1887

Chapter 14 : Mycobacteriophages and Tuberculosis

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Mycobacteriophages and Tuberculosis, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817657/9781555812959_Chap14-1.gif /docserver/preview/fulltext/10.1128/9781555817657/9781555812959_Chap14-2.gif

Abstract:

This chapter focuses on a discussion of recent developments in mycobacteriophage research with an emphasis on how these have advanced one’s understanding of tuberculosis. Mycobacteriophages have been isolated from rather exotic locations, such as the zebra pits at the Bronx zoo and the grounds of the tuberculosis hospital in Chennai, but they can be isolated from most soil and compost samples. The overall diversity of the mycobacteriophage population can also be examined by assessing the proportion of gene products that are unique and do not match any other mycobacteriophage genes. It is sometimes stated that the average genome size for double-stranded DNA (dsDNA) tailed phages is about 50 kbp, perhaps based largely on the well characterized and much utilized phage lambda. One of the most evident features of the mycobacteriophage genomes is their pervasive mosaicism, a common feature of phage genomes. This mosaicism is found in other phage genomes but is particularly pervasive in the mycobacteriophages; it is notable in that the mosaic elements are frequently single genes rather than large sets of genes. Examination of mycobacteriophage tape measure protein (Tmp) reveals the presence of small sequence motifs that are related to proteins. Investigators may be discouraged from using phage-based delivery tools for mycobacterial genetics due to the perceived complexity of constructing the necessary recombinant phages.

Citation: Hatfull G. 2005. Mycobacteriophages and Tuberculosis, p 203-218. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch14

Key Concept Ranking

DNA Polymerase I
0.48821098
Nitric Oxide Synthase
0.4350625
0.48821098
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Mycobacteriophage morphologies. Three distinct types of mycobacteriophage virions morphologies are shown. Che9c and Rosebush are members of the and have long, flexible tails but differently shaped heads. Most mycobacteriophages have isometric heads like Rosebush, whereas phages Che9c and Corndog (not shown) have prolate heads. Bxz1 is a member of the and has a somewhat larger head than Rosebush and a contractile tail.

Citation: Hatfull G. 2005. Mycobacteriophages and Tuberculosis, p 203-218. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Mosaicism in mycobacteriophage genomes. A segment of the Omega genome coding genes to is shown with homologues found in other mycobacteriophages indicated. Six of the genes (, , , , and ) have no homologues. Omega gp163 and gp164 are a Clp protease and a DinG helicase, respectively, as shown, but the functions of the other genes are not known. The genome is characteristically mosaic, with individual genes representing modules that are present in other phage genomes.

Citation: Hatfull G. 2005. Mycobacteriophages and Tuberculosis, p 203-218. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Rosebush genes involved in tetrahydrobiopterin biosynthesis. Rosebush genes to are located immediately to the left of the structural genes, with gene encoding a putative terminase. Genes , , and are of unknown function, and the functions of genes to are indicated. Rosebush gp4 and gp6 are involved in the biochemical pathway (shown below the diagram), which converts GTP to the cofactor 6(R)-5,6,7,8-tetrahydrobiopterin, an essential cofactor for nitric oxide synthase.

Citation: Hatfull G. 2005. Mycobacteriophages and Tuberculosis, p 203-218. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817657.chap14
1. Aldovini, A.,, R. N. Husson,, and R. A. Young. 1993. The uraA locus and homologous recombination in Mycobacterium bovis BCG. J. Bacteriol. 175:72827289.
2. Banaiee, N.,, M. Bobadilla-Del-Valle,, S. Bardarov, Jr.,, P. F. Riska,, P. M. Small,, A. Ponce-De-Leon,, W. R. Jacobs, Jr.,, G. F. Hatfull,, and J. Sifuentes-Osornio. 2001. Luciferase reporter mycobacteriophages for detection, identification, and antibi-otic susceptibility testing of Mycobacterium tuberculosis in Mexico. J. Clin. Microbiol. 39:38833888.
3. Banaiee, N.,, M. Bobadilla-del-Valle,, P. F. Riska,, S. Bardarov, Jr.,, P. M. Small,, A. Ponce-de-Leon,, W. R. Jacobs, Jr.,, G. F. Hatfull,, and J. Sifuentes-Osornio. 2003. Rapid identification and susceptibility testing of Mycobacterium tuberculosis from MGIT cultures with luciferase reporter mycobacteriophages. J. Med. Microbiol. 52:557561.
4. Bardarov, S.,, S. Bardarov, Jr.,, M. S. Pavelka, Jr.,, V. Sambandamurthy,, M. Larsen,, J. Tufariello,, J. Chan,, G. Hatfull,, and W. R. Jacobs, Jr. 2002. Specialized transduction: an efficient method for generating marked and unmarked targeted gene disruptions in Mycobacterium tuberculosis, M. bovis BCG and M. smegmatis. Microbiology 148:30073017.
5. Bardarov, S.,, J. Kriakov,, C. Carriere,, S. Yu,, C. Vaamonde,, R. A. McAdam,, B. R. Bloom,, G. F. Hatfull,, and W. R. JacobsJr., 1997. Conditionally replicating mycobacteriophages: a system for transposon delivery to Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 94:1096110966.
6. Barsom, E. K.,, and G. F. Hatfull. 1996. Characterization of Mycobacterium smegmatis gene that confers resistance to phages L5 and D29 when overexpressed. Mol. Microbiol. 21:159170.
7. Bertani, G. 1999. Transduction-like gene transfer in the methanogen Methanococcus voltae. J. Bacteriol. 181:29923002.
8. Bibb, L. A.,, and G. F. Hatfull. 2002. Integration and excision of the Mycobacterium tuberculosis prophage-like element, phiRv1. Mol. Microbiol. 45:15151526.
9. Bisso, G.,, G. Castelnuovo,, M. G. Nardelli,, G. Orefici,, G. Arancia,, G. Laneelle,, C. Asselineau,, and J. Asselineau. 1976. A study on the receptor for a mycobacteriophage : phage phlei. Biochimie 58:8797.
10. Brown, K. L.,, G. J. Sarkis,, C. Wadsworth,, and G. F. Hatfull. 1997. Transcriptional silencing by the mycobacteriophage L5 repressor. EMBO J. 16:59145921.
11. Brussow, H. 2001. Phages of dairy bacteria. Annu. Rev. Microbiol. 55:283303.
12. Brussow, H.,, and R. W. Hendrix. 2002. Phage genomics: small is beautiful. Cell 108:1316.
13. Chen, X.,, A. M. Quinn,, and S. L. Wolin. 2000. Ro ribonucleoproteins contribute to the resistance of Deinococcus radiodurans to ultraviolet irradiation. Genes Dev. 14:777782.
14. Clark, A. J.,, W. Inwood,, T. Cloutier,, and T. S. Dhillon. 2001. Nucleotide sequence of coliphage HK620 and the evolution of lambdoid phages. J. Mol. Biol. 311:657679.
15. Cole, S. T.,, R. Brosch,, J. Parkhill,, T. Garnier,, C. Churcher,, D. Harris,, S. V. Gordon,, K. Eiglmeier,, S. Gas,, C. E. Barry III,, F. Tekaia,, K. Badcock,, D. Basham,, D. Brown,, T. Chillingworth,, R. Connor,, R. Davies,, K. Devlin,, T. Feltwell,, S. Gentles,, N. Hamlin,, S. Holroyd,, T. Hornsby,, K. Jagels,, A. Krogh,, J. McLean,, S. Moule,, L. Murphy,, K. Oliver,, J. Osborne,, M. A. Quail,, M.-A. Rajandream,, J. Rogers,, S. Rutter,, K. Seeger,, J. Skelton,, R. Squares,, S. Squares,, J. E. Sulston,, K. Taylor,, S. Whitehead,, and B. G. Barrell. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537544.
16. Donnelly-Wu, M. K.,, W. R. Jacobs, Jr.,, and G. F. Hatfull. 1993. Superinfection immunity of mycobacteriophage L5: applications for genetic transformation of mycobacteria. Mol. Microbiol. 7:407417.
17. Eiserling, F.,, A. Pushkin,, M. Gingery,, and G. Bertani. 1999. Bacteriophage-like particles associated with the gene transfer agent of Methanococcus voltae PS. J. Gen. Virol. 80:3305 3308.
18. Eltringham, I. J.,, S. M. Wilson,, and F. A. Drobniewski. 1999. Evaluation of a bacteriophage-based assay (phage amplified biologically assay) as a rapid screen for resistance to isoniazid, ethambutol, streptomycin, pyrazinamide, and ciprofloxacin among clinical isolates of Mycobacterium tuberculosis. J. Clin. Microbiol. 37:35283532.
19. Engel, H. W. 1978. Mycobacteriophages and phage typing. Ann. Microbiol. (Paris) 129:7590.
20. Espinal, M. A. 2003. The global situation of MDR-TB. Tuberculosis (Edinburgh) 83:4451.
21. Fleischmann, R. D.,, D. Alland,, J. A. Eisen,, L. Carpenter,, O. White,, J. Peterson,, R. DeBoy,, R. Dodson,, M. Gwinn,, D. Haft,, E. Hickey,, J. F. Kolonay,, W. C. Nelson,, L. A. Umayam,, M. Ermolaeva,, S. L. Salzberg,, A. Delcher,, T. Utterback,, J. Weidman,, H. Khouri,, J. Gill,, A. Mikula,, W. Bishai,, W. R. Jacobs, Jr.,, J. C. Venter,, and C. M. Fraser. 2002. Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains. J. Bacteriol. 184:54795490.
22. Foley-Thomas, E. M.,, D. L. Whipple,, L. E. Bermudez,, and R. G. Barletta. 1995. Phage infection, transfection and transformation of Mycobacterium avium complex and Mycobacterium paratuberculosis. Microbiology 141:11731181.
23. Ford, M. E.,, G. J. Sarkis,, A. E. Belanger,, R. W. Hendrix,, and G. F. Hatfull. 1998. Genome structure of mycobacteriophage D29: implications for phage evolution. J. Mol. Biol. 279:143164.
24. Ford, M. E.,, C. Stenstrom,, R. W. Hendrix,, and G. F. Hatfull. 1998. Mycobacteriophage TM4: genome structure and gene expression. Tubercle Lung Dis. 79:6373.
25. Freitas-Vieira, A.,, E. Anes,, and J. Moniz-Pereira. 1998. The site-specific recombination locus of mycobacteriophage Ms6 determines DNA integration at the tRNA(Ala) gene of Mycobacterium spp. Microbiology 144:33973406.
26. Furuchi, A.,, and T. Tokunaga. 1972. Nature of the receptor substance of Mycobacterium smegmatis for D4 bacteriophage adsorption. J. Bacteriol. 111:404411.
27. Garcia, M.,, M. Pimentel,, and J. Moniz-Pereira. 2002. Expression of Mycobacteriophage Ms6 lysis genes is driven by two sigma(70)-like promoters and is dependent on a transcription termination signal present in the leader RNA. J. Bacteriol. 184:30343043.
28. Good, R. C.,, and T. D. Mastro. 1989. The modern mycobacteriology laboratory. How it can help the clinician. Clin. Chest Med. 10:315322.
29. Haeseleer, F.,, J. F. Pollet,, A. Bollen,, and P. Jacobs. 1992. Molecular cloning and sequencing of the attachment site and integrase gene of the temperate mycobacteriophage FRAT1. Nucleic Acids Res. 20:1420.
30. Harley, J. B.,, R. H. Scofield,, and M. Reichlin. 1992. Anti-Ro in Sjogren’s syndrome and systemic lupus erythematosus. Rheum. Dis. Clin. North Am. 18:337358.
31. Hatfull, G. F., 2000. Molecular genetics of mycobacteriophages, p. 3754. In G. F. Hatfull, and W. R. Jacobs, Jr. (ed.), Molecular Genetics of the Mycobacteria. ASM Press, Washington, D.C..
32. Hatfull, G. F., 1999. Mycobacteriophages, p. 3858. In C. Ratledge, and J. Dale (ed.), Mycobacteria: Molecular Biology and Virulence. Chapman and Hall, London, United Kindom.
33. Hatfull, G. F.,, and W. R. Jacobs, Jr., 1994. Mycobacteriophages: cornerstones of mycobacterial research, p. 165183. In B. R. Bloom (ed.), Tuberculosis: Pathogenesis, Protection, and Control. ASM Press, Washington, D.C..
34. Hatfull, G. F.,, and G. J. Sarkis. 1993. DNA sequence, structure and gene expression of mycobacteriophage L5: a phage system for mycobacterial genetics. Mol. Microbiol. 7:395405.
35. Hendrix, R. W.,, M. C. Smith,, R. N. Burns,, M. E. Ford,, and G. F. Hatfull. 1999. Evolutionary relationships among diverse bacteriophages and prophages: all the world’s a phage. Proc. Natl. Acad. Sci. USA 96:21922197.
36. Highton, P. J.,, Y. Chang,, and R. J. Myers. 1990. Evidence for the exchange of segments between genomes during the evolution of lambdoid bacteriophages. Mol. Microbiol. 4:13291340.
37. Humphrey, S. B.,, T. B. Stanton,, and N. S. Jensen. 1995. Mitomycin C induction of bacteriophages from Serpulina hyodysenteriae and Serpulina innocens. FEMS Microbiol. Lett. 134:97101.
38. Humphrey, S. B.,, T. B. Stanton,, N. S. Jensen,, and R. L. Zuerner. 1997. Purification and characterization of VSH-1, a generalized transducing bacteriophage of Serpulina hyodysenteriae. J. Bacteriol. 179:323329.
39. Jacobs, W. R., Jr.,, R. G. Barletta,, R. Udani,, J. Chan,, G. Kalkut,, G. Sosne,, T. Kieser,, G. J. Sarkis,, G. F. Hatfull,, and B. R. Bloom. 1993. Rapid assessment of drug susceptibilities of Mycobacterium tuberculosis by means of luciferase reporter phages. Science 260:819822.
40. Jacobs, W. R., Jr.,, S. B. Snapper,, L. Lugosi,, A. Jekkel,, R. E. Melton,, T. Kieser,, and B. R. Bloom. 1989. Development of genetic systems for the mycobacteria. Acta Leprol. 7:203207.
41. Jacobs, W. R., Jr.,, S. B. Snapper,, M. Tuckman,, and B. R. Bloom. 1989. Mycobacteriophage vector systems. Rev. Infect. Dis. 11(Suppl. 2):S404S410.
42. Jacobs, W. R., Jr.,, M. Tuckman,, and B. R. Bloom. 1987. Introduction of foreign DNA into mycobacteria using a shuttle phasmid. Nature 327:532535.
43. Jain, S.,, and G. F. Hatfull. 2000. Transcriptional regulation and immunity in mycobacteriophage Bxb1. Mol. Microbiol. 38:971985.
44. Jones, W. D., Jr. 1988. Bacteriophage typing of Mycobacterium tuberculosis cultures from incidents of suspected laboratory cross-contamination. Tubercle 69:4366.
45. Juhala, R. J.,, M. E. Ford,, R. L. Duda,, A. Youlton,, G. F. Hatfull,, and R. W. Hendrix. 2000. Genomic sequences of bacteriophages HK97 and HK022: pervasive genetic mosaicism in the lambdoid bacteriophages. J. Mol. Biol. 299:2751.
46. Kalpana, G. V.,, B. R. Bloom,, and W. R. Jacobs, Jr. 1991. Insertional mutagenesis and illegitimate recombination in mycobacteria. Proc. Natl. Acad. Sci. USA 88:54335437.
47. Katsura, I.,, and R. W. Hendrix. 1984. Length determination in bacteriophage lambda tails. Cell 39:691698.
48. Kell, D. B.,, and M. Young. 2000. Bacterial dormancy and culturability: the role of autocrine growth factors. Curr. Opin. Microbiol. 3:238243.
49. Khoo, K. H.,, R. Suzuki,, A. Dell,, H. R. Morris,, M. R. McNeil,, P. J. Brennan,, and G. S. Besra. 1996. Chemistry of the lyxosecontaining mycobacteriophage receptors of Mycobacterium phlei/Mycobacterium smegmatis. Biochemistry 35:1181211819.
50. Kim, A.,, P. Ghosh,, M. A. Aaron,, L. A. Bibb,, S. Jain,, and G. F. Hatfull. 2003. Mycobacteriophage Bxb1 integrates into the Mycobacterium smegmatis groEL1 gene. Mol. Microbiol. 50:463473.
51. Laal, S.,, Y. D. Sharma,, H. K. Prasad,, A. Murtaza,, S. Singh,, S. Tangri,, R. S. Misra,, and I. Nath. 1991. Recombinant fusion protein identified by lepromatous sera mimics native Mycobacterium leprae in T-cell responses across the leprosy spectrum. Proc. Natl. Acad. Sci. USA 88:10541058.
52. Labbe, J. C.,, J. Burgess,, L. A. Rokeach,, and S. Hekimi. 2000. ROP-1, an RNA quality-control pathway component, affects Caenorhabditis elegans dauer formation. Proc. Natl. Acad. Sci. USA 97:1323313238.
53. Lang, A. S.,, and J. T. Beatty. 2000. Genetic analysis of a bacterial genetic exchange element: the gene transfer agent of Rhodobacter capsulatus. Proc. Natl. Acad. Sci. USA 97:859864.
54. Lawrence, J. G.,, G. F. Hatfull,, and R. W. Hendrix. 2002. Imbroglios of viral taxonomy: genetic exchange and failings of phenetic approaches. J. Bacteriol. 184:48914905.
55. Lawrence, J. G.,, R. W. Hendrix,, and S. Casjens. 2001. Where are the pseudogenes in bacterial genomes? Trends Microbiol. 9:535540.
56. Lee, M. H.,, L. Pascopella,, W. R. Jacobs, Jr.,, and G. F. Hatfull. 1991. Site-specific integration of mycobacteriophage L5: integration- proficient vectors for Mycobacterium smegmatis, Mycobacterium tuberculosis, and bacille Calmette-Guérin. Proc. Natl. Acad. Sci. USA 88:31113115.
57. Levin, M. E.,, and G. F. Hatfull. 1993. Mycobacterium smegmatis RNA polymerase: DNA supercoiling, action of rifampicin and mechanism of rifampicin resistance. Mol. Microbiol. 8:277285.
58. Lewis, J. A.,, and G. F. Hatfull. 2001. Control of directionality in integrase-mediated recombination: examination of recombination directionality factors (RDFs) including Xis and Cox proteins. Nucleic Acids Res. 29:22052216.
59. Lewis, J. A.,, and G. F. Hatfull. 2003. Control of directionality in L5 integrase-mediated site-specific recombination. J. Mol. Biol. 326:805821.
60. Mahairas, G. G.,, P. J. Sabo,, M. J. Hickey,, D. C. Singh,, and C. K. Stover. 1996. Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J. Bacteriol. 178:12741282.
61. McCauliffe, D. P.,, F. A. Lux,, T. S. Lieu,, I. Sanz,, J. Hanke,, M. M. Newkirk,, M. J. Siciliano,, R. D. Sontheimer,, and J. D. Capra. 1989. Ro/SS-A and the pathogenic significance of its antibodies. J. Autoimmun. 2:375381.
62. McNerney, R. 1999. TB: the return of the phage. A review of fifty years of mycobacteriophage research. Int. J. Tuberc. Lung Dis. 3:179184.
63. Mediavilla, J.,, S. Jain,, J. Kriakov,, M. E. Ford,, R. L. Duda,, W. R. Jacobs, Jr.,, R. W. Hendrix,, and G. F. Hatfull. 2000. Genome organization and characterization of mycobacteriophage Bxb1. Mol. Microbiol. 38:955970.
64. Mekalanos, J. J.,, E. J. Rubin,, and M. K. Waldor. 1997. Cholera: molecular basis for emergence and pathogenesis. FEMS Immunol. Med. Microbiol. 18:241248.
65. Mukamolova, G. V.,, A. S. Kaprelyants,, D. I. Young,, M. Young,, and D. B. Kell. 1998. A bacterial cytokine. Proc. Natl. Acad. Sci. USA 95:89168921.
66. Mukamolova, G. V.,, O. A. Turapov,, D. I. Young,, A. S. Kaprelyants,, D. B. Kell,, and M. Young. 2002. A family of autocrine growth factors in Mycobacterium tuberculosis. Mol. Microbiol. 46:623635.
67. Oftung, F.,, A. S. Mustafa,, and H. G. Wiker. 2000. Extensive sequence homology between the Mycobacterium leprae LSR (12 kDa) antigen and its Mycobacterium tuberculosis counterpart. FEMS Immunol. Med. Microbiol. 27:8789.
68. Parish, T.,, J. Lewis,, and N. G. Stoker. 2001. Use of the mycobacteriophage L5 excisionase in Mycobacterium tuberculosis to demonstrate gene essentiality. Tuberculosis (Edinburgh) 81:359364.
69. Pearson, R. E.,, S. Jurgensen,, G. J. Sarkis,, G. F. Hatfull,, and W. R. Jacobs, Jr. 1996. Construction of D29 shuttle phasmids and luciferase reporter phages for detection of mycobacteria. Gene 183:129136.
70. Pedulla, M. L.,, M. E. Ford,, J. M. Houtz,, T. Karthikeyan,, C. Wadsworth,, J. A. Lewis,, D. Jacobs-Sera,, J. Falbo,, J. Gross,, N. R. Pannunzio,, W. Brucker,, V. Kumar,, J. Kandasamy,, L. Keenan,, S. Bardarov,, J. Kriakov,, J. G. Lawrence,, W. R. Jacobs,, R. W. Hendrix,, and G. F. Hatfull. 2003. Origins of highly mosaic mycobacteriophage genomes. Cell 113:171182.
71. Pedulla, M. L.,, and G. F. Hatfull. 1998. Characterization of the mIHF gene of Mycobacterium smegmatis. J. Bacteriol. 180:54735477.
72. Pedulla, M. L.,, M. H. Lee,, D. C. Lever,, and G. F. Hatfull. 1996. A novel host factor for integration of mycobacteriophage L5. Proc. Natl. Acad. Sci. USA 93:1541115416.
73. Pelicic, V.,, M. Jackson,, J. M. Reyrat,, W. R. Jacobs, Jr.,, B. Gicquel,, and C. Guilhot. 1997. Efficient allelic exchange and transposon mutagenesis in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 94:1095510960.
74. Pelicic, V.,, J. M. Reyrat,, and B. Gicquel. 1996. Expression of the Bacillus subtilis sacB gene confers sucrose sensitivity on mycobacteria. J. Bacteriol. 178:11971199.
75. Pelicic, V.,, J. M. Reyrat,, and B. Gicquel. 1996. Generation of unmarked directed mutations in mycobacteria, using sucrose counter-selectable suicide vectors. Mol. Microbiol. 20:919925.
76. Pelicic, V.,, J. M. Reyrat,, and B. Gicquel. 1996. Positive selection of allelic exchange mutants in Mycobacterium bovis BCG. FEMS Microbiol. Lett. 144:161166.
77. Peña, C. E.,, M. H. Lee,, M. L. Pedulla,, and G. F. Hatfull. 1997. Characterization of the mycobacteriophage L5 attachment site, attP. J. Mol. Biol. 266:7692.
78. Peña, C. E.,, J. Stoner,, and G. F. Hatfull. 1998. Mycobacteriophage D29 integrase-mediated recombination: specificity of mycobacteriophage integration. Gene 225:143151.
79. Raj, C. V.,, and T. Ramakrishnan. 1970. Transduction in Mycobacterium smegmatis. Nature 228:280281
80. Ramesh, G.,, and K. P. Gopinathan. 1995. Cloning and characterization of mycobacteriophage I3 promoters. Indian J. Biochem. Biophys. 32:361367.
81. Ramesh, G. R.,, and K. P. Gopinathan. 1994. Structural proteins of mycobacteriophage I3: cloning, expression and sequence analysis of a gene encoding a 70-kDa structural protein. Gene 143:95100.
82. Raviglione, M. C. 2003. The TB epidemic from 1992 to 2002. Tuberculosis (Edinburgh) 83:414.
83. Recktenwald, J.,, and H. Schmidt. 2002. The nucleotide sequence of Shiga toxin (Stx) 2e-encoding phage phiP27 is not related to other Stx phage genomes, but the modular genetic structure is conserved. Infect. Immun. 70:18961908.
84. Ribeiro, G.,, M. Viveiros,, H. L. David,, and J. V. Costa. 1997. Mycobacteriophage D29 contains an integration system similar to that of the temperate mycobacteriophage L5. Microbiology 143:27012708.
85. Roman, L. J.,, P. Martasek,, and B. S. Masters. 2002. Intrinsic and extrinsic modulation of nitric oxide synthase activity. Chem. Rev. 102:11791190.
86. Sarkis, G. J.,, W. R. Jacobs, Jr.,, and G. F. Hatfull. 1995. L5 luciferase reporter mycobacteriophages: a sensitive tool for the detection and assay of live mycobacteria. Mol. Microbiol. 15:10551067.
87. Sassetti, C. M.,, D. H. Boyd,, and E. J. Rubin. 2001. Comprehensive identification of conditionally essential genes in mycobacteria. Proc. Natl. Acad. Sci. USA 98:1271212717.
88. Sassetti, C. M.,, D. H. Boyd,, and E. J. Rubin. 2003. Genes required for mycobacterial growth defined by high density mutagenesis. Mol. Microbiol. 48:7784.
89. Scanga, C. A.,, V. P. Mohan,, K. Tanaka,, D. Alland,, J. L. Flynn,, and J. Chan. 2001. The inducible nitric oxide synthase locus confers protection against aerogenic challenge of both clinical and laboratory strains of Mycobacterium tuberculosis in mice. Infect. Immun. 69:77117717.
90. Shi, H.,, C. A. O’Brien,, D. J. Van Horn,, and S. L. Wolin. 1996. A misfolded form of 5S rRNA is complexed with the Ro and La autoantigens. RNA 2:769784.
91. Shleeva, M. O.,, K. Bagramyan,, M. V. Telkov,, G. V. Mukamolova,, M. Young,, D. B. Kell,, and A. S. Kaprelyants. 2002. Formation and resuscitation of “non-culturable” cells of Rhodococcus rhodochrous and Mycobacterium tuberculosis in prolonged stationary phase. Microbiology 148:15811591.
92. Smith, I. 2003. Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin. Microbiol. Rev. 16:463496
93. Smith, M. C.,, and H. M. Thorpe. 2002. Diversity in the serine recombinases. Mol. Microbiol. 44:299307.
94. Snapper, S. B.,, L. Lugosi,, A. Jekkel,, R. E. Melton,, T. Kieser,, B. R. Bloom,, and W. R. Jacobs, Jr. 1988. Lysogeny and transformation in mycobacteria: stable expression of foreign genes. Proc. Natl. Acad. Sci. USA 85:69876991.
95. Springer, B.,, P. Sander,, L. Sedlacek,, K. Ellrott,, and E. C. Bottger. 2001. Instability and site-specific excision of integration- proficient mycobacteriophage L5 plasmids: development of stably maintained integrative vectors. Int. J. Med. Microbiol. 290:669675.
96. Susskind, M. M.,, and D. Botstein. 1978. Molecular genetics of bacteriophage P22. Microbiol Rev. 42:385413.
97. Wagner, P. L.,, and M. K. Waldor. 2002. Bacteriophage control of bacterial virulence. Infect. Immun. 70:39853993.
98. Waldor, M. K. 1998. Bacteriophage biology and bacterial virulence. Trends Microbiol. 6:295297.
99. Wilson, S. M.,, Z. al-Suwaidi,, R. McNerney,, J. Porter,, and F. Drobniewski. 1997. Evaluation of a new rapid bacteriophage- based method for the drug susceptibility testing of Mycobacterium tuberculosis. Nat. Med. 3:465468.
100. Xue, D.,, H. Shi,, J. D. Smith,, X. Chen,, D. A. Noe,, T. Cedervall,, D. D. Yang,, E. Eynon,, D. E. Brash,, M. Kashgarian,, R. A. Flavell,, and S. L. Wolin. 2003. A lupus-like syndrome develops in mice lacking the Ro 60-kDa protein, a major lupus autoantigen. Proc. Natl. Acad. Sci. USA 100:75037508.
101. Zhu, W.,, B. B. Plikaytis,, and T. M. Shinnick. 2003. Resuscitation factors from mycobacteria: homologs of Micrococcus luteus proteins. Tuberculosis (Edinburgh) 83:261269.

Tables

Generic image for table
Table 1

Mycobacteriophage genome features

Citation: Hatfull G. 2005. Mycobacteriophages and Tuberculosis, p 203-218. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch14
Generic image for table
Table 2

TB gene homologues in mycobacteriophages

Citation: Hatfull G. 2005. Mycobacteriophages and Tuberculosis, p 203-218. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch14

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error