Chapter 29 : Replication of Linear Bacterial Chromosomes: No Longer Going Around in Circles

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Replication of Linear Bacterial Chromosomes: No Longer Going Around in Circles, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817640/9781555812324_Chap29-1.gif /docserver/preview/fulltext/10.1128/9781555817640/9781555812324_Chap29-2.gif


This chapter focuses on the structure and associated functional features of the linear bacterial chromosomes of species and species. Telomere resolvases have also been referred to as protelomerases, for prokaryotic or proteic telomerases. Based upon the similarity of the telomeres on the chromosome to those on the linear plasmids, replication of the linear plasmids is also expected to be bidirectional from an internal origin. The recombination model suggests that homologous recombination would be essential for chromosomal replication and thus viability. Nevertheless, it is noteworthy that the recombination model in theory is blind to the sophisticated secondary structures at the 3’ overhangs during DNA replication. The chromosome sequence, however, contains an open reading frame encoding another α subunit of PolIII. There are also two copies of β and γ/τ subunits and three of ε subunits. The meaning of this multiplicity is not clear, but it is unlikely that an extra PolIII enzyme functions in terminal patching, because the DNA strand synthesized in terminal patching is expected to be relatively short , not necessitating the high processivity of such enzyme. The linear replicons of and , despite their identical topology, appear to be highly diversified in their structures and modes of replication. These two organisms use varied but highly effective mechanisms to ensure that the ends of their linear DNA molecules are faithfully replicated, thereby eliminating the need for circularity of their DNA.

Citation: Chaconas G, Chen C. 2005. Replication of Linear Bacterial Chromosomes: No Longer Going Around in Circles, p 525-540. In Higgins N (ed), The Bacterial Chromosome. ASM Press, Washington, DC. doi: 10.1128/9781555817640.ch29

Key Concept Ranking

DNA Synthesis
DNA Polymerase I
Type II Topoisomerase
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Alignment of telomeres. The nucleotide sequences of the telomeres from linear replicons of the indicated species is shown ( ). Conserved telomeric regions are boxed and shaded. The question marks indicate that DNA sequencing around the hairpin was not performed, so there is some uncertainty as to the exact sequence of the turnaround.

Citation: Chaconas G, Chen C. 2005. Replication of Linear Bacterial Chromosomes: No Longer Going Around in Circles, p 525-540. In Higgins N (ed), The Bacterial Chromosome. ASM Press, Washington, DC. doi: 10.1128/9781555817640.ch29
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

The replication strategy for linear replicons with covalently closed hairpin ends in . The arrows labeled L and R indicate the inverted repeats at the left and right ends, respectively. The line bisecting the head-to-head (L′-L) and tail-to-tail (R-R′) telomere junctions in the replication intermediate is an axis of 180° rotational symmetry. The telomere breakage and reunion reaction is referred to as telomere resolution. Reprinted from reference with permission from Elsevier.

Citation: Chaconas G, Chen C. 2005. Replication of Linear Bacterial Chromosomes: No Longer Going Around in Circles, p 525-540. In Higgins N (ed), The Bacterial Chromosome. ASM Press, Washington, DC. doi: 10.1128/9781555817640.ch29
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Mechanism of action of ResT. (A) In a relaxed or linearized plasmid the telomere junction is presented as lineform DNA with a head-to-head structure for the inverted repeat (thin arrows). The scissile phosphates are noted with black dots and are 6 nucleotides apart on opposite strands, placing them on the same face of the DNA double helix. The shaded ovals represent ResT protomers, and the unshaded portions denote the active site with its putative tyrosine nucleophile (Y). The open arrows indicate the orientation of the ResT protomers. For simplicity, the reaction is drawn with active-site function in , although whether catalysis actually occurs in or in is not yet known. DNA cleavage is effected through nucleophilic attack by an active-site tyrosine residue which makes a covalent intermediate with the DNA through a 3′ phosphotyrosine linkage. The 5′ hydroxyl groups are brought into proximity with the phosphotyrosine linkage for transesterification by a conformational change in the complex or by simple dissociation, with joining of the bottom strand to the top strand to produce the DNA hairpin. (B) In a supercoiled plasmid the telomere junction is presented as cruciform DNA with the inverted repeats in the opposite orientation to that found in the lineform DNA. This structure would block interaction of ResT protomers by reversing their relative orientation. They would also be separated in space on the long arms of the extruded cruciform. Additionally, the cleavage sites are moved far from the strand to which they need to be joined for hairpin formation. Reprinted from reference with permission from Elsevier.

Citation: Chaconas G, Chen C. 2005. Replication of Linear Bacterial Chromosomes: No Longer Going Around in Circles, p 525-540. In Higgins N (ed), The Bacterial Chromosome. ASM Press, Washington, DC. doi: 10.1128/9781555817640.ch29
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Predicted secondary structure of the 3′ end of the chromosome. Roman numerals indicate palindrome numbers. The “rabbit ears” secondary structure of the terminal 119 nt based on autonomous parvovirus ( ) is included for comparison. The hairpin sequences that are homologous to a hairpin of the parvoviral genome are shaded. The putative Pu:Pu sheared pairings are indicated by black dots. Palindromes I′ to VII′ are conserved in most chromosomes. Palindromes VIII0 to X0 are absent from some. Modified from references and .

Citation: Chaconas G, Chen C. 2005. Replication of Linear Bacterial Chromosomes: No Longer Going Around in Circles, p 525-540. In Higgins N (ed), The Bacterial Chromosome. ASM Press, Washington, DC. doi: 10.1128/9781555817640.ch29
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Four models for terminal patching of linear replicons. The intermediate telomere structure with the 3′ single-stranded overhang, which contains the conserved terminal palindromes (I′ to IV′ are indicated), is shown on the top. The terminal protein (TP) is indicated by the filled circle. New TP is represented by open circles, DNA polymerase is represented by open arrows, and newly synthesized DNA is represented by dashed lines. See the text for details about the models. Modified from reference .

Citation: Chaconas G, Chen C. 2005. Replication of Linear Bacterial Chromosomes: No Longer Going Around in Circles, p 525-540. In Higgins N (ed), The Bacterial Chromosome. ASM Press, Washington, DC. doi: 10.1128/9781555817640.ch29
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Adams, D. E.,, E. M. Shekhtman,, E. L. Zechiedrich,, M. B. Schmid,, and N. R. Cozzarelli. 1992. The role of topoisomerase IV in partitioning bacterial replicons and the structure of catenated intermediates in DNA replication. Cell 71:277288.
2. Allardet-Servent, A.,, S. Michaux-Charachon,, E. Jumas-Bilak,, L. Karayan,, and M. Ramuz. 1993. Presence of one linear and one circular chromosome in the Agrobacterium tumefaciens C58 genome. J. Bacteriol. 175:78697874.
3. Anguita, J.,, S. Samanta,, B. Revilla,, K. Suk,, S. Das,, S. W. Barthold,, and E. Fikrig. 2000. Borrelia burgdorferi gene expression in vivo and spirochete pathogenicity. Infect. Immun. 68:12221230.
4. Astell, C. R.,, M. B. Chow,, and D. C. Ward. 1985. Sequence analysis of the termini of virion and replicative forms of minute virus of mice suggests a modified rolling hairpin model for autonomous parvovirus DNA replication. J. Virol. 54:171177.
5. Astell, C. R.,, M. Thomson,, M. B. Chow,, and D. C. Ward. 1983. Structure and replication of minute virus of mice DNA. Cold Spring Harbor Symp. Quant. Biol. 47:751762.
6. Bao, K.,, and S. N. Cohen. 2001. Terminal proteins essential for the replication of linear plasmids and chromosomes in Streptomyces. Genes Dev. 15:15181527.
7. Barbour, A. G., 2001. Borrelia: a diverse and ubiquitous genus of tick-borne pathogens, p. 153173. In M. W. Scheld,, W. A. Craig,, and J. M. Hughes (ed.), Emerging Infections 5. ASM Press, Washington, D.C.
8. Barbour, A. G.,, and D. Fish. 1993. The biological and social phenomenon of Lyme disease. Science 260:16101616.
9. Barbour, A. G.,, and C. F. Garon. 1987. Linear plasmids of the bacterium Borrelia burgdorferi have covalently closed ends. Science 237:409411.
10. Baril, C.,, C. Richaud,, G. Baranton,, and I. S. Saint Girons. 1989. Linear chromosome of Borrelia burgdorferi. Res. Microbiol. 140:507516.
11. Barre, F. X.,, B. Soballe,, B. Michel,, M. Aroyo,, M. Robertson,, and D. Sherratt. 2001. Circles: the replication-recombination-chromosome segregation connection. Proc. Natl. Acad. Sci. USA 98:81898195.
12. Barthold, S. W., 2000. Lyme borreliosis, p. 281304. In J. P. Nataro,, M. J. Blaser,, and S. Cunningham-Rundles (ed.), Persistent Bacterial Infections. ASM Press, Washington, D.C.
12a.. Bentley, S. D.,, S. Brown,, L. D. Murphy,, D. E. Harris,, M. A. Quail,, J. Parkhill,, B. G. Barrell,, J. R. McCormick,, R. I. Santamaria,, R. Losick,, M. Yamasaki,, H. Kinashi,, C. W. Chen,, G. Chandra,, D. Jakimowicz,, H. M. Kieser,, T. Kieser,, and K. F. Chater. 2004. SCP1, a 356,023 base pair linear plasmid adapted to the ecology and developmental biology of its host, Streptomyces coelicolor A3(2). Mol. Microbiol. 51:16151628.
13. Bey, S. J.,, M. F. Tsou,, C. H. Huang,, C. C. Yang,, and C. W. Chen. 2000. The homologous terminal sequence of the Streptomyces lividans chromosome and SLP2 plasmid. Microbiology 146:911922.
14. Bipatnath, M.,, P. P. Dennis,, and H. Bremer. 1998. Initiation and velocity of chromosome replication in Escherichia coli B/r and K-12. J. Bacteriol. 180:265273.
15. Boye, E.,, A. Lobner-Olesen,, and K. Skarstad. 2000. Limiting DNA replication to once and only once. EMBORep. 1:479483.
16. Bravo, A.,, and M. Salas. 1997. Initiation of bacteriophage f29 DNA replication in vivo: assembly of a membrane-associated multiprotein complex. J. Mol. Biol. 269:102112.
17. Caimano, M. J.,, X. Yang,, T. G. Popova,, M. L. Clawson,, D. R. Akins,, M. V. Norgard,, and J. D. Radolf. 2000. Molecular and evolutionary characterization of the cp32/18 family of supercoiled plasmids in Borrelia burgdorferi 297. Infect. Immun. 68:15741586.
18. Calcutt, M. J.,, and F. J. Schmidt. 1992. Conserved gene arrangement in the origin region of the Streptomyces coelicolor chromosome. J. Bacteriol. 174:32203226.
19. Casjens, S. 2000. Borrelia genomes in the year 2000. J. Mol. Microbiol. Biotechnol. 2:401410.
20. Casjens, S. 1999. Evolution of the linear DNA replicons of the Borrelia spirochetes. Curr. Opin. Microbiol. 2:529534.
21. Casjens, S.,, M. Murphy,, M. DeLange,, L. Sampson,, R. van Vugt,, and W. M. Huang. 1997. Telomeres of the linear chromosomes of Lyme disease spirochaetes: nucleotide sequence and possible exchange with linear plasmid telomeres. Mol. Microbiol. 26:581596.
22. Casjens, S.,, N. Palmer,, R. Van Vugt,, W. H. Huang,, B. Stevenson,, P. Rosa,, R. Lathigra,, G. Sutton,, J. Peterson,, R. J. Dodson,, D. Haft,, E. Hickey,, M. Gwinn,, O. White,, and C. M. Fraser. 2000. A bacterial genome in flux: the twelve linear and nine circular extrachromosomal DNAs in an infectious isolate of the Lyme disease spirochete Borrelia burgdorferi. Mol. Microbiol. 35:490516.
23. Chaconas, G.,, P. E. Stewart,, K. Tilly,, J. L. Bono,, and P. Rosa. 2001. Telomere resolution in the Lyme disease spirochete. EMBO J. 20:32293237.
24. Chang, P. C.,, and S. N. Cohen. 1994. Bidirectional replication from an internal origin in a linear Streptomyces plasmid. Science 265:952954.
25. Chang, P. C.,, E. S. Kim,, and S. N. Cohen. 1996. Streptomyces linear plasmids that contain a phage-like, centrally located, replication origin. Mol. Microbiol. 22:789800.
26. Chen, C. W. 1996. Complications and implications of linear bacterial chromosomes. Trends Genet. 12:192196.
26a.. Chen, C. W.,, C.-H. Huang,, H.-H. Lee,, H.-H. Tsai,, and R. Kirby. 2002. Once the circle has been broken: dynamics and evolution of Streptomyces chromosomes. Trends Genet. 18:522529.
27. Chen, C. W.,, T.-W. Yu,, Y. S. Lin,, H. M. Kieser,, and D. A. Hopwood. 1993. The conjugative plasmid SLP2 of Streptomyces lividans is a 50 kb linear molecule. Mol. Microbiol. 7:925932.
28. Chen, Y.-T. 2000. Linear chromosomes and linear plasmids in Actinomycetes. M.S. thesis. National Yang-Ming University, Taipei, Taiwan.
29. Cheng, A.-J. 1995. Construction and characterization of recA mutants of Streptomyces lividans. M.S. thesis. National Yang-Ming University, Taipei, Taiwan.
30. Chou, S.-H.,, L. Zhu,, and B. R. Reid. 1997. Sheared purinepurine pairing in biology. J. Mol. Biol. 267:10551067.
31. Deneke, J.,, G. Ziegelin,, R. Lurz,, and E. Lanka. 2002. Phage N15 telomere resolution: target requirements for recognition and processing by the protelomerase. J. Biol. Chem. 277:1041010419.
32. Deneke, J.,, G. Ziegelin,, R. Lurz,, and E. Lanka. 2000. The protelomerase of temperate Escherichia coli phage N15 has cleaving-joining activity. Proc. Natl. Acad. Sci. USA 97:77217726.
33. Ducote, M. J.,, S. Prakash,, and G. S. Pettis. 2000. Minimal and contributing sequence determinants of the cis-acting locus of transfer (clt) of streptomycete plasmid pIJ101 occur within an intrinsically curved plasmid region. J. Bacteriol. 182:68346841.
34. Eggers, C. H.,, M. J. Caimano,, M. L. Clawson,, W. G. Miller,, D. S. Samuels,, and J. D. Radolf. 2002. Identification of loci critical for replication and compatibility of a Borrelia burgdorferi cp32 plasmid and use of a cp32-based shuttle vector for the expression of fluorescent reporters in the Lyme disease spirochaete. Mol. Microbiol. 43:281295.
35. Eggers, C. H.,, S. Casjens,, S. F. Hayes,, C. F. Garon,, C. J. Damman,, D. B. Oliver,, and D. S. Samuels. 2000. Bacteriophages of spirochetes. J. Mol. Microbiol. Biotechnol. 2:365373.
36. Ferdows, M. S.,, and A. G. Barbour. 1989. Megabase-sized linear DNA in the bacterium Borrelia burgdorferi, the Lyme disease agent. Proc. Natl. Acad. Sci. USA 86:59695973.
37. Ferdows, M. S.,, P. Serwer,, G. A. Griess,, S. J. Norris,, and A. G. Barbour. 1996. Conversion of a linear to a circular plasmid in the relapsing fever agent Borrelia hermsii. J. Bacteriol. 178:793800.
38. Flett, F.,, D. de Mello Jungmann-Campello,, V. Mersinias,, S. L. Koh,, R. Godden,, and C. P. Smith. 1999. A "gramnegative-type" DNA polymerase III is essential for replication of the linear chromosome of Streptomyces coelicolor A3(2). Mol. Microbiol. 31:949958.
39. Fraser, C. M.,, S. Casjens,, W. M. Huang,, G. G. Sutton,, R. Clayton,, R. Lathigra,, O. White,, K. A. Ketchum,, R. Dodson,, E. K. Hickey,, M. Gwinn,, B. Dougherty,, J. F. Tomb,, R. D. Fleischmann,, D. Richardson,, J. Peterson,, A. R. Kerlavage,, J. Quackenbush,, S. Salzberg,, M. Hanson,, R. van Vugt,, N. Palmer,, M. D. Adams,, J. Gocayne,, J. Weidman,, T. Utterback,, L. Watthey,, L. McDonald,, P. Artiach,, C. Bowman,, S. Garland,, C. Fujii,, M. D. Cotton,, K. Horst,, K. Roberts,, B. Hatch,, H. O. Smith,, and J. C. Venter. 1997. Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390:580586.
40. Garcia-Lara, J.,, M. Picardeau,, B. J. Hinnebusch,, W. M. Huang,, and S. Casjens. 2000. The role of genomics in approaching the study of Borrelia DNA replication. J. Mol. Microbiol. Biotechnol. 2:447454.
41. Goodner, B.,, G. Hinkle,, S. Gattung,, N. Miller,, M. Blanchard,, B. Qurollo,, B. S. Goldman,, Y. Cao,, M. Askenazi,, C. Halling,, L. Mullin,, K. Houmiel,, J. Gordon,, M. Vaudin,, O. Iartchouk,, A. Epp,, F. Liu,, C. Wollam,, M. Allinger,, D. Doughty,, C. Scott,, C. Lappas,, B. Markelz,, C. Flanagan,, C. Crowell,, J. Gurson,, C. Lomo,, C. Sear,, G. Strub,, C. Cielo,, and S. Slater. 2001. Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science 294:23232328.
42. Goodner, B. W.,, B. P. Markelz,, M. C. Flanagan,, C. B. Crowell,, J. L. Racette,, B. A. Schilling,, L. M. Halfon,, J. S. Mellors,, and G. Grabowski. 1999. Combined genetic and physical map of the complex genome of Agrobacterium tumefaciens. J. Bacteriol. 181:51605166.
43. Gopaul, D. N.,, and G. D. Duyne. 1999. Structure and mechanism in site-specific recombination. Curr. Opin. Struct. Biol. 9:1420.
44. Grainge, I.,, and M. Jayaram. 1999. The integrase family of recombinase: organization and function of the active site. Mol. Microbiol. 33:449456.
45. Hallet, B.,, and D. J. Sherratt. 1997. Transposition and sitespecific recombination: adapting DNA cut-and-paste mechanisms to a variety of genetic rearrangements. FEMS Microbiol. Rev. 21:157178.
46. Hefty, P. S.,, S. E. Jolliff,, M. J. Caimano,, S. K. Wikel,, J. D. Radolf,, and D. R. Akins. 2001. Regulation of OspE-related, OspF-related, and Elp lipoproteins of Borrelia burgdorferi strain 297 by mammalian host-specific signals. Infect. Immun. 69:36183627.
47. Hinnebusch, B. J.,, and A. J. Bendich. 1997. The bacterial nucleoid visualized by fluorescence microscopy of cells lysed within agarose: comparison of Escherichia coli and spirochetes of the genus Borrelia. J. Bacteriol. 179:22282237.
48. Hinnebusch, J.,, and A. G. Barbour. 1992. Linear- and circular-plasmid copy numbers in Borrelia burgdorferi. J. Bacteriol. 174:52515257.
49. Hinnebusch, J.,, and A. G. Barbour. 1991. Linear plasmids of Borrelia burgdorferi have a telomeric structure and sequence similar to those of a eukaryotic virus. J. Bacteriol. 173:72337239.
50. Hinnebusch, J.,, S. Bergstrom,, and A. G. Barbour. 1990. Cloning and sequence analysis of linear plasmid telomeres of the bacterium Borrelia burgdorferi. Mol. Microbiol. 4:811820.
51. Hinnebusch, J.,, and K. Tilly. 1993. Linear plasmids and chromosomes in bacteria. Mol. Microbiol. 10:917922.
52. Hopwood, D. A. 1965. A circular linkage map in the actinomycete Streptomyces coelicolor. J. Mol. Biol. 12:514516.
53. Hopwood, D. A. 1999. Forty years of genetics with Streptomyces: from in vivo through in vitro to in silico. Microbiology 145:21832202.
54. Hopwood, D. A. 1967. Genetic analysis and genome structure in Streptomyces coelicolor. Bacteriol. Rev. 31:373403.
55. Hopwood, D. A. 1966. Lack of constant genome ends in Streptomyces coelicolor. Genetics 54:11771184.
56. Huang, C.-H.,, Y.-S. Lin,, Y.-L. Yang,, S.-W. Huang,, and C. W. Chen. 1998. The telomeres of Streptomyces chromosomes contain conserved palindromic sequences with potential to form complex secondary structures. Mol. Microbiol. 28:905926.
56a.. Huang, C. H.,, C. Y. Chen,, H. H. Tsai,, C. Chen,, Y. S. Lin,, and C. W. Chen. 2003. Linear plasmid SLP2 of Streptomyces lividans is a composite replicon. Mol. Microbiol. 47:15631576.
56b.. Ikeda, H.,, J. Ishikawa,, A. Hanamoto,, M. Shinose,, H. Kikuchi,, T. Shiba,, Y. Sakaki,, M. Hattori,, and S. Omura. 2003. Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat. Biotechnol. 21:526531.
57. Jakimowicz, D.,, J. Majkadagger,, G. Konopa,, G. Wegrzyn,, W. Messer,, H. Schrempf,, and J. Zakrzewska-Czerwinska. 2000. Architecture of the Streptomyces lividans DnaA proteinreplication origin complexes. J. Mol. Biol. 298:351364.
58. Kinashi, H.,, and M. Shimaji-Murayama. 1991. Physical characterization of SCP1, a giant linear plasmid from Streptomyces coelicolor. J. Bacteriol. 173:15231529.
59. Kitten, T.,, and A. G. Barbour. 1990. Juxtaposition of expressed variable antigen genes with a conserved telomere in the bacterium Borrelia hermsii. Proc. Natl. Acad. Sci. USA 87:60776081.
60. Knight, S. W.,, B. J. Kimmel,, C. H. Eggers,, and D. S. Samuels. 2000. Disruption of the Borrelia burgdorferi gac gene, encoding the naturally synthesized GyrA C-terminal domain. J. Bacteriol. 182:20482051.
61. Knight, S. W.,, and D. S. Samuels. 1999. Natural synthesis of a DNA-binding protein from the C-terminal domain of DNA gyrase A in Borrelia burgdorferi. EMBO J. 18:48754881.
62. Kobryn, K.,, and G. Chaconas. 2001. The circle is broken: telomere resolution in linear replicons. Curr. Opin. Microbiol. 4:558564.
63. Kobryn, K.,, and G. Chaconas. 2002. ResT, a telomere resolvase encoded by the Lyme disease spirochete. Mol. Cell 9:195201.
64. Kobryn, K.,, D. Z. Naigamwalla,, and G. Chaconas. 2000. Site-specific DNA binding and bending by the Borrelia burgdorferi Hbb protein. Mol. Microbiol. 37:145155.
65. Kunst, F.,, N. Ogasawara,, I. Moszer,, A. M. Albertini,, G. Alloni,, V. Azevedo,, M. G. Bertero,, P. Bessieres,, A. Bolotin,, S. Borchert,, R. Borriss,, L. Boursier,, A. Brans,, M. Braun,, S. C. Brignell,, S. Bron,, S. Brouillet,, C. V. Bruschi,, B. Caldwell,, V. Capuano,, N. M. Carter,, S. K. Choi,, J. J. Codani,, I. F. Connerton,, N. J. Cummings,, R. A. Daniel,, F. Denizot,, K. M. Devine,, A. Düsterhöft,, S. D. Ehrlich,, P. T. Emmerson,, K. D. Entian,, J. Errington,, C. Fabret,, E. Ferrari,, D. Foulger,, C. Fritz,, M. Fujita,, Y. Fujita,, S. Fuma,, A. Galizzi,, N. Galleron,, S.-Y. Ghim,, P. Glaser,, A. Goffeau,, E. J. Golightly,, G. Grandi,, G. Guiseppi,, B. J. Guy,, K. Haga,, J. Haiech,, C. R. Harwood,, A. Hénaut,, H. Hilbert,, S. Holsappel,, S. Hosono,, M.-F. Hullo,, M. Itaya,, L. Jones,, B. Joris,, D. Karamata,, Y. Kasahara,, M. Klaerr-Blanchard,, C. Klein,, Y. Kobayashi,, P. Koetter,, G. Koningstein,, S. Krogh,, M. Kumano,, K. Kurita,, A. Lapidus,, S. Lardinois,, J. Lauber,, V. Lazarevic,, S.-M. Lee,, A. Levine,, H. Liu,, S. Masuda,, C. Mauël,, C. Médigue,, N. Medina,, R. P. Mellado,, M. Mizuno,, D. Moestl,, S. Nakai,, M. Noback,, D. Noone,, M. O’Reilly,, K. Ogawa,, A. Ogiwara,, B. Oudega,, S.-H. Park,, V. Parro,, T. M. Pohl,, D. Portetelle,, S. Porwollik,, A. M. Prescott,, E. Presecan,, P. Pujic,, B. Purnelle,, G. Rapoport,, M. Rey,, S. Reynolds,, M. Rieger,, C. Rivolta,, E. Rocha,, B. Roche,, M. Rose,, Y. Sadaie,, T. Sato,, E. Scanlan,, S. Schleich,, R. Schroeter,, F. Scoffone,, J. Sekiguchi,, A. Sekowska,, S. J. Seror,, P. Serror,, B.-S. Shin,, B. Soldo,, A. Sorokin,, E. Tacconi,, T. Takagi,, H. Takahashi,, K. Takemaru,, M. Takeuchi,, A. Tamakoshi,, T. Tanaka,, P. Terpstra,, A. Tognoni,, V. Tosato,, S. Uchiyama,, M. Vandenbol,, F. Vannier,, A. Vassarotti,, A. Viari,, R. Wambutt,, E. Wedler,, H. Wedler,, T. Weitzenegger,, P. Winters,, A. Wipat,, H. Yamamoto,, K. Yamane,, K. Yasumoto,, K. Yata,, K. Yoshida,, H.-F. Yoshikawa,, E. Zumstein,, H. Yoshikawa,, and A. Danchin. 1997. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390:249256.
66. Labandeira-Rey, M.,, and J. T. Skare. 2001. Decreased infectivity in Borrelia burgdorferi strain B31 is associated with loss of linear plasmid 25 or 28-1. Infect. Immun. 69:446455.
67. Leblond, P.,, and B. Decaris. 1994. New insights into the genetic instability of Streptomyces. FEMS Microbiol. Lett. 123:225232.
68. Leblond, P.,, G. Fischer,, F. Francou,, F. Berger,, M. Guerineau,, and B. Decaris. 1996. The unstable region of Streptomyces ambofaciens includes 210-kb terminal inverted repeats flanking the extremities of the linear chromosomal DNA. Mol. Microbiol. 19:261271.
68a.. Leblond, P.,, M. Redenbach,, and J. Cullum. 1993. Physical map of the Streptomyces lividans 66 genome and comparison with that of the related strain Streptomyces coelicolor A3(2). J. Bacteriol. 175:34223429.
69. Lee, L. F.,, S. H. Yeh,, and C. W. Chen. 2002. Construction and synchronization of dnaA temperature-sensitive mutants of Streptomyces. J. Bacteriol. 184:12141218.
70. Lezhava, A.,, T. Mizukami,, T. Kajitani,, D. Kameoka,, M. Redenbach,, H. Shinkawa,, O. Nimi,, and H. Kinashi. 1995. Physical map of the linear chromosome of Streptomyces griseus. J. Bacteriol. 177:64926498.
71. Lin, Y.-S.,, H. M. Kieser,, D. A. Hopwood,, and C. W. Chen. 1993. The chromosomal DNA of Streptomyces lividans 66 is linear. Mol. Microbiol. 10:923933.
72. Majka, J.,, J. Zakrzewska-Czerwinska,, and W. Messer. 2001. Sequence recognition, cooperative interaction, and dimerization of the initiator protein DnaA of Streptomyces. J. Biol. Chem. 276:62436252.
73. Marconi, R. T.,, S. Casjens,, U. G. Munderloh,, and D. S. Samuels. 1996. Analysis of linear plasmid dimers in Borrelia burgdorferi sensu lato isolates: implications concerning the potential mechanism of linear plasmid replication. J. Bacteriol. 178:33573361.
74. Meijer, W. J. J.,, J. A. Horcajadas,, and M. Salas. 2001. f29 family of phages. Microbiol. Mol. Biol. Rev. 65:261287.
75. Meinhardt, F.,, R. Schaffrath,, and M. Larsen. 1997. Microbial linear plasmids. Appl. Microbiol. Biotechnol. 47:329336.
76. Mikoc, A.,, I. Ahel,, and V. Gamulin. 2000. Construction and characterization of a Streptomyces rimosus recA mutant: the RecA-deficient strain remains viable. Mol. Gen. Genet. 264:227232.
77. Mrazek, J.,, and S. Karlin. 1998. Strand compositional asymmetry in bacterial and large viral genomes. Proc. Natl. Acad. Sci. USA 95:37203725.
78. Muth, G.,, D. Frese,, A. Kleber,, and W. Wohlleben. 1997. Mutational analysis of the Streptomyces lividans recA gene suggests that only mutants with residual activity remain viable. Mol. Gen. Genet. 255:420428.
79. Nordstrand, A.,, A. G. Barbour,, and S. Bergstrom. 2000. Borrelia pathogenesis research in the post-genomic and postvaccine era. Curr. Opin. Microbiol. 3:8692.
80. Norioka, N.,, M. Y. Hsu,, S. Inouye,, and M. Inouye. 1995. Two recA genes in Myxococcus xanthus. J. Bacteriol. 177:41794182.
81. Omura, S.,, H. Ikeda,, J. Ishikawa,, A. Hanamoto,, C. Takahashi,, M. Shinose,, Y. Takahashi,, H. Horikawa,, H. Nakazawa,, T. Osonoe,, H. Kikuchi,, T. Shiba,, Y. Sakaki,, and M. Hattori. 2001. Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites. Proc. Natl. Acad. Sci. USA 98:1221512220.
82. Ortin, J.,, E. Vinuela,, M. Salas,, and C. Vasquez. 1971. DNAprotein complex in circular DNA from phage f29. Nat. New Biol. 234:275277.
83. Palaniyar, N.,, E. Gerasimopoulos,, and D. H. Evans. 1999. Shope fibroma virus DNA topoisomerase catalyses Holliday junction resolution and hairpin formation in vitro. J. Mol. Biol. 287:920.
84. Pandza, K.,, G. Pfalzer,, J. Cullum,, and D. Hranueli. 1997. Physical mapping shows that the unstable oxytetracycline gene cluster of Streptomyces rimosus lies close to one end of the linear chromosome. Microbiology 143:14931501.
85. Paques, F.,, and J. E. Haber. 1999. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 63:349404.
86. Pettis, G. S.,, and S. N. Cohen. 1994. Transfer of the pIJ101 plasmid in Streptomyces lividans requires a cis-acting function dispensable for chromosomal gene transfer. Mol. Microbiol. 13:955964.
87. Picardeau, M.,, J. R. Lobry,, and B. J. Hinnebusch. 2000. Analyzing DNA strand compositional asymmetry to identify candidate replication origins of Borrelia burgdorferi linear and circular plasmids. Genome Res. 10:15941604.
88. Picardeau, M.,, J. R. Lobry,, and B. J. Hinnebusch. 1999. Physical mapping of an origin of bidirectional replication at the centre of the Borrelia burgdorferi linear chromosome. Mol. Microbiol. 32:437445.
89. Plasterk, R. H.,, M. I. Simon,, and A. G. Barbour. 1985. Transposition of structural genes to an expression sequence on a linear plasmid causes antigenic variation in the bacterium Borrelia hermsii. Nature 318:257263.
90. Purser, J. E.,, and S. J. Norris. 2000. Correlation between plasmid content and infectivity in Borrelia burgdorferi. Proc. Natl. Acad. Sci. USA 97:1386513870.
91. Qin, Z.,, and S. N. Cohen. 1998. Replication at the telomeres of the Streptomyces linear plasmid pSLA2. Mol. Microbiol. 28:893904.
91a.. Redenbach, M.,, F. Flett,, W. Piendl,, I. Glocker,, U. Rauland,, O. Wafzig,, P. Leblond,, and J. Cullum. 1993. The Streptomyces lividans 66 chromosome contains a 1 Mb deletogenic region flanked by two amplifiable regions. Mol. Gen. Genet. 241:255262.
92. Redenbach, M.,, E. Kleinert,, and A. Stoll. 2000. Identification of DNA amplifications near the center of the Streptomyces coelicolor M145 chromosome. FEMS Microbiol. Lett. 191: 123129.
93. Redenbach, M.,, J. Scheel,, and U. Schmidt. 2000. Chromosome topology and genome size of selected actinomycetes species. Antonie Leeuwenhoek 78:227235.
94. Reeves, A. R.,, D. A. Post,, and T. J. Vanden Boom. 1998. Physical-genetic map of the erythromycin-producing organism Saccharopolyspora erythraea. Microbiology 144:21512159.
95. Rybchin, V. N.,, and A. N. Svarchevsky. 1999. The plasmid prophage N15: a linear DNA with covalently closed ends. Mol. Microbiol. 33:895903.
96. Schaack, J.,, W. Y. Ho,, P. Freimuth,, and T. Shenk. 1990. Adenovirus terminal protein mediates both nuclear matrix association and efficient transcription of adenovirus DNA. Genes Dev. 4:11971208.
97. Schwan, T. G.,, W. Burgdorfer,, and C. F. Garon. 1988. Changes in infectivity and plasmid profile of the Lyme disease spirochete, Borrelia burgdorferi, as a result of in vitro cultivation. Infect. Immun. 56:18311836.
98. Schwan, T. G.,, W. Burgdorfer,, and P. A. Rosa,. 1999. Borrelia, p. 746758. In P. R. Murray,, E. J. Baron,, M. A. Pfaller,, F. C. Tenover,, and R. H. Yolken (ed.), Manual of Clinical Microbiology, 7th ed. ASM Press, Washington, D.C.
99. Sekiguchi, J.,, C. Cheng,, and S. Shuman. 2000. Resolution of a Holliday junction by vaccinia topoisomerase requires a spacer DNA segment 3ñ of the CCCTT cleavage sites. Nucleic Acids Res. 28:26582663.
100. Servin-Gonzalez, L. 1996. Identification and properties of a novel clt locus in the Streptomyces phaeochromogenes plasmid pJV1. J. Bacteriol. 178:43234326.
101. Shahab, N.,, F. Flett,, S. G. Oliver,, and P. R. Butler. 1996. Growth rate control of protein and nucleic acid content in Streptomyces coelicolor A3(2) and Escherichia coli B/r. Microbiology 142(pt. 8):19271935.
102. Shuman, S. 1998. Vaccinia virus DNA topoisomerase: a model eukaryotic type IB enzyme. Biochim. Biophys. Acta 1400:321337.
103. Stahl, F. W. 1967. Circular genetic maps. J. Cell. Physiol. 70:112.
104. Stahl, F. W.,, and C. M. Steinberg. 1964. The theory of formal phage genetics for circular maps. Genetics 50:531538.
105. Stevenson, B.,, S. F. Porcella,, K. L. Oie,, C. A. Fitzpatrick,, S. J. Raffel,, L. Lubke,, M. E. Schrumpf,, and T. G. Schwan. 2000. The relapsing fever spirochete Borrelia hermsii contains multiple, antigen-encoding circular plasmids that are homologous to the cp32 plasmids of Lyme disease spirochetes. Infect. Immun. 68:39003908.
106. Stevenson, B.,, W. R. Zuckert,, and D. R. Akins. 2000. Repetition, conservation, and variation: the multiple cp32 plasmids of Borrelia species. J. Mol. Microbiol. Biotechnol. 2:411422.
107. Stewart, P. E.,, R. Thalken,, J. L. Bono,, and P. Rosa. 2001. Isolation of a circular plasmid region sufficient for autonomous replication and transformation of infectious Borrelia burgdorferi. Mol. Microbiol. 39:714721.
108. Tilly, K.,, J. Fuhrman,, J. Campbell,, and D. S. Samuels. 1996. Isolation of Borrelia burgdorferi genes encoding homologues of DNA-binding protein HU and ribosomal protein S20. Microbiology 142:24712479.
109. Vierling, S.,, T. Weber,, W. Wohlleben,, and G. Muth. 2001. Evidence that an additional mutation is required to tolerate insertional inactivation of the Streptomyces lividans recA gene. J. Bacteriol. 183:43744381.
110. Volff, J. N.,, and J. Altenbuchner. 1998. Genetic instability of the Streptomyces chromosome. Mol. Microbiol. 27:239246.
111. Volff, J. N.,, and J. Altenbuchner. 2000. A new beginning with new ends: linearisation of circular chromosomes during bacterial evolution. FEMS Microbiol. Lett. 186:143150.
112. Wang, S.-J.,, H.-M. Chang,, Y.-S. Lin,, C.-H. Huang,, and C. W. Chen. 1999. Streptomyces genomes: circular genetic maps from the linear chromosomes. Microbiology 145:22092220.
113. Watson, J. D. 1972. Origin of concatemeric T7 DNA. Nat. New Biol. 239:197201.
114. Willems, H.,, C. Jager,, and G. Baljer. 1998. Physical and genetic map of the obligate intracellular bacterium Coxiella burnetii. J. Bacteriol. 180:38163822.
115. Wood, D. W.,, J. C. Setubal,, R. Kaul,, D. E. Monks,, J. P. Kitajima,, V. K. Okura,, Y. Zhou,, L. Chen,, G. E. Wood,, N. F. Almeida, Jr.,, L. Woo,, Y. Chen,, I. T. Paulsen,, J. A. Eisen,, P. D. Karp,, D. Bovee, Sr.,, P. Chapman,, J. Clendenning,, G. Deatherage,, W. Gillet,, C. Grant,, T. Kutyavin,, R. Levy,, M. J. Li,, E. McClelland,, A. Palmieri,, C. Raymond,, G. Rouse,, C. Saenphimmachak,, Z. Wu,, P. Romero,, D. Gordon,, S. Zhang,, H. Yoo,, Y. Tao,, P. Biddle,, M. Jung,, W. Krespan,, M. Perry,, B. Gordon-Kamm,, L. Liao,, S. Kim,, C. Hendrick,, Z. Y. Zhao,, M. Dolan,, F. Chumley,, S. V. Tingey,, J. F. Tomb,, M. P. Gordon,, M. V. Olson,, and E. W. Nester. 2001. The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science 294:23172323.
116. Yang, C.-C.,, C.-H. Huang,, C.-Y. Li,, Y.-G. Tsay,, S.-C. Lee,, and C. W. Chen. 2002. The terminal proteins of linear Streptomyces chromosomes and plasmids: a novel class of replication priming proteins. Mol. Microbiol. 43:297305.
117. Yang, M. C.,, and R. Losick. 2001. Cytological evidence for association of the ends of the linear chromosome in Streptomyces coelicolor. J. Bacteriol. 183:51805186.
118. Zakrzewska-Czerwinska, J.,, D. Jakimowicz,, J. Majka,, W. Messer,, and H. Schrempf. 2000. Initiation of the Streptomyces chromosome replication. Antonie Leeuwenhoek 78:211221.
119. Zakrzewska-Czerwinska, J.,, and H. Schrempf. 1992. Characterization of an autonomously replicating region from the Streptomyces lividans chromosome. J. Bacteriol. 147:26882693.
120. Zechiedrich, E. L.,, and N. R. Cozzarelli. 1995. Roles of topoisomerase IV and DNA gyrase in DNA unlinking during replication in Escherichia coli. Genes Dev. 9:28592869.
121. Zhang, J. R.,, J. M. Hardham,, A. G. Barbour,, and S. J. Norris. 1997. Antigenic variation in Lyme disease borreliae by promiscuous recombination of VMP-like sequence cassettes. Cell 89:275285.
122. Zhu, Q.,, P. Pongpech,, and R. J. DiGate. 2001. Type I topoisomerase activity is required for proper chromosomal segregation in Escherichia coli. Proc. Natl. Acad. Sci. USA 98:97669771.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error