1887

Chapter 13 : Repetitive DNA in the Mycobacterium tuberculosis Complex

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Repetitive DNA in the Mycobacterium tuberculosis Complex, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817657/9781555812959_Chap13-1.gif /docserver/preview/fulltext/10.1128/9781555817657/9781555812959_Chap13-2.gif

Abstract:

Repetitive DNA is universally present in bacterial and eukaryotic genomes, with two major classes usually distinguished: interspersed repeats, such as mobile genetic elements, and tandem repeats (TRs). Although many repetitive-DNA sequences, especially mobile and extragenic elements, were thought to be primarily parasitic, recent work suggests that coadaptations between them and host genomes may occur. This chapter (i) describes different types of sequences, (ii) discusses their relative impacts on genetic variation and related functions, and finally (iii) addresses their exploitation for molecular epidemiology, evolution, and population genetics. It is therefore tempting to speculate that induction of REP13E12 in response to DNA damage may also induce the integrated prophage elements. A range of preferential integration loci for IS6110 have subsequently been identified, including the intergenic dnaA-dnaN region and the RvD2 locus. The genome contains at least four families of repetitive DNA, contributing approximately 2% to the total genome size. The LEPREP sequences are pseudogenes with similarity to transposases and the maturases of class II introns, enzymes that catalyze DNA transposition. It is also possible that mycobacterial interspersed repetitive units (MIRUs) exert no particular function and may therefore be considered as selfish DNA, as suggested for other repeated DNA sequences. Variation of repetitive DNA sequences is key to the molecular epidemiological tools that have had such a dramatic impact on the understanding of population structure and evolution.

Citation: Gordon S, Supply P. 2005. Repetitive DNA in the Mycobacterium tuberculosis Complex, p 191-202. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch13

Key Concept Ranking

Restriction Fragment Length Polymorphism
0.41429895
Mobile Genetic Elements
0.41177955
0.41429895
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Positions of 46 VNTR repeat loci on the H37Rv chromosome. Arabic numbers designate positions in kilobase pairs. Numbers in italics and in plain style correspond to microsatellites (repeat units with a length of 10 bp or less) and minisatellites (repeat units with a length of more than 10 bp), respectively. See the text for references.

Citation: Gordon S, Supply P. 2005. Repetitive DNA in the Mycobacterium tuberculosis Complex, p 191-202. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

IS-mediated deletion mechanism. Two IS elements are shown in the same orientation, flanked by 3-bp DRs. Homologous recombination between the IS elements leads to looping out and deletion of the intervening sequence. The remaining IS element now appears without direct repeats. Homologous recombination between proximal IS elements appears to be a major force in shaping the genomes of the complex.

Citation: Gordon S, Supply P. 2005. Repetitive DNA in the Mycobacterium tuberculosis Complex, p 191-202. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

DNA sequence alignment of orthologous intergenic regions in and H37Rv, indicating the position of the MIRU in the sequence. The sequences of the and genes (and in H37Rv, respectively) and their encoded products are shown. Duplicated nucleotides surrounding the MIRU insertion site are underlined. The stars correspond to stop codons. The “n” symbol indicates the presence of VNTRs in this locus. Translational coupling sites are apparent targets for MIRU insertion. This insertion predictably places the MIRU ORF under translational control of the upstream genes.

Citation: Gordon S, Supply P. 2005. Repetitive DNA in the Mycobacterium tuberculosis Complex, p 191-202. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817657.chap13
1. Adair, D. M.,, P. L. Worsham,, K. K. Hill,, A. M. Klevytska,, P. J. Jackson,, A. M. Friedlander,, and P. Keim. 2000. Diversity in a variable-number tandem repeat from Yersinia pestis. J. Clin. Microbiol. 38: 1516 1519.
2. Alito, A.,, N. Morcillo,, S. Scipioni,, A. Dolmann,, M. I. Romano,, A. Cataldi,, and D. van Soolingen. 1999. The IS 6110 restriction fragment length polymorphism in particular multidrug- resistant Mycobacterium tuberculosis strains may evolve too fast for reliable use in outbreak investigation. J. Clin. Microbiol. 37: 788 791.
3. Bayliss, C. D.,, T. van de Ven,, and E. R. Moxon. 2002. Mutations in polI but not mutSLH destabilize Haemophilus influenzae tetranucleotide repeats. EMBO J. 21: 1465 1476.
4. Benson, G. 1999. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27: 573 580.
5. Bibb, L. A.,, and G. F. Hatfull. 2002. Integration and excision of the Mycobacterium tuberculosis prophage-like element, phiRv1. Mol. Microbiol. 45: 1515 1526.
6. Bifani, P. J.,, B. B. Plikaytis,, V. Kapur,, K. Stockbauer,, X. Pan,, M. L. Lutfey,, S. L. Moghazeh,, W. Eisner,, T. M. Daniel,, M. H. Kaplan,, J. T. Crawford,, J. M. Musser,, and B. N. Kreiswirth. 1996. Origin and interstate spread of a New York City multidrug-resistant Mycobacterium tuberculosis clone family. JAMA 275: 452 457.
7. Britten, R. J.,, and D. E. Kohne. 1968. Repeated sequences in DNA. Hundreds of thousands of copies of DNA sequences have been incorporated into the genomes of higher organisms. Science 161: 529 540.
8. Brodin, P.,, K. Eiglmeier,, M. Marmiesse,, A. Billault,, T. Garnier,, S. Niemann,, S. T. Cole,, and R. Brosch. 2002. Bacterial artificial chromosome-based comparative genomic analysis identifies Mycobacterium microti as a natural ESAT-6 deletion mutant. Infect. Immun. 70: 5568 5578.
9. Brosch, R.,, W. J. Philipp,, E. Stavropoulos,, M. J. Colston,, S. T. Cole,, and S. V. Gordon. 1999. Genomic analysis reveals variation between Mycobacterium tuberculosis H37Rv and the attenuated M. tuberculosis H37Ra strain. Infect. Immun. 67: 5768 5774.
10. Buard, J.,, A. Collick,, J. Brown,, and A. J. Jeffreys. 2000. Somatic versus germline mutation processes at minisatellite CEB1 (D2S90) in humans and transgenic mice. Genomics 65: 95 103.
11. Burgos, M. V.,, and A. S. Pym. 2002. Molecular epidemiology of tuberculosis. Eur. Respir. J. Suppl. 36: 54s 65s.
12. Cave, M. D.,, K. D. Eisenach,, G. Templeton,, M. Salfinger,, G. Mazurek,, J. H. Bates,, and J. T. Crawford. 1994. Stability of DNA fingerprint pattern produced with IS 6110 in strains of Mycobacterium tuberculosis. J. Clin. Microbiol. 32: 262 266.
13. Chanchaem, W.,, and P. Palittapongarnpim. 2002. A variable number of tandem repeats result in polymorphic alphaisopropylmalate synthase in Mycobacterium tuberculosis. Tuberculosis (Edinburgh) 82: 1 6.
14. Chevrel-Dellagi, D.,, A. Abderrahman,, R. Haltiti,, H. Koubaji,, B. Gicquel,, and K. Dellagi. 1993. Large-scale DNA fingerprinting of Mycobacterium tuberculosis strains as a tool for epidemiological studies of tuberculosis. J. Clin. Microbiol. 31: 2446 2450.
15. Cole, S. T.,, P. Supply,, and N. Honore. 2001a. Repetitive sequences in Mycobacterium leprae and their impact on genome plasticity. Lepr. Rev. 72: 449 461.
16. Cole, S. T.,, R. Brosch,, J. Parkhill,, T. Garnier,, C. Churcher,, D. Harris,, S. V. Gordon,, K. Eiglmeier,, S. Gas,, C. E. Barry III,, F. Tekaia,, K. Badcock,, D. Basham,, D. Brown,, T. Chillingworth,, R. Connor,, R. Davies,, K. Devlin,, T. Feltwell,, S. Gentles,, N. Hamlin,, S. Holroyd,, T. Hornsby,, K. Jagels,, A. Krogh,, J. McLean,, S. Moule,, L. Murphy,, K. Oliver,, J. Osborne,, M. A. Quail,, M.-A. Rajandream,, J. Rogers,, S. Rutter,, K. Seeger,, J. Skelton,, R. Squares,, S. Squares,, J. G. Sulston,, K. Taylor,, S. Whitehead,, and B. G. Barrell. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393: 537 544.
17. Cole, S. T.,, K. Eiglmeier,, J. Parkhill,, K. D. James,, N. R. Thomson,, P. R. Wheeler,, N. Honore,, T. Garnier,, C. Churcher,, D. Harris,, K. Mungall,, D. Basham,, D. Brown,, T. Chillingworth,, R. Connor,, R. M. Davies,, K. Devlin,, S. Duthoy,, T. Feltwell,, A. Fraser,, N. Hamlin,, S. Holroyd,, T. Hornsby,, K. Jagels,, C. Lacroix,, J. MacLean,, S. Moule,, L. Murphy,, K. Oliver,, M. A. Quail,, M. A. Rajandream,, K. M. Rutherford,, S. Rutter,, K. Seeger,, S. Simon,, M. Simmonds,, J. Skelton,, R. Squares,, S. Squares,, K. Stevens,, K. Taylor,, S. Whitehead,, J. R. Woodward,, and B. G. Barrell. 2001. Massive gene decay in the leprosy bacillus. Nature 409: 1007 1011.
18. Cowan, L. S.,, and J. T. Crawford. 2002. Genotype analysis of Mycobacterium tuberculosis isolates from a sentinel surveillance population. Emerg. Infect. Dis. 8: 1294 1302.
19. Cowan, L. S.,, L. Mosher,, L. Diem,, J. P. Massey,, and J. T. Crawford. 2002. Variable-number tandem repeat typing of Mycobacterium tuberculosis isolates with low copy numbers of IS 6110 by using mycobacterial interspersed repetitive units. J. Clin. Microbiol. 40: 1592 1602.
20. Cox, R.,, and S. M. Mirkin. 1997. Characteristic enrichment of DNA repeats in different genomes. Proc. Natl. Acad. Sci. USA 94: 5237 5242.
21. Davis, E. O.,, E. M. Dullaghan,, and L. Rand. 2002. Definition of the mycobacterial SOS box and use to identify LexA-regulated genes in Mycobacterium tuberculosis. J. Bacteriol. 184: 3287 3295.
22. de Boer, A. S.,, M. W. Borgdorff,, P. E. de Haas,, N. J. Nagelkerke,, J. D. van Embden,, and D. van Soolingen. 1999. Analysis of rate of change of IS 6110 RFLP patterns of Mycobacterium tuberculosis based on serial patient isolates. J. Infect. Dis. 180: 1238 1244.
23. Ellegren, H. 2000. Heterogeneous mutation processes in human microsatellite DNA sequences. Nat. Genet. 24: 400 402.
24. Fang, Z.,, and K. J. Forbes. 1997. A Mycobacterium tuberculosis IS 6110 preferential locus ( ipl) for insertion into the genome . J. Clin. Microbiol. 35: 479 481.
25. Fang, Z.,, C. Doig,, N. Morrison,, B. Watt,, and K. J. Forbes. 1999. Characterization of IS 1547, a new member of the IS 900 family in the Mycobacterium tuberculosis complex, and its association with IS 6110. J. Bacteriol. 181: 1021 1024.
26. Fang, Z.,, C. Doig,, D. T. Kenna,, N. Smittipat,, P. Palittapongarnpim,, B. Watt,, and K. J. Forbes. 1999. IS 6110-mediated deletions of wild-type chromosomes of Mycobacterium tuberculosis. J. Bacteriol. 181: 1014 1020.
27. Fleischmann, R. D.,, D. Alland,, J. A. Eisen,, L. Carpenter,, O. White,, J. Peterson,, R. DeBoy,, R. Dodson,, M. Gwinn,, D. Haft,, E. Hickey,, J. F. Kolonay,, W. C. Nelson,, L. A. Umayam,, M. Ermolaeva,, S. L. Salzberg,, A. Delcher,, T. Utterback,, J. Weidman,, H. Khouri,, J. Gill,, A. Mikula,, W. Bishai,, W. R. Jacobs, Jr.,, J. C. Venter,, and C. M. Fraser. 2002. Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains. J. Bacteriol. 184: 5479 5490.
28. Frothingham, R.,, and W. A. Meeker-O’Connell. 1998. Genetic diversity in the Mycobacterium tuberculosis complex based on variable numbers of tandem DNA repeats. Microbiology 144: 1189 1196.
29. Garnier, T.,, K. Eiglmeier,, J. C. Camus,, N. Medina,, H. Mansoor,, M. Pryor,, S. Duthoy,, S. Grondin,, C. Lacroix,, C. Monsempe,, S. Simon,, B. Harris,, R. Atkin,, J. Doggett,, R. Mayes,, L. Keating,, P. R. Wheeler,, J. Parkhill,, B. G. Barrell,, S. T. Cole,, S. V. Gordon,, and R. G. Hewinson. 2003. The complete genome sequence of Mycobacterium bovis. Proc. Natl. Acad. Sci. USA 100: 7877 7882.
30. Gilson, E.,, D. Perrin,, W. Saurin,, and M. Hofnung. 1987. Species specificity of bacterial palindromic units. J. Mol. Evol. 25: 371 373.
31. Gordon, S. V.,, B. Heym,, J. Parkhill,, B. Barrell,, and S. T. Cole. 1999. New insertion sequences and a novel repeated sequence in the genome of Mycobacterium tuberculosis H37Rv. Microbiology 145: 881 892.
32. Gordon, S. V.,, R. Brosch,, A. Billault,, T. Garnier,, K. Eiglmeier,, and S. T. Cole. 1999. Identification of variable regions in the genomes of tubercle bacilli using bacterial artificial chromosome arrays. Mol. Microbiol. 32: 643 655.
33. Goyal, M.,, D. Young,, Y. Zhang,, P. A. Jenkins,, and R. J. Shaw. 1994. PCR amplification of variable sequence upstream of katG gene to subdivide strains of Mycobacterium tuberculosis complex. J. Clin. Microbiol. 32: 3070 3071.
34. Hermans, P. W.,, D. van Soolingen,, and J. D. van Embden. 1992. Characterization of a major polymorphic tandem repeat in Mycobacterium tuberculosis and its potential use in the epidemiology of Mycobacterium kansasii and Mycobacterium gordonae. J. Bacteriol. 174: 4157 4165.
35. Higgins, C. F.,, R. S. McLaren,, and S. F. Newbury. 1988. Repetitive extragenic palindromic sequences, mRNA stability and gene expression: evolution by gene conversion? A review. Gene 72: 3 14.
36. Ho, T. B.,, B. D. Robertson,, G. M. Taylor,, R. J. Shaw,, and D. B. Young. 2000. Comparison of Mycobacterium tuberculosis genomes reveals frequent deletions in a 20 kb variable region in clinical isolates. Yeast 17: 272 282.
37. Hood, D. W.,, M. E. Deadman,, M. P. Jennings,, M. Bisercic,, R. D. Fleischmann,, J. C. Venter,, and E. R. Moxon. 1996. DNA repeats identify novel virulence genes in Haemophilus influenzae. Proc. Natl. Acad. Sci. USA 93: 11121 11125.
38. Jansen, R.,, J. D. van Embden,, W. Gaastra,, and L. M. Schouls. ( 2002 ). Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol. 43: 1565 1575.
39. Kamerbeek, J.,, L. Schouls,, A. Kolk,, M. van Agterveld,, D. van Soolingen,, S. Kuijper,, A. Bunschoten,, H. Molhuizen,, R. Shaw,, M. Goyal,, and J. van Embden. ( 1997 ). Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J. Clin. Microbiol. 35: 907 914.
40. Keim, P.,, L. B. Price,, A. M. Klevytska,, K. L. Smith,, J. M. Schupp,, R. Okinaka,, P. J. Jackson,, and M. E. Hugh-Jones. 2000. Multiple-locus variable-number tandem repeat analysis reveals genetic relationships within Bacillus anthracis. J. Bacteriol. 182: 2928 2936.
41. Kidwell, M. G.,, and D. Lisch. 1997. Transposable elements as sources of variation in animals and plants. Proc. Natl. Acad. Sci. USA 94: 7704 7711.
42. Klevytska, A. M.,, L. B. Price,, J. M. Schupp,, P. L. Worsham,, J. Wong,, and P. Keim. 2001. Identification and characterization of variable-number tandem repeats in the Yersinia pestis genome. J. Clin. Microbiol. 39: 3179 3185.
43. Kremer, K.,, D. van Soolingen,, R. Frothingham,, W. H. Haas,, P. W. Hermans,, C. Martin,, P. Palittapongarnpim,, B. B. Plikaytis,, L. W. Riley,, M. A. Yakrus,, J. M. Musser,, and J. D. van Embden. 1999. Comparison of methods based on different molecular epidemiological markers for typing of Mycobacterium tuberculosis complex strains: interlaboratory study of discriminatory power and reproducibility. J. Clin. Microbiol. 37: 2607 2618.
44. Kurepina, N. E.,, S. Sreevatsan,, B. B. Plikaytis,, P. J. Bifani,, N. D. Connell,, R. J. Donnelly,, D. van Soolingen,, J. M. Musser,, and B. N. Kreiswirth. 1998. Characterization of the phylogenetic distribution and chrmosomal insertion sites of five IS 6110 elements in Mycobacterium tuberculois: non-random integration in the dnaA-dnaN region. Tubercle Lung Dis. 79: 31 42.
45. , A.,, R. Schiro,, L. S. Cowan,, N. E. Hyslop,, M. F. Wiser,, S. Roahen Harrison,, P. Kissinger,, L. Diem,, and J. T. Crawford. 2003. Evaluation of the epidemiologic utility of secondary typing methods for differentiation of Mycobacterium tuberculosis isolates. J. Clin. Microbiol. 41: 2683 2685.
46. Le Dantec, C.,, N. Winter,, B. Gicquel,, V. Vincent,, and M. Picardeau. 2001. Genomic sequence and transcriptional analysis of a 23-kilobase mycobacterial linear plasmid: evidence for horizontal transfer and identification of plasmid maintenance systems. J. Bacteriol. 183: 2157 2164.
47. Le Fleche, P.,, Y. Hauck,, L. Onteniente,, A. Prieur,, F. Denoeud,, V. Ramisse,, P. Sylvestre,, G. Benson,, F. Ramisse,, and G. Vergnaud. 2001. A tandem repeats database for bacterial genomes: application to the genotyping of Yersinia pestis and Bacillus anthracis. BMC Microbiol 1: 2.
48. Le Fleche, P.,, M. Fabre,, F. Denoeud,, J. L. Koeck,, and G. Vergnaud. ( 2002). High resolution, on-line identification of strains from the Mycobacterium tuberculosis complex based on tandem repeat typing. BMC Microbiol. 2: 37.
49. Lopes, J.,, H. Debrauwere,, J. Buard,, and A. Nicolas. 2002. Instability of the human minisatellite CEB1 in rad27? and dna2-1 replication-deficient yeast cells. EMBO J. 21: 3201 3211.
50. Magdalena, J.,, P. Supply,, and C. Locht. 1998. Specific differentiation between Mycobacterium bovis BCG and virulent strains of the Mycobacterium tuberculosis complex. J. Clin. Microbiol. 36: 2471 2476.
51. Mahairas, G. G.,, P. J. Sabo,, M. J. Hickey,, D. C. Singh,, and C. K. Stover. 1996. Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J. Bacteriol. 178: 1274 1282.
52. Mahillon, J.,, and M. Chandler. 1998. Insertion sequences. Microbiol. Mol. Biol. Rev. 62: 725 774.
53. Mazars, E.,, S. Lesjean,, A. L. Banuls,, M. Gilbert,, V. Vincent,, B. Gicquel,, M. Tibayrenc,, C. Locht,, and P. Supply. 2001. High-resolution minisatellite-based typing as a portable approach to global analysis of Mycobacterium tuberculosis molecular epidemiology. Proc. Natl. Acad. Sci. USA 98: 1901 1906.
54. McCarthy, J. E.,, and C. Gualerzi. 1990. Translational control of prokaryotic gene expression. Trends Genet. 6: 78 85.
55. McFadden, J.,, and G. Knowles. 1997. Escape from evolutionary stasis by transposon-mediated deleterious mutations. J. Theor. Biol. 186: 441 447.
56. Mizrahi, V.,, and S. J. Andersen. 1998. DNA repair in Mycobacterium tuberculosis. What have we learnt from the genome sequence? Mol. Microbiol. 29: 1331 1339.
57. Mojica, F. J.,, C. Diez-Villasenor,, E. Soria,, and G. Juez. 2000. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol. Microbiol. 36: 244 246.
58. Moxon, E. R.,, P. B. Rainey,, M. A. Nowak,, and R. E. Lenski. 1994. Adaptive evolution of highly mutable loci in pathogenic bacteria. Curr. Biol. 4: 24 33.
59. Murray, M.,, and E. Nardell. 2002. Molecular epidemiology of tuberculosis: achievements and challenges to current knowledge. Bull. W. H. O. 80: 477 482.
60. Nadir, E.,, H. Margalit,, T. Gallily,, and S. A. Ben-Sasson. 1996. Microsatellite spreading in the human genome: evolutionary mechanisms and structural implications. Proc. Natl. Acad. Sci. USA 93: 6470 6475.
61. Nakamura, Y.,, M. Leppert,, P. O’Connell,, R. Wolff,, T. Holm,, M. Culver,, C. Martin,, E. Fujimoto,, M. Hoff,, E. Kumlin, et al. 1987. Variable number of tandem repeat (VNTR) markers for human gene mapping. Science 235: 1616 1622.
62. Namwat, W.,, P. Luangsuk,, and P. Palittapongarnpim. 1998. The genetic diversity of Mycobacterium tuberculosis strains in Thailand studied by amplification of DNA segments containing direct repetitive sequences. Int. J. Tuberc. Lung Dis. 2: 153 159.
63. Nowak, R. 1994. Mining treasures from “junk DNA.” Science 263: 608 610.
64. Ogata, H.,, S. Audic,, V. Barbe,, F. Artiguenave,, P. E. Fournier,, D. Raoult,, and J. M. Claverie. 2000. Selfish DNA in proteincoding genes of Rickettsia. Science 290: 347 350.
65. Peak, I. R.,, M. P. Jennings,, D. W. Hood,, M. Bisercic,, and E. R. Moxon. 1996. Tetrameric repeat units associated with virulence factor phase variation in Haemophilus also occur in Neisseria spp. and Moraxella catarrhalis. FEMS Microbiol. Lett. 137: 109 114.
66. Philipp, W. J.,, S. Poulet,, K. Eiglmeier,, L. Pascopella,, V. Balasubramanian,, B. Heym,, S. Bergh,, B. R. Bloom,, W. R. Jacobs, Jr., and S. T. Cole. 1996. An integrated map of the genome of the tubercle bacillus, Mycobacterium tuberculosis H37Rv, and comparison with Mycobacterium leprae. Proc. Natl. Acad. Sci. USA 93: 3132 3137.
67. Poulet, S.,, and S. T. Cole. 1995. Characterization of the highly abundant polymorphic GC-rich-repetitive sequence (PGRS) present in Mycobacterium tuberculosis. Arch. Microbiol. 163: 87 95.
68. Pym, A. S.,, P. Brodin,, R. Brosch,, M. Huerre,, and S. T. Cole. 2002. Loss of RD1 contributed to the attenuation of the live tuberculosis vaccines Mycobacterium bovis BCG and Mycobacterium microti. Mol. Microbiol. 46: 709 717.
69. Roring, S.,, A. Scott,, D. Brittain,, I. Walker,, G. Hewinson,, S. Neill,, and R. Skuce. 2002. Development of variable-number tandem repeat typing of Mycobacterium bovis: comparison of results with those obtained by using existing exact tandem repeats and spoligotyping . J. Clin. Microbiol. 40: 2126 2133.
70. Ross, B. C.,, K. Raios,, K. Jackson,, and B. Dwyer. 1992. Molecular cloning of a highly repeated DNA element from Mycobacterium tuberculosis and its use as an epidemiological tool. J. Clin. Microbiol. 30: 942 946.
71. Sampson, S.,, R. Warren,, M. Richardson,, G. van de rSpuy,, and P. van Helden. 2001. IS 6110 insertions in Mycobacterium tuberculosis: predominantly into coding regions. J. Clin. Microbiol. 39: 3423 3424.
72. Sampson, S. L.,, R. M. Warren,, M. Richardson,, T. C. Victor,, A. M. Jordaan,, G. D. van der Spuy,, and P. D. van Helden. 2003. IS 6110-mediated deletion polymorphism in the direct repeat region of clinical isolates of Mycobacterium tuberculosis. J. Bacteriol. 185: 2856 2866.
73. Savine, E.,, R. M. Warren,, G. D. van der Spuy,, N. Beyers,, P. D. van Helden,, C. Locht,, and P. Supply. 2002. Stability of variable- number tandem repeats of mycobacterial interspersed repetitive units from 12 loci in serial isolates of Mycobacterium tuberculosis. J. Clin. Microbiol. 40: 4561 4566.
74. Siddiqi, N.,, M. Shamim,, A. Amin,, D. S. Chauhan,, R. Das,, K. Srivastava,, D. Singh,, V. D. Sharma,, V. M. Katoch,, S. K. Sharma,, M. Hanief,, and S. E. Hasnain. 2001. Typing of drug resistant isolates of Mycobacterium tuberculosis from India using the IS 6110 element reveals substantive polymorphism. Infect. Genet. Evol. 1: 109 116.
75. Skuce, R. A.,, T. P. McCorry,, J. F. McCarroll,, S. M. Roring,, A. N. Scott,, D. Brittain,, S. L. Hughes,, R. G. Hewinson,, and S. D. Neill. 2002. Discrimination of Mycobacterium tuberculosis complex bacteria using novel VNTR-PCR targets. Microbiology 148: 519 528.
76. Smittipat, N.,, and P. Palittapongarnpim. 2000. Identification of possible loci of variable number of tandem repeats in Mycobacterium tuberculosis. Tubercle Lung Dis. 80: 69 74.
77. Spurgiesz, R. C.,, T. N. Quitugua,, K. L. Smith,, J. Schupp,, E. G. Palmer,, R. A. Cox,, and P. Kiem. 2003. Molecular typing of Mycobacterium tuberculosis by using nine novel variablenumber tandem repeats across the Beijing family and lowcopy-number IS 6110 isolates. J. Clin. Microbiol. 41: 4224 4230.
78. Sreevatsan, S.,, X. Pan,, K. E. Stockbauer,, N. D. Connell,, B. N. Kreiswirth,, T. S. Whittam,, and J. M. Musser. 1997. Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination. Proc. Natl. Acad. Sci. USA 94: 9869 9874.
79. Supply, P.,, J. Magdalena,, S. Himpens,, and C. Locht. ( 1997 ). Identification of novel intergenic repetitive units in a mycobacterial two-component system operon. Mol. Microbiol. 26: 991 1003.
80. Supply, P.,, E. Mazars,, S. Lesjean,, V. Vincent,, B. Gicquel,, and C. Locht. 2000. Variable human minisatellite-like regions in the Mycobacterium tuberculosis genome. Mol. Microbiol. 36: 762 771.
81. Supply, P.,, S. Lesjean,, E. Savine,, K. Kremer,, D. van Soolingen,, and C. Locht. 2001. Automated high-throughput genotyping for study of global epidemiology of Mycobacterium tuberculosis based on mycobacterial interspersed repetitive units. J. Clin. Microbiol. 39: 3563 3571.
82. Supply, P.,, R. M. Warren,, A. L. Banuls,, S. Lesjean,, G. D. Van Der Spuy,, L. A. Lewis,, M. Tibayrenc,, P. D. Van Helden,, and C. Locht. 2003. Linkage disequilibrium between minisatellite loci supports clonal evolution of Mycobacterium tuberculosis in a high tuberculosis incidence area. Mol. Microbiol. 47: 529 538.
83. Tautz, D.,, and M. Renz. 1984. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res. 12: 4127 4138.
84. Tautz, D.,, and C. Schlotterer. 1994. Simple sequences. Curr. Opin. Genet. Dev. 4: 832 837.
85. Tekaia, F.,, S. V. Gordon,, T. Garnier,, R. Brosch,, B. G. Barrell,, S. T. Cole. 1999. Analysis of the proteome of Mycobacterium tuberculosis in silico. Tubercle Lung Dis. 79: 329 342.
86. Thierry, D.,, A. Brisson-Noel,, V. Vincent-Levy-Frebault,, S. Nguyen,, J. L. Guesdon,, and B. Gicquel. 1990. Characterization of a Mycobacterium tuberculosis insertion sequence, IS 6110, and its application in diagnosis. J. Clin. Microbiol. 28: 2668 2673.
87. van Belkum, A.,, S. Scherer,, L. van Alphen,, and H. Verbrugh. 1998. Short-sequence DNA repeats in prokaryotic genomes. Microbiol. Mol. Biol. Rev. 62: 275 293.
88. van Belkum, A.,, S. Scherer,, W. van Leeuwen,, D. Willemse,, L. van Alphen,, and H. Verbrugh. 1997. Variable number of tandem repeats in clinical strains of Haemophilus influenzae. Infect. Immun. 65: 5017 5027.
89. Van Soolingen, D. 2001. Molecular epidemiology of tuberculosis and other mycobacterial infections: main methodologies and achievements. J. Intern. Med. 249: 1 26.
90. van Soolingen, D.,, L. Qian,, P. E. de Haas,, J. T. Douglas,, H. Traore,, F. Portaels,, H. Z. Qing,, D. Enkhsaikan,, P. Nymadawa,, and J. D. van Embden. 1995. Predominance of a single genotype of Mycobacterium tuberculosis in countries of east Asia. J. Clin. Microbiol. 33: 3234 3238.
91. Wall, S.,, K. Ghanekar,, J. McFadden,, and J. W. Dale. 1999. Context-sensitive transposition of IS 6110 in mycobacteria. Microbiology 145: 3169 3176.
92. Warren, R. M.,, S. L. Sampson,, M. Richardson,, G. D. Van Der Spuy,, C. J. Lombard,, T. C. Victor,, and P. D. van Helden. 2000. Mapping of IS 6110 flanking regions in clinical isolates of Mycobacterium tuberculosis demonstrates genome plasticity. Mol. Microbiol. 37: 1405 1416.
93. Weiser, J. N.,, J. M. Love,, and E. R. Moxon. 1989. The molecular mechanism of phase variation of H. influenzae lipopolysaccharide. Cell 59: 657 665.
94. Yeramian, E.,, and H. Buc. 1999. Tandem repeats in complete bacterial genome sequences: sequence and structural analyses for comparative studies. Res. Microbiol. 150: 745 754.
95. Zhang, Y.,, and D. Young. 1994. Strain variation in the katG region of Mycobacterium tuberculosis. Mol. Microbiol. 14: 301 308.

Tables

Generic image for table
Table 1

IS elements in H37Rv

Citation: Gordon S, Supply P. 2005. Repetitive DNA in the Mycobacterium tuberculosis Complex, p 191-202. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch13

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error