1887

Chapter 18 : Structure, Biosynthesis, and Genetics of the Mycolic Acid-Arabinogalactan-Peptidoglycan Complex

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Structure, Biosynthesis, and Genetics of the Mycolic Acid-Arabinogalactan-Peptidoglycan Complex, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817657/9781555812959_Chap18-1.gif /docserver/preview/fulltext/10.1128/9781555817657/9781555812959_Chap18-2.gif

Abstract:

The cell envelope of is made up of three major components: a plasma membrane; a covalently linked complex of mycolic acid-arabinogalactan-peptidoglycan complex (MAPc); and a polysaccharide-rich capsule-like layer. It is felt that knowledge of the biosynthesis and genetics of this aspect of the cell wall biogenesis may provide insight into overall cell wall architecture, particularly the relationship between its soluble components and the insoluble MAPc. PG biosynthesis in can be divided into three stages based on subcellular localization. Of the other enzymes related to UDP-MurNAcpentapeptide synthesis in mycobacteria, the D-alanine racemase and D-alanine:D-alanine ligase from have been studied. Analysis of the genome of reveals the presence of a repertoire of putative penicillin binding proteins (PBPs), of which only a few have been characterized. The arabinogalactan (AG) biosynthetic pathway has been investigated mainly in and . The arabinofuranose (Araf ) residues of arabinan are added to the linker unit-galactan polymer from a decaprenylphosphoryl-Araf (DPA) precursor. The ligation of arabinogalactan (AG) to peptidoglycan (PG) has been demonstrated in experiments with cell-free preparations of , and the nature of in vitro-synthesized material was confirmed by the observation that the newly ligated AG can be released from PG by muramidase treatment.

Citation: Mahapatra S, Brennan P, Crick D, Basu J. 2005. Structure, Biosynthesis, and Genetics of the Mycolic Acid-Arabinogalactan-Peptidoglycan Complex, p 275-286. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch18

Key Concept Ranking

Bacterial Genetics
0.6710221
Mycobacterium tuberculosis
0.5822966
Bacterial Cell Wall
0.5662136
Mycobacterium leprae
0.53556913
0.6710221
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Structure of a representative monomer of mycobacterial PG prior to peptide trimming. R1, N-glycolylmuramic acid residue of another monomer; R2, -acetylglucosamine residue of another monomer; R3, H or the linker unit of AG; R4, OH, NH2 or glycine; R5, OH or NH2; R6, H, or cross-linked to penultimate -Ala or to the -center of another meso-DAP residue; R7, OH or NH2.

Citation: Mahapatra S, Brennan P, Crick D, Basu J. 2005. Structure, Biosynthesis, and Genetics of the Mycolic Acid-Arabinogalactan-Peptidoglycan Complex, p 275-286. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Schematic illustration of the cell wall AG and the Rhap-GlcNAc linker.

Citation: Mahapatra S, Brennan P, Crick D, Basu J. 2005. Structure, Biosynthesis, and Genetics of the Mycolic Acid-Arabinogalactan-Peptidoglycan Complex, p 275-286. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

(A) Biosynthetic pathway leading to the formation of lipid II in E. coli. (B) Structure of lipid II from E. coli.

Citation: Mahapatra S, Brennan P, Crick D, Basu J. 2005. Structure, Biosynthesis, and Genetics of the Mycolic Acid-Arabinogalactan-Peptidoglycan Complex, p 275-286. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Hypothetical organization of the cell division apparatus of M. tuberculosis. FtsZ (Z) interacts with FtsW (W) through the C-tails of both proteins, thereby anchoring FtsZ to the membrane. FtsW is predicted to play a central role by linking cell division to PG biosynthesis through interactions with PBP1* (1*) and PBP3 (I). A putative FtsQ (Q) has also been identified. Its function is not yet known.

Citation: Mahapatra S, Brennan P, Crick D, Basu J. 2005. Structure, Biosynthesis, and Genetics of the Mycolic Acid-Arabinogalactan-Peptidoglycan Complex, p 275-286. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Schematic representation of AG biosynthesis and ligation to PG in mycobacteria.

Citation: Mahapatra S, Brennan P, Crick D, Basu J. 2005. Structure, Biosynthesis, and Genetics of the Mycolic Acid-Arabinogalactan-Peptidoglycan Complex, p 275-286. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817657.chap18
1. Amer, A. O.,, and M. A. Valvano. 2002. Conserved aspartic acids are essential for the enzymic activity of the WecA protein initiating the biosynthesis of O-specific lipopolysaccharide and enterobacterial common antigen in Escherichia coli. Microbiology 148: 571 582.
2. Av-Gay, Y.,, and M. Everett. 2000. The eukaryotic-like Ser/Thr protein kinases of Mycobacterium tuberculosis. Trends Microbiol. 8: 238 244.
3. Basu, J.,, R. Chattopadhyay,, M. Kundu,, and P. Chakrabarti. 1992. Purification and partial characterization of a penicillinbinding protein from Mycobacterium smegmatis. J. Bacteriol. 174: 4829 4832.
4. Basu, J.,, S. Mahapatra,, M. Kundu,, S. Mukhopadhyay,, M. Nguyen-Disteche,, P. Dubois,, B. Joris,, J. Van Beeumen,, S. T. Cole,, P. Chakrabarti,, and J. M. Ghuysen. 1996. Identification and overexpression in Escherichia coli of a Mycobacterium leprae gene, pon1, encoding a high-molecular-mass class A penicillin-binding protein, PBP1. J. Bacteriol. 178: 1707 1711.
5. Belanger, A. E.,, G. S. Besra,, M. E. Ford,, K. Mikusova,, J. T. Belisle,, P. J. Brennan,, and J. M. Inamine. 1996. The embAB genes of Mycobacterium avium encode an arabinosyl transferase involved in cell wall arabinan biosynthesis that is the target for the antimycobacterial drug ethambutol. Proc. Natl. Acad. Sci. USA 93: 11919 11924.
6. Bhakta, S.,, and J. Basu. 2002. Overexpression, purification and biochemical characterization of a class A high-molecularmass penicillin-binding protein (PBP), PBP1,* and its soluble derivative from Mycobacterium tuberculosis. Biochem. J. 361: 635 639.
7. Billman-Jacobe, H.,, R. E. Haites,, and R. L. Coppel. 1999. Characterization of a Mycobacterium smegmatis mutant lacking penicillin binding protein 1. Antimicrob. Agents Chemother. 43: 3011 3013.
8. Brennan, P. J., 1988. Mycobacterium and other Actinomycetes, p. 203 298. In C. Ratledge, and S. G. Wilkinson (ed.), Microbial Lipids. Academic Press, Ltd., London, United Kingdom.
9. Chaba, R.,, M. Raje,, and P. K. Chakraborti. 2002. Evidence that a eukaryotic-type serine/threonine protein kinase from Mycobacterium tuberculosis regulates morphological changes associated with cell division. Eur. J. Biochem. 269: 1078 1085.
10. Chacon, O.,, Z. Y. Feng,, N. B. Harris,, N. E. Caceres,, L. G. Adams,, and R. G. Barletta. 2002. Mycobacterium smegmatis D-alanine racemase mutants are not dependent on D-alanine for growth. Antimicrob. Agents Chemother. 46: 47 54.
11. Chambers, H. F.,, D. Moreau,, D. Yajko,, C. Miick,, C. Wagner,, C. Hackbarth,, S. Kocagoz,, E. Rosenberg,, W. K. Hadley,, and H. Nikaido. 1995. Can penicillins and other beta-lactam antibiotics be used to treat tuberculosis. Antimicrob. Agents Chemother. 39: 2620 2624.
12. Cole, S. T.,, R. Brosch,, J. Parkhill,, T. Garnier,, C. Churcher,, D. Harris,, S. V. Gordon,, K. Eiglmeier,, S. Gas,, C. E. Barry III,, F. Tekaia,, K. Badcock,, D. Basham,, D. Brown,, T. Chillingworth,, R. Conner,, R. Davies,, K. Devlin,, T. Feltwell,, S. Gentles,, N. Hamlin,, S. Holroyd,, T. Hornsby,, K. Jagels,, A. Krogh,, J. McLean,, S. Moule,, L. Murphy,, K. Oliver,, J. Osborne,, M. A. Quail,, M.-A. Rajandream,, J. Rogers,, S. Rutter,, K. Seeger,, J. Skelton,, R. Squares,, S. Squares,, J. E. Sulston,, K. Taylor,, S. Whitehead,, and B. G. Barrell. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 396: 190 198.
13. Crick, D. C.,, S. Mahapatra,, and P. J. Brennan. 2001. Biosynthesis of the arabinogalactan-peptidoglycan complex of Mycobacterium tuberculosis. Glycobiology 11: 107R 118R.
14. Daffé, M.,, P. J. Brennan,, and M. McNeil. 1990. Predominant structural features of the cell wall arabinogalactan of Mycobacterium tuberculosis as revealed through characterization of oligoglycosyl alditol fragments by gas chromatography/mass spectrometry and by 1H and 13C NMR analyses. J. Biol. Chem. 265: 6734 6743.
15. Dal Nogare, A. R.,, N. Dan,, and M. A. Lehrman. 1998. Conserved sequences in enzymes of the UDP-GlcNAc/MurNAc family are essential in hamster UDP-GlcNAc:dolichol-PGlcNAc-1-P transferase. Glycobiology 8: 625 632.
16. Datta, P.,, A. Dasgupta,, S. Bhakta,, and J. Basu. 2002. Interaction between FtsZ and FtsW of Mycobacterium tuberculosis. J. Biol. Chem. 277: 24983 24987.
17. De Smet, K. A. L.,, K. E. Kempsell,, A. Gallagher,, K. Duncan,, and D. B. Young. 1999. Alteration of a single amino acid residue reverses fosfomycin resistance of recombinant MurA from Mycobacterium tuberculosis. Microbiology 145: 3177 3184.
18. Dessen, A.,, N. Mouz,, E. Gordon,, J. Hopkins,, and O. Dideberg. 2001. Crystal structure of PBP2x from a highly penicillin-resistant Streptococcus pneumoniae clinical isolate a mosaic framework containing 83 mutations. J. Biol. Chem. 276: 45106 45112.
19. Dmitriev, B. A.,, S. Ehlers,, and E. T. Rietschel. 1999. Layered murein revisited: a fundamentally new concept of bacterial cell wall structure, biogenesis and function. Med. Microbiol. Immunol. 187: 173 181.
20. Dmitriev, B. A.,, S. Ehlers,, E. T. Rietschel,, and P. J. Brennan. 2000. Molecular mechanics of the mycobacterial cell wall: from horizontal layers to vertical scaffolds. Int. J. Med. Microbiol. 290: 251 258.
21. Draper, P.,, O. Kandler,, and A. Darbre. 1987. Peptidoglycan and arabinogalactan of Mycobacterium leprae. J. Gen. Microbiol. 133: 1187 1194.
22. Escuyer, V. E.,, M. A. Lety,, J. B. Torrelles,, K. H. Khoo,, J. B. Tang,, C. D. Rithner,, C. Frehel,, M. R. McNeil,, P. J. Brennan,, and D. Chatterjee. 2001. The role of the embA and embB gene products in the biosynthesis of the terminal hexaarabinofuranosyl motif of Mycobacterium smegmatis arabinogalactan. J. Biol. Chem. 276: 48854 48862.
23. Feng, Z. Y.,, and R. G. Barletta. 2003. Roles of Mycobacterium smegmatis D-alanine:D-alanine ligase and D-alanine racemase in the mechanisms of action of and resistance to the peptidoglycan inhibitor D-cycloserine. Antimicrob. Agents Chemother. 47: 283 291.
24. Gateau, O.,, C. Bordet,, and G. Michel. 1976. Study of formation of N-glycolylmuramic acid from Nocardia asteroides. Biochim. Biophys. Acta 421: 395 405.
25. Ghuysen, J. M. 1968. Use of bacteriolytic enzymes in determination of wall structure and their role in cell metabolism. Bacteriol. Rev. 32: 425 464.
26. Graham, J. E.,, and J. E. Clark-Curtiss. 1999. Identification of Mycobacterium tuberculosis RNAs synthesized in response to phagocytosis by human macrophages by selective capture of transcribed sequences (SCOTS). Proc. Natl. Acad. Sci. USA 96: 11554 11559.
27. Hancock, I. C.,, S. Carman,, G. S. Besra,, P. J. Brennan,, and E. Waite. 2002. Ligation of arabinogalactan to peptidoglycan in the cell wall of Mycobacterium smegmatis requires concomitant synthesis of the two wall polymers. Microbiology 148: 3059 3067.
28. Higashi, Y.,, J. L. Strominger,, and C. C. Sweeley. 1967. Structure of a lipid intermediate in cell wall peptidoglycan synthesis: a derivative of a C55 isoprenoid alcohol. Proc. Natl. Acad. Sci. USA 57: 1878 1884.
29. Higashi, Y.,, J. L. Strominger,, and C. C. Sweeley. 1970. Biosynthesis of the peptidoglycan of bacterial cell walls. XXI. Isolation of free C55-isoprenoid alcohol and of lipid intermediates in peptidoglycan synthesis from Staphylococcus aureus. J. Biol. Chem. 245: 3697 3702.
30. Hoang, T. T.,, Y. Ma,, R. J. Stern,, M. R. McNeil,, and H. P. Schweizer. 1999. Construction and use of low-copy number T7 expression vectors for purification of problem proteins: purification of Mycobacterium tuberculosis RmlD and Pseudomonas aeruginosa LasI and RhlI proteins, and functional analysis of purified RhlI. Gene 237: 361 371.
31. Jarlier, V.,, and H. Nikaido. 1994. Mycobacterial cell-wall structure and role in natural resistance to antibiotics. FEMS Microbiol. Lett. 123: 11 18.
32. Keer, J.,, M. J. Smeulders,, K. M. Gray,, and H. D. Williams. 2000. Mutants of Mycobacterium smegmatis impaired in stationary-phase survival. Microbiology 146: 2209 2217.
33. Kotani, S.,, I. Yanagida,, K. Kato,, and T. Matsuda. 1970. Studies on peptides, glycopetides and antigenic polysaccharideglycopeptide complexes isolated from an L-11 enzyme lysate of cell walls of Mycobacterium tuberculosis strain H37Rv. Biken J. 13: 249 275.
34. Kremer, L.,, L. G. Dover,, C. Morehouse,, P. Hitchin,, M. Everett,, H. R. Morris,, A. Dell,, P. J. Brennan,, M. R. McNeil,, C. Flaherty,, K. Duncan,, and G. S. Besra. 2001. Galactan biosynthesis in Mycobacterium tuberculosis identification of a bifunctional UDP-galactofuranosyltransferase. J. Biol. Chem. 276: 26430 26440.
35. Lederer, E.,, A. Adam,, R. Ciorbaru,, J. F. Petit,, and J. Wietzerbin. 1975. Cell walls of mycobacteria and related organisms; chemistry and immunostimulant properties. Mol. Cell. Biochem. 7: 87 104.
36. Ma, Y.,, J. A. Mills,, J. T. Belisle,, V. Vissa,, M. Howell,, K. Bowlin,, M. S. Scherman,, and M. McNeil. 1997. Determination of the pathway for rhamnose biosynthesis in mycobacteria: cloning, sequencing and expression of the Mycobacterium tuberculosis gene encoding alpha-D-glucose-1-phosphate thymidylyltransferase. Microbiology 143: 937 945.
37. Ma, Y.,, R. J. Stern,, M. S. Scherman,, V. D. Vissa,, W. Yan,, V. C. Jones,, F. Zhang,, S. G. Franzblau,, W. H. Lewis,, and M. R. McNeil. 2001. Drug targeting Mycobacterium tuberculosis cell wall synthesis: genetics of dTDP-rhamnose synthetic enzymes and development of a microtiter plate-based screen for inhibitors of conversion of dTDP-glucose to dTDP-rhamnose. Antimicrob. Agents Chemother. 45: 1407 1416.
38. Mahapatra, S.,, S. Bhakta,, J. Ahamed,, and J. Basu. 2000. Characterization of derivatives of the high-molecular-mass penicillin-binding protein (PBP) 1 of Mycobacterium leprae. Biochem. J. 350: 75 80.
39. Mahapatra, S.,, D. C. Crick,, and P. J. Brennan. 2000. Comparison of the UDP- N-acetylmuramate:L-alanine ligase enzymes from Mycobacterium tuberculosis and Mycobacterium leprae. J. Bacteriol. 182: 6827 6830.
40. Mainardi, J. L.,, R. Legrand,, M. Arthur,, B. Schoot,, J. van Heijenoort,, and L. Gutmann. 2000. Novel mechanism of betalactam resistance due to bypass of DD-transpeptidation in Enterococcus faecium. J. Biol. Chem. 275: 16490 16496.
41. Marrec-Fairley, M.,, A. Piette,, X. Gallet,, R. Brasseur,, H. Hara,, C. Fraipont,, J. M. Ghuysen,, and M. Nguyen-Disteche. 2000. Differential functionalities of amphiphilic peptide segments of the cell-septation penicillin-binding protein 3 of Escherichia coli. Mol. Microbiol. 37: 1019 1031.
42. Matsuhashi, M. 1966. Biosynthesis in the bacterial cell wall. Tanpakushitsu Kakusan Koso 11: 875 886. (In Japanese.)
43. McNeil, M., 1999. Arabinogalactan in mycobacteria: structure, biosynthesis, and genetics, p. 207 223. In J. B. Goldberg (ed.), Genetics of Bacterial Polysaccharides. CRC Press, Washington, D.C.
44. McNeil, M.,, M. Daffe,, and P. J. Brennan. 1990. Evidence for the nature of the link between the arabinogalactan and peptidoglycan of mycobacterial cell walls. J. Biol. Chem. 265: 18200 18206.
45. McNeil, M.,, M. Daffe,, and P. J. Brennan. 1991. Location of the mycolyl ester substituents in the cell walls of mycobacteria. J. Biol. Chem. 266: 13217 13223.
46. McNeil, M.,, S. J. Wallner,, S. W. Hunter,, and P. J. Brennan. 1987. Demonstration that the galactosyl and arabinosyl residues in the cell wall arabinogalactan of Mycobacterium leprae and Mycobacterium tuberculosis are furanoid. Carbohydr. Res. 166: 299 308.
47. McNeil, M. R.,, and P. J. Brennan. 1991. Structure, function and biogenesis of the cell envelope of mycobacteria in relation to bacterial physiology, pathogenesis and drug resistance some thoughts and possibilities arising from recent structural information. Res. Microbiol. 142: 451 463.
48. Mengin-Lecreulx, D.,, L. Texier,, M. Rousseau,, and J. van Heijenoort. 1991. The murG gene of Escherichia coli codes for the UDP- N-acetylglucosamine: N-acetylmuramyl-(pentapeptide) pyrophosphoryl-undecaprenol N-acetylglucosamine transferase involved in the membrane steps of peptidoglycan synthesis. J. Bacteriol. 173: 4625 4636.
49. Mikusova, K.,, M. Mikus,, G. S. Besra,, I. Hancock,, and P. J. Brennan. 1996. Biosynthesis of the linkage region of the mycobacterial cell wall. J. Biol. Chem. 271: 7820 7828.
50. Mikusova, K.,, T. Yagi,, R. Stern,, M. R. McNeil,, G. S. Besra,, D. C. Crick,, and P. J. Brennan. 2000. Biosynthesis of the galactan component of the mycobacterial cell wall. J. Biol. Chem. 275: 33890 33897.
51. Mukherjee, T.,, O. Basu,, S. Mahapatra,, C. Goffin,, J. van Beeumen,, and J. Basu. 1996. Biochemical characterization of the 49 kDa penicillin-binding protein of Mycobacterium smegmatis. Biochem. J. 320: 197 200.
52. Mukhopadhyay, S., and P. Chakrabarti. 1997. Altered permeability and beta-lactam resistance in a mutant of Mycobacterium smegmatis. Antimicrob. Agents Chemother. 41: 1721 1724.
53. Quintela, J. C.,, M. A. de Pedro,, P. Zollner,, G. Allmaier,, and F. Garcia del Portillo. 1997. Peptidoglycan structure of Salmonella typhimurium growing within cultured mammalian cells. Mol. Microbiol. 23: 693 704.
54. Quinting, B.,, J. M. Reyrat,, D. Monnaie,, G. Amicosante,, V. Pelicic,, B. Gicquel,, J. M. Frere,, and M. Galleni. 1997. Contribution of beta-lactamase production to the resistance of mycobacteria to beta-lactam antibiotics. FEBS Lett. 406: 275 278.
55. Rick, P. D.,, K. Barr,, K. Sankaran,, J. Kajimura,, J. S. Rush,, and C. J. Waechter. 2003. Evidence that the wzxE gene of Escherichia coli K-12 encodes a protein involved in the transbilayer movement of a trisaccharide-lipid intermediate in the assembly of enterobacterial common antigen. J. Biol. Chem. 278: 16534 16542.
56. Sassetti, C. M.,, D. H. Boyd,, and E. J. Rubin. 2003. Genes required for mycobacterial growth defined by high density mutagenesis. Mol. Microbiol. 48: 77 84.
57. Scherman, M.,, A. Weston,, K. Duncan,, A. Whittington,, R. Upton,, L. Deng,, R. Comber,, J. D. Friedrich,, and M. McNeil. 1995. Biosynthetic origin of mycobacterial cell wall arabinosyl residues. J. Bacteriol. 177: 7125 7130.
58. Scherman, M. S.,, L. Kalbe-Bournonville,, D. Bush,, Y. Xin,, L. Deng,, and M. McNeil. 1996. Polyprenylphosphate-pentoses in mycobacteria are synthesized from 5-phosphoribose pyrophosphate. J. Biol. Chem. 271: 29652 29658.
59. Schleifer, K. H.,, and O. Kandler. 1972. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev. 36: 407 477.
60. Stern, R. J.,, T. Y. Lee,, T. J. Lee,, W. Yan,, M. S. Scherman,, V. D. Vissa,, S. K. Kim,, B. L. Wanner,, and M. R. McNeil. 1999. Conversion of dTDP-4-keto-6-deoxyglucose to free dTDP-4-keto-rhamnose by the rmIC gene products of Escherichia coli and Mycobacterium tuberculosis. Microbiology 145: 663 671.
61. Templin, M. F.,, A. Ursinus,, and J. V. Holtje. 1999. A defect in cell wall recycling triggers autolysis during the stationary growth phase of Escherichia coli. EMBO J. 18: 4108 4117.
62. van Heijenoort, J., 1994. Biosynthesis of bacterial peptidoglycan unit, p. 39 54. In J. M. Ghuysen, and R. Hakenbeck (ed.), Bacterial Cell Wall. Elsevier Biomedical Press, Amsterdam, The Netherlands.
63. van Heijenoort, J. 2001. Formation of the glycan chains in the synthesis of bacterial peptidoglycan. Glycobiology 11: 25R 36R.
64. van Heijenoort, J. 2001. Recent advances in the formation of the bacterial peptidoglycan monomer unit. Nat. Prod. Rep. 18: 503 519.
65. Weston, A.,, R. J. Stern,, R. E. Lee,, P. M. Nassau,, D. Monsey,, S. L. Martin,, M. S. Scherman,, G. S. Besra,, K. Duncan,, and M. R. McNeil. 1997. Biosynthetic origin of mycobacterial cell wall galactofuranosyl residues. Tubercle Lung Dis. 78: 123 131.
66. Wietzerbin, J.,, B. C. Das,, J. F. Petit,, E. Lederer,, M. Leyh- Bouille,, and J. M. Ghuysen. 1974. Occurrence of D-alanyl-( D)- meso-diaminopimelic acid and meso-diaminopimelyl- meso-diaminopimelic acid interpeptide linkages in the peptidoglycan of mycobacteria. Biochemistry 13: 3471 3476.
67. Wolucka, B. A.,, M. R. McNeil,, E. de Hoffmann,, T. Chojnacki,, and P. J. Brennan. 1994. Recognition of the lipid intermediate for arabinogalactan/arabinomannan biosynthesis and its relation to the mode of action of ethambutol on mycobacteria. J. Biol. Chem. 269: 23328 23335.
68. Yagi, T.,, S. Mahapatra,, K. Mikuova,, D. C. Crick,, and P. J. Brennan. 2003. Polymerization of mycobacterial arabinogalactan and ligation to peptidoglycan. J. Biol. Chem. 278: 26497 26504.
69. Yeats, C.,, R. D. Finn,, and A. Bateman. 2002. The PASTA domain: a beta-lactam-binding domain. Trends Biochem. Sci. 27: 438 440.

Tables

Generic image for table
Table 1

The putative penicillin binding proteins of

Citation: Mahapatra S, Brennan P, Crick D, Basu J. 2005. Structure, Biosynthesis, and Genetics of the Mycolic Acid-Arabinogalactan-Peptidoglycan Complex, p 275-286. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch18

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error