1887

Chapter 15 : Control of Mycobacterial Transcription

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Control of Mycobacterial Transcription, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817657/9781555812959_Chap15-1.gif /docserver/preview/fulltext/10.1128/9781555817657/9781555812959_Chap15-2.gif

Abstract:

This chapter talks about the controlling elements of mycobacterial transcriptional initiation. However, DNA conformation, transcriptional elongation, and termination are important events in the synthesis of RNAs from DNA templates, and there are recent articles that discuss these important areas in mycobacteria. Transcriptional initiation can be divided into several steps, starting with the initial binding of RNA polymerase (RNAP) to the upstream regulatory region of the gene being transcribed. The occurrence of multiple factors in suggests the presence of varied promoter sequences and structures. σ factors play a major role in the early steps of prokaryotic transcription as they direct RNA polymerase (RNAP) holoenzyme binding to cognate promoter sites and thereby confer specificity of transcription initiation. Bacteria use other regulatory proteins, in addition to alternative σ factors, that change RNAP promoter specificity in response to external signals. Bacteria have evolved many mechanisms to deal with environmental stresses such as heat shock, oxidative stress, and nutrient limitation.

Citation: Smith I, Bishai W, Nagaraja V. 2005. Control of Mycobacterial Transcription, p 219-231. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch15

Key Concept Ranking

Transcription Start Site
0.44425404
Surface Plasmon Resonance Assay
0.40979326
0.44425404
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Mycobacterial promoter consensus sequences. This figure shows a compilation of 80 mycobacterial promoter sequences in which the transcriptional initiation nucleotides have been determined. The −10 and −35 recognition sequences refer to the 6-nucleotide sequences that interact, respectively, with regions 4.2 and 1.4 of σ factors. The most frequently occurring bases at each position are listed, and the number in the subscript gives the frequency of occurrence. R, W, S, and M have the same meaning as in Table 1 ; i.e., R denotes A or G, S denotes C or G, M denotes A or C, and W denotes A or T; +1 indicates the transcription-initiating nucleotide. Two classes of mycobacterial promoters were identified. The first class, comprising 69 promoters, illustrated in the second line from the top, shows consensus sequences resembling those of , which are shown in the top line. The second class of mycobacterial promoters, with 11 examples, shows a high G+C content, and its consensus sequences are presented in the bottom line.

Citation: Smith I, Bishai W, Nagaraja V. 2005. Control of Mycobacterial Transcription, p 219-231. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817657.chap15
1. Bashyam, M. D.,, and A. K. Tyagi. 1998. Identification and analysis of “extended −10” promoters from mycobacteria. J. Bacteriol. 180:25682573.
2. Baulard, A. R.,, J. C. Betts,, J. Engohang-Ndong,, S. Quan,, R. A. McAdam,, P. J. Brennan,, C. Locht,, and G. S. Besra. 2000. Activation of the pro-drug ethionamide is regulated in mycobacteria. J. Biol. Chem. 275:2832628331.
3. Beaucher, J.,, S. Rodrigue,, P. E. Jacques,, I. Smith,, R. Brzezinski,, and L. Gaudreau. 2002. Novel Mycobacterium tuberculosis anti-sigma factor antagonists control sigma F activity by distinct mechanisms. Mol. Microbiol. 45:15271540.
4. Betts, J. C.,, P. T. Lukey,, L. C. Robb,, R. A. McAdam,, and K. Duncan. 2002. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol. Microbiol. 43:717731.
5. Chen, P.,, R. E. Ruiz,, Q. Li,, R. F. Silver,, and W. R. Bishai. 2000. Construction and characterization of a Mycobacterium tuberculosis mutant lacking the alternate sigma factor gene, sigma F. Infect. Immun. 68:55755580.
6. Cole, S. T.,, R. Brosch,, J. Parkhill,, T. Garnier,, C. Churcher,, D. Harris,, S. V. Gordon,, K. Eigenmeir,, S. Gas,, C. E. Barry III,, F. Tekala,, K. Badcock,, D. Basham,, D. Brown,, T. Chillingworth,, R. Conner,, R. Davies,, K. Devlin,, T. Feltwell,, S. Gentles,, N. Hamlin,, S. Holroyd,, T. Hornsby,, K. Jagels,, A. Krogh,, J. McLean,, S. Moule,, L. Murphy,, K. Oliver,, J. Osborne,, M. A. Quail,, M.-A. Rajandream,, J. Rogers,, S. Rutter,, K. Seegar,, J. Skelton,, R. Squares,, J. E. Sulston,, K. Taylor,, S. Whitehead,, and B. G. Burrell. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537544.
7. Cole, S. T.,, K. Eiglmeier,, J. Parkhill,, K. D. James,, N. R. Thomson,, P. R. Wheeler,, N. Honore,, T. Garnier,, C. Churcher,, D. Harris,, K. Mungall,, D. Basham,, D. Brown,, T. Chillingworth,, R. Connor,, R. M. Davies,, K. Devlin,, S. Duthoy,, T. Feltwell,, A. Fraser,, N. Hamlin,, S. Holroyd,, T. Hornsby,, K. Jagels,, C. Lacroix,, J. Maclean,, S. Moule,, L. Murphy,, K. Oliver,, M. A. Quail,, M. A. Rajandream,, K. M. Rutherford,, S. Rutter,, K. Seeger,, S. Simon,, M. Simmonds,, J. Skelton,, R. Squares,, S. Squares,, K. Stevens,, K. Taylor,, S. Whitehead,, J. R. Woodward,, and B. G. Barrell. 2001. Massive gene decay in the leprosy bacillus. Nature 409:10071011.
8. Collins, D. M.,, R. P. Kawakami,, G. W. de Lisle,, L. Pascopella,, B. R. Bloom,, and W. R. Jacobs, Jr. 1995. Mutation of the principal sigma factor causes loss of virulence in a strain of the Mycobacterium tuberculosis complex. Proc. Natl. Acad. Sci. USA 92:80368040.
9. Dastur, A.,, P. Kumar,, S. Ramesh,, M. Vasanthakrishna,, and U. Varshney. 2002. Analysis of the initiator tRNA genes from a slow- and a fast-growing Mycobacterium. Arch. Microbiol. 178:288296.
10. Davis, E. O.,, E. M. Dullaghan,, and L. Rand. 2002. Definition of the mycobacterial SOS box and use to identify LexA-regulated genes in Mycobacterium tuberculosis. J. Bacteriol. 184:32873295.
11. DeMaio, J.,, Y. Zhang,, C. Ko,, and W. R. Bishai. 1997. Mycobacterium tuberculosis sigF is part of a gene cluster with similarities to the Bacillus subtilis sigF and sigB operons. Tubercle Lung Dis. 78:312.
12. DeMaio, J.,, Y. Zhang,, C. Ko,, D. B. Young,, and W. R. Bishai. 1996. A stationary-phase stress-response sigma factor from Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 93:27902794.
13. Doukhan, L.,, M. Predich,, G. Nair,, O. Dussurget,, I. Mandic- Mulec,, S. T. Cole,, D. R. Smith,, and I. Smith. 1995. Genomic organization of the mycobacterial sigma gene cluster. Gene 165:6770.
14. Dubnau, E.,, P. Fontan,, R. Manganelli,, S. Soares-Appel,, and I. Smith. 2002. Mycobacterium tuberculosis genes induced during infection of human macrophages. Infect. Immun. 70:27872795.
15. Durbach, S. I.,, S. J. Andersen,, and V. Mizrahi. 1997. SOS induction in mycobacteria: analysis of the DNA-binding activity of LexA-like repressor and its role in DNA damage induction of the recA gene from Mycobacterium smegmatis. Mol. Microbiol. 26:643653.
16. Fernandes, N. D.,, Q.-L. Wu,, D. Kong,, X. Puyang,, S. Garg,, and R. N. Husson. 1999. A mycobacterial extracytoplasmic sigma factor involved in survival following heat shock and oxidative stress. J. Bacteriol. 181:42664274.
17. Fleischmann, R. D.,, D. Alland,, J. A. Eisen,, L. Carpenter,, O. White,, J. Peterson,, R. DeBoy,, R. Dodson,, M. Gwinn,, D. Haft,, E. Hickey,, J. F. Kolonay,, W. C. Nelson,, L. A. Umayam,, M. Ermolaeva,, S. L. Salzberg,, A. Delcher,, T. Utterback,, J. Weidman,, H. Khouri,, J. Gill,, A. Mikula,, W. Bishai,, W. R. Jacobs, Jr.,, J. C. Venter,, and C. M. Fraser. 2002. Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains. J. Bacteriol. 184:54795490.
18. Fuangthong, M.,, A. F. Herbig,, N. Bsat,, and J. D. Helmann. 2002. Regulation of the Bacillus subtilis fur and perR genes by PerR: not all members of the PerR regulon are peroxide inducible. J. Bacteriol. 184:32763286.
19. Gardella, T.,, H. Moyle,, and M. M. Susskind. 1989. A mutant Escherichia coli sigma 70 subunit of RNA polymerase with altered promoter specificity. J. Mol. Biol. 206:579590.
20. Gold, B.,, G. M. Rodriguez,, S. A. Marras,, M. Pentecost,, and I. Smith. 2001. The Mycobacterium tuberculosis IdeR is a dual functional regulator that controls transcription of genes involved in iron acquisition, iron storage and survival in macrophages. Mol. Microbiol. 42:851865.
21. Gomez, J. E.,, and W. R. Bishai. 2000. whmD is an essential mycobacterial gene required for proper septation and cell division. Proc. Natl. Acad. Sci. USA 97:85548559.
22. Gomez, J. E.,, J.-M. Chen,, and W. R. Bishai. 1997. Sigma factors of Mycobacterium tuberculosis. Tubercle Lung Dis. 78:175183.
23. Gomez, M.,, G. Nair,, L. Doukhan,, and I. Smith. 1998. sigA is an essential gene in Mycobacterium smegmatis. Mol. Microbiol. 29:617628.
24. Gomez, M.,, and I. Smith,. 2000. Determinants of mycobacterial gene expression, p. 111129. In G. F. Hatfull, and W. R. Jacobs, Jr. (ed.), Molecular Genetics of Mycobacteria. ASM Press, Washington, D.C.
25. Gonzalez-y-Merchand, J. A.,, M. J. Colston,, and R. A. Cox. 1998. Roles of multiple promoters in transcription of ribosomal DNA: effects of growth conditions on precursor rRNA synthesis in mycobacteria. J. Bacteriol. 180:57565761.
26. Graham, J. E.,, and J. E. Clark-Curtiss. 1999. Identification of Mycobacterium tuberculosis RNAs synthesized in response to phagocytosis by human macrophages by selective capture of transcribed sequences (SCOTS). Proc. Natl. Acad. Sci. USA 96:1155411559.
27. Groisman, E. A. 2001. The pleiotropic two-component regulatory system PhoP-PhoQ. J. Bacteriol. 183:18351842.
28. Harshey, R. M.,, and T. Ramakrishnan. 1976. Purification and properties of DNA-dependent RNA polymerase from Mycobacterium tuberculosis H37Rv. Biochim. Biophys. Acta 432:4959.
29. Haydel, S. E.,, W. H. Benjamin, Jr.,, N. E. Dunlap,, and J. E. Clark-Curtiss. 2002. Expression, autoregulation, and DNA binding properties of the Mycobacterium tuberculosis TrcR response regulator. J. Bacteriol. 184:21922203.
30. Haydel, S. E.,, N. E. Dunlap,, and W. H. Benjamin, Jr. 1999. In vitro evidence of two-component system phosphorylation between the Mycobacterium tuberculosis TrcR/TrcS proteins. Microb. Pathog. 26:195206.
31. Helmann, J. D. 2002. The extracytoplasmic function (ECF) sigma factors. Adv. Microb. Pathog. 46:47110.
32. Himpens, S.,, C. Locht,, and P. Supply. 2000. Molecular characterization of the mycobacterial SenX3-RegX3 two-component system: evidence for autoregulation. Microbiology 146: 30913098.
33. Hu, Y.,, and A. R. M. Coates. 1999. Transcrption of two sigma 70 homologue genes, sigA and sigB, in stationary-phase Mycobacterium tuberculosis. J. Bacteriol. 181:499476.
34. Hughes, K. T.,, and K. Mathee. 1998. The anti-sigma factors. Annu. Rev. Microbiol. 52:231286.
35. Hutter, B.,, and T. Dick. 1999. Molecular genetic characterisation of WhiB3, a mycobacterial homologue of a Streptomyces sporulation factor. Res. Microbiol. 150:295301.
36. Kalate, R. N.,, B. D. Kulkarni,, and V. Nagaraja. 2002. Analysis of DNA curvature distribution in mycobacterial promoters using theoretical models. Biophys. Chem. 99:7797.
37. Kang, J. G.,, M. S. Paget,, Y. J. Seok,, M. Y. Hahn,, J. B. Bae,, J. S. Hahn,, C. Kleanthous,, M. J. Buttner,, and J. H. Roe. 1999. RsrA, an anti-sigma factor regulated by redox change. EMBO J. 18:42924298.
38. Kaushal, D.,, B. G. Schroeder,, S. Tyagi,, T. Yoshimatsu,, C. Scott,, C. Ko,, L. Carpenter,, J. Mehrotra,, Y. C. Manabe,, R. D. Fleischmann,, and W. R. Bishai. 2002. Reduced immunopathology and mortality despite tissue persistence in a Mycobacterium tuberculosis mutant lacking alternative sigma factor, SigH. Proc. Natl. Acad. Sci. USA 99:83308335.
39. Kenney, T. J.,, and G. Churchward. 1996. Genetic analysis of the Mycobacterium smegmatis rpsL promoter. J. Bacteriol. 178:35643571.
40. Ludwiczak, P.,, M. Gilleron,, Y. Bordat,, C. Martin,, B. Gicquel,, and G. Puzo. 2002. Mycobacterium tuberculosis phoP mutant: lipoarabinomannan molecular structure. Microbiology 148:30293037.
41. Manganelli, R.,, E. Dubnau,, S. Tyagi,, F. M. Kramer,, and I. Smith. 1999. Differential expression of 10 sigma factor genes in Mycobacterium tuberculosis. Mol. Microbiol. 31:715724.
42. Manganelli, R.,, M. I. Voskuil,, G. K. Schoolnik,, E. Dubnau,, M. Gomez,, and I. Smith. 2002. Role of the extracytoplasmicfunction sigma factor sigma H in Mycobacterium tuberculosis global gene expression. Mol. Microbiol. 45:365374.
43. Manganelli, R.,, M. I. Voskuil,, G. K. Schoolnik,, and I. Smith. 2001. The Mycobacterium tuberculosis ECF sigma factor sigma E: role in global gene expression and survival in macrophages. Mol. Microbiol. 41:423437.
44. Master, S.,, T. C. Zahrt,, J. Song,, and V. Deretic. 2001. Mapping of Mycobacterium tuberculosis katG promoters and their differential expression in infected macrophages. J. Bacteriol. 183:40334039.
45. Michele, T. M.,, C. Ko,, and W. R. Bishai. 1999. Exposure to antibiotics induces expression of the Mycobacterium tuberculosis sigF gene: implications for chemotherapy against mycobacterial persistors. Antimicrob. Agents Chemother. 43:218225.
46. Milano, A.,, F. Forti,, C. Sala,, G. Riccardi,, and D. Ghisotti. 2001. Transcriptional regulation of furA and katG upon oxidative stress in Mycobacterium smegmatis. J. Bacteriol. 183:68016806.
47. Movahedzadeh, F.,, M. J. Colston,, and E. O. Davis. 1997. Characterization of Mycobacterium tuberculosis LexA: recognition of a Cheo (Bacillus-type SOS) box. Microbiology 143:929936.
48. Mulder, N. J.,, H. Zappe,, and L. M. Steyn. 1999. Characterization of a Mycobacterium tuberculosis homologue of the Streptomyces coelicolor whiB gene. Tubercule Lung Dis. 79:299308.
49. Nagaraja, V. 1993. Control of transcriptional initiation. J. Biosci. 18:1325.
50. Paget, M. S.,, V. Molle,, G. Cohen,, Y. Aharonowitz,, and M. J. Buttner. 2001. Defining the disulphide stress response in Streptomyces coelicolor A3(2): identification of the sigma R regulon. Mol. Microbiol. 42:10071020.
51. Park, H. D.,, K. M. Guinn,, M. I. Harrell,, R. Liao,, M. I. Voskuil,, M. Tompa,, G. K. Schoolnik,, and D. R. Sherman. 2003. Rv3133c/dosR is a transcription factor that mediates the hypoxic response of Mycobacterium tuberculosis. Mol. Microbiol. 48:833843.
52. Perez, E.,, S. Samper,, Y. Bordas,, C. Guilhot,, B. Gicquel,, and C. Martin. 2001. An essential role for phoP in Mycobacterium tuberculosis virulence. Mol. Microbiol. 41:179187.
53. Predich, M.,, L. Doukhan,, G. Nair,, and I. Smith. 1995. Characterization of RNA polymerase and two σ factor genes from Mycobacterium smegmatis. Mol. Microbiol. 15:355366.
54. Pym, A. S.,, P. Domenech,, N. Honore,, J. Song,, V. Deretic,, and S. T. Cole. 2001. Regulation of catalase-peroxidase (KatG) expression, isoniazid sensitivity and virulence by furA of Mycobacterium tuberculosis. Mol. Microbiol. 40:879889.
55. Raman, S.,, T. Song,, X. Puyang,, S. Bardarov,, W. R. Jacobs, Jr.,, and R. N. Husson. 2001. The alternative sigma factor SigH regulates major components of oxidative and heat stress responses in Mycobacterium tuberculosis. J. Bacteriol. 183: 61196125.
56. Rodriguez, G. M.,, B. Gold,, M. Gomez,, O. Dussurget,, and I. Smith. 1999. Identification and characterization of two divergently transcribed iron regulated genes in Mycobacterium tuberculosis. Tubercule Lung Dis. 79:287298.
57. Rodriguez, G. M.,, and I. Smith. 2003. Mechanisms of iron regulation in mycobacteria: role in physiology and virulence. Mol. Microbiol. 47:14851494.
58. Rodriguez, G. M.,, M. I. Voskuil,, B. Gold,, G. K. Schoolnik,, and I. Smith. 2002. ideR, an essential gene in Mycobacterium tuberculosis: role of IdeR in iron-dependent gene expression, iron metabolism, and oxidative stress response. Infect. Immun. 70:33713381.
59. Sander, P.,, T. Prammananan,, and E. Bottger. 1996. Introducing mutations into a chromosomal rRNA gene using a genetically modified eubacterial host with a single rRNA operon. Mol. Microbiol. 22:841848.
60. Soliveri, J. A.,, J. Gomez,, W. R. Bishai,, and K. F. Chater. 2000. Multiple paralogous genes related to the Streptomyces coelicolor developmental regulatory gene whiB are present in Streptomyces and other actinomycetes. Microbiology 146:333343.
61. Stewart, G. R.,, V. A. Snewin,, G. Walzl,, T. Hussell,, P. Tormay,, P. O’Gaora,, M. Goyal,, J. Betts,, I. N. Brown,, and D. B. Young. 2001. Overexpression of heat-shock proteins reduces survival of Mycobacterium tuberculosis in the chronic phase of infection. Nat. Med. 7:732737.
62. Stewart, G. R.,, L. Wernisch,, R. Stabler,, J. A. Mangan,, J. Hinds,, K. G. Laing,, D. B. Young,, and P. D. Butcher. 2002. Dissection of the heat-shock response in Mycobacterium tuberculosis using mutants and microarrays. Microbiology 148:31293138.
63. Steyn, A. J.,, D. M. Collins,, M. K. Hondalus,, W. R. Jacobs, Jr.,, R. P. Kawakami,, and B. R. Bloom. 2002. Mycobacterium tuberculosis WhiB3 interacts with RpoV to affect host survival but is dispensable for in vivo growth. Proc. Natl. Acad. Sci. USA 99:31473152.
64. Steyn, A. J.,, J. Joseph,, and B. R. Bloom. 2003. Interaction of the sensor module of Mycobacterium tuberculosis H37Rv KdpD with members of the Lpr family. Mol. Microbiol. 47:10751089.
65. Stolt, P.,, Q. Zhang,, and S. Ehlers. 1999. Identification of promoter elements in mycobacteria: mutational analysis of a highly symmetric dual promoter directing the expression of replication genes of the Mycobacterium plasmid pAL5000. Nucleic Acids Res. 27:396402.
66. Strohl, W. R. 1992. Compilation and analysis of DNA sequences associated with apparent streptomycete promoters. Nucleic Acids Res. 20:961974.
67. Unniraman, S.,, M. Chatterji,, and V. Nagaraja. 2002. DNA gyrase genes in Mycobacterium tuberculosis: a single operon driven by multiple promoters. J. Bacteriol. 184:54495456.
68. Unniraman, S.,, R. Prakash,, and V. Nagaraja. 2002. Conserved economics of transcription termination in eubacteria. Nucleic Acids Res. 30:675684.
69. Wernisch, L.,, S. L. Kendall,, S. Soneji,, A. Wietzorrek,, T. Parish,, J. Hinds,, P. D. Butcher,, and N. G. Stoker. 2003. Analysis of whole-genome microarray replicates using mixed models. Bioinformatics 19:5361.
70. Wu, Q. L.,, D. Kong,, K. Lam,, and R. N. Husson. 1997. A mycobacterial extracytoplasmic function sigma factor involved in survival following stress. J. Bacteriol. 179:29222929.
71. Zahrt, T. C.,, J. Song,, J. Siple,, and V. Deretic. 2001. Mycobacterial FurA is a negative regulator of catalase-peroxidase gene katG. Mol. Microbiol. 39:11741185.

Tables

Generic image for table
Table 1

Binding sites for mycobacterial transcriptional regulatory proteins

Citation: Smith I, Bishai W, Nagaraja V. 2005. Control of Mycobacterial Transcription, p 219-231. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch15

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error