. L.,, D. E. Dykhuizen,, R. D. Miller,, L. Green,, and J. de Framond. 1983. Transposable element IS50 improves growth rate of E. coli cells without transposition. Cell 35: 503 510.
34. Hayes, C. S.,, B. Bose,, and R. T. Sauer. 2002. Stop codons preceded by rare arginine codons are efficient determinants of SsrA tagging in Escherichia coli. Proc. Natl. Acad. Sci. USA 99: 3440 3445.
35. Hoskins, J. R.,, S. K. Singh,, M. R. Maurizi,, and S. Wickner. 2000. Protein binding and unfolding by the chaperone ClpA and degradation by the protease ClpAP. Proc. Natl. Acad. Sci. USA 97: 8892 8897.
36. Howe, M. M., 1987. Phage Mu: an overview, p. 25 39. In N. Symonds,, A. Toussaint,, P. van de Putte,, and M. M. Howe (ed.), Phage Mu. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
37. Howe, M. M. 1973. Prophage deletion mapping of bacteriophage Mu-1. Virology 54: 93 101.
38. Iida, H. 1988. Multistress resistance of Saccharomyces cerevisiae is generated by insertion of retrotransposon Ty into the 5′ coding region of the adenylate cyclase gene. Mol. Cell. Biol. 8: 5555 5560.
39. Ilangovan, U.,, J. M. Wojciak,, K. M. Connolly,, and R. T. Clubb. 1999. NMR structure and functional studies of the Mu repressor DNA-binding domain. Biochemistry 38: 8367 8376.
40. Jentsch, S. 1996. When proteins receive deadly messages at birth. Science 271: 955 956.
41. Jones, J. M.,, and H. Nakai. 1999. Duplex opening by primosome protein PriA for replisome assembly on a recombination intermediate. J. Mol. Biol. 289: 503 515.
42. Jones, J. M.,, and H. Nakai. 2001. Escherichia coli PriA helicase: synergism between fork binding and helicase activity stimulates unwinding of arrested forks. J. Mol. Biol. 312: 935 947.
43. Jones, J. M.,, and H. Nakai. 1997. The fX174-type primosome promotes replisome assembly at the site of recombination in bacteriophage Mu transposition. EMBO J. 16: 6886 6895.
44. Jones, J. M.,, and H. Nakai. 2000. PriA and T4 gp59: factors that promote DNA replication on forked DNA substrates. Mol. Microbiol. 36: 519 527.
45. Jones, J. M.,, D. J. Welty,, and H. Nakai. 1998. Versatile action of Escherichia coli ClpXP as protease or molecular chaperone for bacteriophage Mu transposition. J. Biol. Chem. 273: 459 465.
46. Keiler, K. C.,, P. R. H. Waller,, and R. T. Sauer. 1996. Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science 271: 990 993.
47. Kim, Y. I.,, R. E. Burton,, B. M. Burton,, R. T. Sauer,, and T. A. Baker. 2000. Dynamics of substrate denaturation and translocation by the ClpXP degradation machine. Mol. Cell 5: 639 648.
48. Komine, Y.,, M. Kitabatake,, and H. Inokuchi. 1996. 10Sa RNA is associated with 70S ribosome particles in Escherichia coli. J. Biochem. (Tokyo) 119: 463 467.
49. Komine, Y.,, M. Kitabatake,, T. Yokogawa,, K. Nishikawa,, and H. Inokuchi. 1994. A tRNA-like structure is present in 10Sa RNA, a small stable RNA from Escherichia coli. Proc. Natl. Acad. Sci. USA 91: 9223 9227.
50. Krause, H. M.,, and N. P. Higgins. 1986. Positive and negative regulation of the Mu operator by Mu repressor and Escherichia coli integration host factor. J. Biol. Chem. 261: 3744 3752.
51. Kruklitis, R.,, and H. Nakai. 1994. Participation of bacteriophage Mu A protein and host factors in initiation of Mu DNA synthesis in vitro. J. Biol. Chem. 269: 16469 16477.
52. Kruklitis, R.,, D. J. Welty,, and H. Nakai. 1996. ClpX protein of Escherichia coli activates bacteriophage Mu transposase in the strand transfer complex for initiation of Mu DNA synthesis. EMBO J. 15: 935 944.
53. Kuo, C.-F.,, A. Zou,, M. Jayaram,, E. Getzoff,, and R. Harshey. 1991. DNA-protein complexes during attachment-site synapsis in Mu DNA transposition. EMBO J. 10: 1585 1591.
54. Laachouch, J. E.,, L. Desmet,, V. Geuskens,, R. Grimaud,, and A. Toussaint. 1996. Bacteriophage Mu repressor as a target for the Escherichia coli ATP-dependent Clp protease. EMBO J. 15: 437 444.
55. Lamrani, S.,, C. Ranquet,, M. J. Gama,, H. Nakai,, J. A. Shapiro,, A. Toussaint,, and G. Maenhaut-Michel. 1999. Starvation- induced Mucts62-mediated coding sequence fusion: a role for ClpXP, Lon, RpoS and Crp. Mol. Microbiol. 32: 327 343.
56. Lavoie, B. D.,, B. S. Chan,, R. G. Allison,, and G. Chaconas. 1991. Structural aspects of a higher order nucleoprotein complex: induction of an altered DNA structure at the Muhost junction of the Mu Type 1 transpososome. EMBO J. 10: 3051 3059.
57. Leung, D. W.,, F. Chen,, and D. V. Goeddel. 1989. A method for random mutagenesis of a defined DNA segment using a modified polymerase chain reaction. Technique 1: 11 15.
58. Leung, P. C.,, D. B. Teplow,, and R. M. Harshey. 1989. Interaction of distinct domains in Mu transposase with Mu DNA ends and an internal transpositional enhancer. Nature 338: 656 658.
59. Levchenko, I.,, L. Luo,, and T. A. Baker. 1995. Disassembly of the Mu transposase tetramer by the ClpX chaperone. Genes Dev. 9: 2399 2408.
60. Levchenko, I.,, M. Seidel,, R. T. Sauer,, and T. A. Baker. 2000. A specificity-enhancing factor for the ClpXP degradation machine. Science 289: 2354 2356.
61. Levchenko, I.,, C. K. Smith,, N. P. Walsh,, R. T. Sauer,, and T. A. Baker. 1997. PDZ-like domains mediate binding specificity in the Clp/Hsp100 family of chaperones and protease regulatory subunits. Cell 91: 939 947.
62. Levchenko, I.,, M. Yamauchi,, and T. A. Baker. 1997. ClpX and MuB interact with overlapping regions of Mu transposase: implications for control of the transposition pathway. Genes Dev. 11: 1561 1572.
63. Liu, J.,, and K. J. Marians. 1999. PriA-directed assembly of a primosome on D loop DNA. J. Biol. Chem. 274: 25033 25041.
64. Maenhaut-Michel, G.,, C. E. Blake,, D. R. Leach,, and J. A. Shapiro. 1997. Different structures of selected and unselected araB-lacZ fusions. Mol. Microbiol. 23: 1133 1145.
65. Maenhaut-Michel, G.,, and J. A. Shapiro. 1994. The roles of starvation and selective substrates in the emergence of araBlacZ fusion clones. EMBO J. 13: 5229 5239.
66. Marians, K. J. 2000. PriA-directed replication fork restart in Escherichia coli. Trends Biochem. Sci. 25: 185 189.
67. Marshall-Batty, K.,, and H. Nakai. 2003. Trans-targeting of the phage Mu repressor is promoted by conformational changes that expose its ClpX recognition determinant. J. Biol. Chem. 278: 1612 1617.
68. Maxwell, A.,, R. Craigie,, and K. Mizuuchi. 1987. B protein of bacteriophage Mu is an ATPase that preferentially stimulates intermolecular DNA strand transfer. Proc. Natl. Acad. Sci. USA 84: 699 703.
69. McGlynn, P.,, A. A. Al-Deib,, J. Liu,, K. J. Marians,, and R. G. Lloyd. 1997. The DNA replication protein PriA and the recombination protein RecG bind D-loops. J. Mol. Biol. 270: 212 221.
70. Mhammedi-Alaoui, A.,, M. Pato,, M.-J. Gama,, and A. Toussaint. 1994. A new component of bacteriophage Mu replicative transposition machinery: the Escherichia coli ClpX protein. Mol. Microbiol. 11: 1109 1116.
71. Mittler, J.,, and R. E. Lenski. 1990. Further experiments on excisions of Mu from Escherichia coli MCS2 cast doubt on directed mutation hypothesis. Nature 344: 173 175.
72. Mizuuchi, K.,, and K. Adzuma. 1991. Inversion of the phosphate chirality at the target site of Mu DNA strand transfer: evidence for a one-step transesterification mechanism. Cell 66: 129 140.
73. Mizuuchi, M.,, T. A. Baker,, and K. Mizuuchi. 1992. Assembly of the active form of the transposase-Mu DNA complex: a critical control point in Mu transposition. Cell 70: 303 311.
74. Mizuuchi, M.,, and K. Mizuuchi. 1989. Efficient Mu transposition requires interaction of transposase with a DNA sequence at the Mu operator: implications for regulation. Cell 58: 399 408.
75. Morgan, G. J.,, G. F. Hatfull,, S. Casjens,, and R. W. Hendrix. 2002. Bacteriophage Mu genome sequence: analysis and comparison with Mu-like prophages in Haemophilus, Neisseria and Deinococcus. J. Mol. Biol. 317: 337 359.
76. Mukhopadhyay, B.,, K. R. Marshall-Batty,, B. D. Kim,, D. O’Handley,, and H. Nakai. 2003. Modulation of phage Mu repressor DNA binding and degradation by distinct determinants in its C-terminal domain. Mol. Microbiol. 47: 171 182.
77. Naigamwalla, D. Z.,, and G. Chaconas. 1997. A new set of Mu DNA transposition intermediates: alternate pathways of target capture preceding strand transfer. EMBO J. 16: 5227 5234.
78. Nakai, H.,, V. Doseeva,, and J. M. Jones. 2001. Handoff from recombinase to replisome: insights from transposition. Proc. Natl. Acad. Sci. USA 98: 8247 8254.
79. Nakai, H.,, and R. Kruklitis. 1995. Disassembly of the bacteriophage Mu transposase for the initiation of Mu DNA replication. J. Biol. Chem. 270: 19591 19598.
80. Nakayama, C.,, D. B. Teplow,, and R. M. Harshey. 1987. Structural domains in phage Mu transposase: identification of the site-specific DNA-binding domain. Proc. Natl. Acad. Sci. USA 84: 1809 1813.
81. O’Day, K. J.,, D. W. Schultz,, and M. M. Howe,. 1978. Search for integration-deficient mutants of bacteriophage Mu, p. 48 51. In D. Schlessinger (ed.), Microbiology—1978. American Society for Microbiology, Washington, D.C.
82. O’Handley, D.,, and H. Nakai. 2002. Derepression of bacteriophage Mu transposition functions by truncated forms of the immunity repressor. J. Mol. Biol. 322: 311 324.
83. Ortega, J.,, S. K. Singh,, T. Ishikawa,, M. R. Maurizi,, and A. C. Steven. 2000. Visualization of substrate binding and translocation by the ATP-dependent protease, ClpXP. Mol. Cell 6: 1515 1521.
84. Rai, S. S.,, D. O’Handley,, and H. Nakai. 2001. Conformational dynamics of a transposition repressor in modulating DNA binding. J. Mol. Biol. 312: 311 322.
85. Ranquet, C.,, J. Geiselmann,, and A. Toussaint. 2001. The tRNA function of SsrA contributes to controlling repression of bacteriophage Mu prophage. Proc. Natl. Acad. Sci. USA 98: 10220 10225.
86. Roberts, J. W.,, and C. W. Roberts. 1975. Proteolytic cleavage of bacteriophage lambda repressor in induction. Proc. Natl. Acad. Sci. USA 72: 147 151.
87. Roche, E. D.,, and R. T. Sauer. 2001. Identification of endogenous SsrA-tagged proteins reveals tagging at positions corresponding to stop codons. J. Biol. Chem. 276: 28509 28515.
88. Roldan, L. A.,, and T. A. Baker. 2001. Differential role of the Mu B protein in phage Mu integration vs. replication: mechanistic insights into two transposition pathways. Mol. Microbiol. 40: 141 155.
89. Rousseau, P.,, M. Bétermier,, M. Chandler,, and R. Alazard. 1996. Interactions between the repressor and the early operator region of bacteriophage Mu. J. Biol. Chem. 271: 9739 9745.
90. Rousseau, P.,, J. E. Laachouch,, M. Chandler,, and A. Toussaint. 2002. Characterization of the cts4 repressor mutation in transposable bacteriophage Mu. Res. Microbiol. 153: 511 518.
91. Sassanfar, M.,, and J. W. Roberts. 1990. Nature of the SOSinducing signal in Escherichia coli: the involvement of DNA replication. J. Mol. Biol. 212: 79 96.
92. Shapiro, J. A. 1979. Molecular model for the transposition and replication of bacteriophage Mu and other transposable elements. Proc. Natl. Acad. Sci. USA 76: 1933 1937.
93.. Shapiro, J. A. 1984. Observations on the formation of clones containing araB-lacZ cistron fusions. Mol. Gen. Genet. 194: 79 90.
94. Shapiro, J. A. 1993. A role for the Clp protease in activating Mu-mediated DNA rearrangements. J. Bacteriol. 175: 2625 2631.
95. Shapiro, J. A.,, and N. P. Higgins. 1989. Differential activity of a transposable element in Escherichia coli colonies. J. Bacteriol. 171: 5975 5986.
96. Shapiro, J. A.,, and D. Leach. 1990. Action of a transposable element in coding sequence fusions. Genetics 126: 293 299.
97. Singh, S. K.,, R. Grimaud,, J. R. Hoskins,, S. Wickner,, and M. R. Maurizi. 2000. Unfolding and internalization of proteins by the ATP-dependent proteases ClpXP and ClpAP. Proc. Natl. Acad. Sci. USA 97: 8898 8903.
98. Surette, M. G.,, S. J. Buch,, and G. Chaconas. 1987. Transpososomes: stable protein-DNA complexes involved in the in vitro transposition of bacteriophage Mu DNA. Cell 49: 253 262.
99. Surette, M. G.,, and G. Chaconas. 1992. The Mu transpositional enhancer can function in trans: requirement of the enhancer for synapsis but not strand cleavage. Cell 68: 1101 1108.
100. Surette, M. G.,, and G. Chaconas. 1991. Stimulation of the Mu DNA strand cleavage and intramolecular strand transfer reactions by the Mu B protein is independent of stable binding of Mu B protein to DNA. J. Biol. Chem. 266: 17306 17313.
101. Surette, M. G.,, T. Harkness,, and G. Chaconas. 1991. Stimulation of the Mu A protein-mediated strand cleavage reaction by the Mu B protein, and the requirement of DNA nicking for stable Type 1 transpososome formation. J. Biol. Chem. 266: 3118 3124.
102. Surette, M. G.,, B. D. Lavoie,, and G. Chaconas. 1989. Action at a distance in Mu DNA transposition: an enhancer-like element is the site of action of supercoiling relief activity by integration host factor (IHF). EMBO J. 8: 3483 3489.
103. Symonds, N.,, A. Toussaint,, P. van de Putte,, and M. M. Howe (ed.). 1987. Phage Mu. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
104. Taylor, A. L. 1963. Bacteriophage-induced mutation in E. coli. Proc. Natl. Acad. Sci. USA 50: 1043 1051.
105.. Toussaint, A.,, M. J. Gama,, J. Laachouch,, G. Maenhaut- Michel,, and A. Mhammedi-Alaoui. 1994. Regulation of bacteriophage Mu transposition. Genetica 93: 27 39.
106. van Vliet, F.,, M. Couturier,, L. Desmet,, M. Faelen,, and A. Toussaint. 1978. Virulent mutants of temperate phage Mu-1. Mol. Gen. Genet. 160: 195 202.
107. Vogel, J. L.,, V. Geuskens,, L. Desmet,, N. P. Higgins,, and A. Toussaint. 1996. C-terminal deletions can suppress temperature- sensitive mutations and change dominance in the phage Mu repressor. Genetics 142: 661 672.
108. Vogel, J. L.,, Z. J. Li,, M. M. Howe,, A. Toussaint,, and N. P. Higgins. 1991. Temperature-sensitive mutations in bacteriophage Mu c repressor locate a 63-amino-acid DNAbinding domain. J. Bacteriol. 173: 6568 6577.
109. Wang, J.,, J. A. Hartling,, and J. M. Flanagan. 1997. The structure of ClpP at 2.3 A resolution suggests a model for ATP-dependent proteolysis. Cell 91: 447 456.
110. Wawrzynow, A.,, D. Wojtkowiak,, J. Marszalek,, B. Banecki,, M. Jonsen,, B. Graves,, C. Georgopoulos,, and M. Zylicz. 1995. The ClpX heat-shock protein of Escherichia coli, the ATP-dependent substrate specificity component of the ClpPClpX protease, is a novel molecular chaperone. EMBO J. 14: 1867 1877.
111. Welty, D. J.,, J. M. Jones,, and H. Nakai. 1997. Communication of ClpXP protease hypersensitivity to bacteriophage Mu repressor isoforms. J. Mol. Biol. 272: 31 41.
112. Wijffelman, C.,, and B. Lotterman. 1977. Kinetics of Mu DNA synthesis. Mol. Gen. Genet. 151: 169 174.
113. Williams, K. P.,, and D. P. Bartel. 1996. Phylogenetic analysis of tmRNA secondary structure. RNA 2: 1306 1310.
114. Williams, M. D.,, T. X. Ouyang,, and M. C. Flickinger. 1994. Starvation-induced expression of SspA and SspB: the effects of a null mutation in sspA on Escherichia coli protein synthesis and survival during growth and prolonged starvation. Mol. Microbiol. 11: 1029 1043.
115. Wojciak, J. M.,, J. Iwahara,, and R. T. Clubb. 2001. The Mu repressor-DNA complex contains an immobilized "wing" within the minor groove. Nat. Struct. Biol. 8: 84 90.
116. Wojtkowiak, D.,, C. Georgopoulos,, and M. Zylicz. 1993. Isolation and characterization of ClpX, a new ATP-dependent specificity component of the Clp protease of Escherichia coli. J. Biol. Chem. 268: 22609 22617.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error