1887

Chapter 19 : A Waxy Tale, by Mycobacterium tuberculosis

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

A Waxy Tale, by Mycobacterium tuberculosis, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817657/9781555812959_Chap19-1.gif /docserver/preview/fulltext/10.1128/9781555817657/9781555812959_Chap19-2.gif

Abstract:

The cell envelope differs substantially from the canonical cell wall structures of both gram-negative and gram-positive bacteria. This chapter reviews the current understanding of the major cell wall waxes found in , along with their functions and biosynthesis. Mycolic acids have unique characteristics essential for maintaining the cell wall structure, and their physiological role may possibly be correlated to individual mycolates. The major biological functions associated with mycolic acid either bound to arabinogalactan (AG) or associated with trehalose are summarized. The phthiocerol dimycoserosates (PDIMs) are major waxes of the tubercle bacillus. Two types of fatty acid-synthesizing systems, fatty acid synthase I (FAS-I) and fatty acid synthase II (FAS-II), achieve the enzymatic cycles. Through genetic and biochemical approaches, two genes of the FAS-II system, and , have been postulated to encode the primary target of isoniazid (INH). Therefore, due to conflicting reports, the mode of action of INH has recently been reexamined. First, studies performed in vivo demonstrated that overexpression of InhA, but not KasA, in , BCG, and conferred increased resistance to INH. Second, in vitro assays using purified KasA or InhA demonstrated that KatG-activated INH inhibited InhA activity but not KasA activity. A recent review of mycolic acid biosynthesis discusses the possibility that mycobacteria may use more than one pathway for the biosynthesis of mycolates.

Citation: Kremer L, Besra G. 2005. A Waxy Tale, by Mycobacterium tuberculosis, p 287-305. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch19

Key Concept Ranking

Major Histocompatibility Complex Class II
0.4246594
0.4246594
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Simplified representation of the mycobacterial cell wall from . Adapted from references 41 and 76. © 2002 with permission from Elsevier.

Citation: Kremer L, Besra G. 2005. A Waxy Tale, by Mycobacterium tuberculosis, p 287-305. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

αMycolate from .

Citation: Kremer L, Besra G. 2005. A Waxy Tale, by Mycobacterium tuberculosis, p 287-305. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Mycobacterial α-mycolates and oxygenated mycolates. , trans; , cis.

Citation: Kremer L, Besra G. 2005. A Waxy Tale, by Mycobacterium tuberculosis, p 287-305. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Tetramycolyl hexaarabinoside unit of mAGP.

Citation: Kremer L, Besra G. 2005. A Waxy Tale, by Mycobacterium tuberculosis, p 287-305. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5.
Figure 5.

Representative structures of glucose monomycolate (GMM), trehalose dimycolate (TDM), and 6--mycolyl-ß-Dmannopyranosyl monophosphooctahydroheptaprenol (MycPL).

Citation: Kremer L, Besra G. 2005. A Waxy Tale, by Mycobacterium tuberculosis, p 287-305. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6.
Figure 6.

Major functions assigned to mycolic acids bound to AG or to TDM.

Citation: Kremer L, Besra G. 2005. A Waxy Tale, by Mycobacterium tuberculosis, p 287-305. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7.
Figure 7.

Representation of some complex lipids in . Adapted from reference 76. © 2002 with permission from Elsevier.

Citation: Kremer L, Besra G. 2005. A Waxy Tale, by Mycobacterium tuberculosis, p 287-305. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8.
Figure 8.

Representation of PDIM as well as PGLs from BCG (also called mycoside B) and from the Canetti strain of .

Citation: Kremer L, Besra G. 2005. A Waxy Tale, by Mycobacterium tuberculosis, p 287-305. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9.
Figure 9.

Representation of the structural relationship between LM, LAM, and PIM. Adapted from reference 62 with permission from the publisher.

Citation: Kremer L, Besra G. 2005. A Waxy Tale, by Mycobacterium tuberculosis, p 287-305. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 10.
Figure 10.

Biosynthesis of α-mycolic acids in .

Citation: Kremer L, Besra G. 2005. A Waxy Tale, by Mycobacterium tuberculosis, p 287-305. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 11.
Figure 11.

FAS-I and FAS-II systems in . Inhibition of the FAS-II enzymes InhA and KasA by various antitubercular agents is shown by an arrow. TLM, thiolactomycin; ETH, ethionamide; TRC, triclosan.

Citation: Kremer L, Besra G. 2005. A Waxy Tale, by Mycobacterium tuberculosis, p 287-305. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 12.
Figure 12.

Three-step mechanism of the Claisen-type condensation reaction. R′, CoA, specific for mtFabH; R′, AcpM, specific for KasA/KasB.

Citation: Kremer L, Besra G. 2005. A Waxy Tale, by Mycobacterium tuberculosis, p 287-305. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 13.
Figure 13.

Proposed pathway for the biosynthesis of the PIMs, linear LM, native LM, and LAM of mycobacteria. Adapted from references 65 and 80 with permission from the publishers.

Citation: Kremer L, Besra G. 2005. A Waxy Tale, by Mycobacterium tuberculosis, p 287-305. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817657.chap19
1. Apostolou, I.,, Y. Takahama,, C. Belmant,, T. Kawano,, M. Huerre,, G. Marchal,, J. Cui,, M. Taniguchi,, H. Nakauchi,, J. J. Fournié,, P. Kourilsky,, and G. Gachelin. 1999. Murine natural killer T (NKT) cells contribute to the granulomatous reaction caused by mycobacterial cell walls. Proc. Natl. Acad. Sci. USA 96: 5141 5146.
2. Asselineau, C.,, and J. Asselineau. 1978. Trehalose-containing glycolipids. Prog. Chem. Fats Other Lipids 16: 59 99.
3. Asselineau, C.,, J. Asselineau,, G. Lanéelle,, and M. Lanéelle. 2002. The biosynthesis of mycolic acids by mycobacteria: current and alternative hypotheses. Prog. Lipid Res. 41: 501 523.
4. Azad, A. K.,, T. D. Sirakova,, L. M. Rogers,, and P. E. Kolattukudy. 1996. Targeted replacement of the mycocerosic acid synthase gene in Mycobacterium bovis BCG produces a mutant that lacks mycosides. Proc. Natl. Acad. Sci. USA 93: 4787 4792.
5. Azad, A. K.,, T. D. Sirakova,, N. D. Fernandes,, and P. E. Kolattukudy. 1997. Gene knockout reveals a novel gene cluster for the synthesis of a class of cell wall lipids unique to pathogenic mycobacteria. J. Biol. Chem. 272: 16741 16745.
6. Banerjee, A.,, E. Dubnau,, A. Quémard,, V. Balasubramanian,, K. S. Um,, T. Wilson,, D. Collins,, G. de Lisle,, and W. R. Jacobs, Jr. 1994. inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 263: 227 230.
7. Beatty, W. L.,, E. R. Rhoades,, H. J. Ullrich,, D. Chatterjee,, J. E. Heuser,, and D. G. Russell. 2000. Trafficking and release of mycobacterial lipids from infected macrophages. Traffic 1: 235 247.
8. Bekierkunst, A. 1968. Acute granulomatous response produced in mice by trehalose-6,6'-dimycolate. J. Bacteriol. 96: 958 961.
9. Bekierkunst, A.,, I. S. Levij,, E. Yarkoni,, E. Vilkas,, A. Adam,, and E. Lederer. 1969. Granuloma formation induced in mice by chemically defined mycobacterial fractions. J. Bacteriol. 100: 95 102.
10. Bekierkunst, A.,, I. S. Levij,, E. Yarkoni,, E. Vilkas,, and E. Lederer. 1971. Suppression of urethane-induced lung adenoma in mice treated with trehalose-6,6'-dimycolate (cord factor) and living bacillus Calmette-Guérin. Science 174: 1240 1242.
11. Belanger, A. E.,, G. S. Besra,, M. E. Ford,, K. Mikusová,, J. T. Belisle,, P. J. Brennan,, and J. M. Inamine. 1996. The embAB genes of Mycobacterium avium encode an arabinosyl transferase involved in cell wall arabinan biosynthesis that is the target for the antimycobacterial drug ethambutol. Proc. Natl. Acad. Sci. USA 93: 11919 11924.
12. Belanger, A. E.,, and J. M. Inamine,. 2000. Genetics of cell wall biosynthesis, p. 191 202. In G. F. Hatfull, and W. R. Jacobs, Jr. (ed.), Molecular Genetics of Mycobacteria. ASM Press, Washington, D.C.
13. Besra, G. S.,, R. Bolton,, M. R. McNeil,, M. Ridell,, K. E. Simpson,, J. Glushka,, H. Halbeek,, P. J. Brennan,, and D. E. Minnikin. 1992. Structure elucidation and antigenicity of a novel family of glycolipid antigens from Mycobacterium tuberculosis H37Rv. Biochemistry 31: 9832 9837.
14. Besra, G. S.,, T. Sievert,, R. E. Lee,, R. A. Slayden,, P. J. Brennan,, and K. Takayama. 1994. Identification of the apparent carrier in mycolic acid synthesis. Proc. Natl. Acad. Sci. USA 91: 12735 12739.
15. Besra, G. S.,, and P. J. Brennan. 1997. The mycobacterial cell wall: biosynthesis of arabinogalactan and lipoarabinomannan. Biochem. Soc. Trans. 25: 845 850.
16. Besra, G. S.,, C. B. Moorhouse,, C. M. Rittner,, C. J. Waechter,, and P. J. Brennan. 1997. Biosynthesis of mycobacterial lipoarabinomannan. J. Biol. Chem. 272: 18460 18466.
17. Bloch, K. 1975. Fatty acid synthases from Mycobacterium phlei. Methods Enzymol. 35: 84 90.
18. Brennan, P. J.,, and P. Draper,. 1994. Ultrastructure of Mycobacterium tuberculosis, p. 271 306. In B. R. Bloom (ed.), Tuberculosis: Pathogenesis, Protection and Control. ASM Press, Washington, D.C.
19. Brennan, P. J.,, and H. Nikaido. 1995. The envelope of mycobacteria. Annu. Rev. Biochem. 65: 215 239.
20. Brindley, D. N.,, S. Matsumura,, and K. Bloch. 1969. Mycobacterium phlei fatty acid synthase—a bacterial multienzyme complex. Nature 224: 666 669.
21. Brink, J.,, S. J. Ludtke,, C. Y. Yang,, Z. W. Gu,, S. J. Wakil,, and W. Chiu. 2002. Quaternary structure of human fatty acid synthase by electron cryomicroscopy. Proc. Natl. Acad. Sci USA 99: 138 143.
22. Camacho, L. R.,, D. Ensergueix,, E. Perez,, B. Gicquel,, and C. Guilhot. 1999. Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol. Microbiol. 34: 257 267.
23. Camacho, L. R.,, P. Constant,, C. Raynaud,, M. A. Lanéelle,, J. A. Triccas,, B. Gicquel,, M. Daffé,, and C. Guilhot. 2001. Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. Evidence that this lipid is involved in the cell wall permeability barrier. J. Biol. Chem. 276: 19845 19854.
24. Chan, J.,, X. D. Fan,, S. W. Hunster,, P. J. Brennan,, and B. R. Bloom. 1991. Lipoarabinomannan, a possible virulence factor involved in persistence of Mycobacterium tuberculosis within macrophages. Infect. Immun. 59: 1755 1761.
25. Chan, E. D.,, K. R. Morris,, J. T. Belisle,, P. Hill,, L. K. Remigio,, P. J. Brennan,, and D. W. Riches. 2001. Induction of inducible nitric oxide synthase-NO* by lipoarabinomannan of Mycobacterium tuberculosis is mediated by MEK1-ERK, MKK7-JNK, and NF-κB signaling pathways. Infect. Immun. 69: 2001 2010.
26. Chatterjee, D.,, C. M. Bozic,, M. McNeil,, and P. J. Brennan. 1991. Structural features of the arabinan component of the lipoarabinomannan of Mycobacterium tuberculosis. J. Biol. Chem. 266: 9652 9660.
27. Chatterjee, D.,, K. H. Khoo,, M. R. McNeil,, A. Dell,, H. R. Morris,, and P. J. Brennan. 1993. Structural definition of the nonreducing termini of mannose-capped LAM from Mycobacterium tuberculosis through selective enzymatic degradation and fast-atom-bombardment mass-spectrometry. Glycobiology 3: 497 506.
28. Chatterjee, D.,, and K. H. Khoo. 1998. Mycobacterial lipoarabinomannan: an extraordinary lipoheteroglycan with profound physiological effects. Glycobiology 8: 113 120.
29. Cho, S. N.,, D. L. Yanagihara,, S. W. Hunter,, R. H. Gelber,, and P. J. Brennan. 1983. Serological specificity of phenolic glycolipid I from Mycobacterium leprae and use in serodiagnosis of leprosy. Infect. Immun. 41: 1077 1083.
30. Choi, K. H.,, L. Kremer,, G. S. Besra,, and C. O. Rock. 2000. Identification and substrate specificity of β-ketoacyl (acylcarrier protein) synthase III (mtFabH) from Mycobacterium tuberculosis. J. Biol. Chem. 275: 28201 28207.
31. Cohen-Gonsaud, M.,, S. Ducasse,, F. Hoh,, D. Zerbib,, G. Labesse,, and A. Quémard. 2002. Crystal structure of MabA from Mycobacterium tuberculosis, a reductase involved in long-chain fatty acid biosynthesis. J. Mol. Biol. 320: 249 261.
32. Cole, S. T.,, R. Brosch,, J. Parkhill,, T. Garnier,, C. Churcher,, D. Harris,, S. V. Gordon,, K. Eiglmeier,, S. Gas,, C. E. Barry III,, F. Tekaia,, K. Badcock,, D. Basham,, D. Brown,, T. Chillingworth,, R. Connor,, R. Davies,, K. Devlin,, T. Feltwell,, S. Gentles,, N. Hamlin,, S. Holroyd,, T. Hornsby,, K. Jagels,, A. Krogh,, J. McLean,, S. Moule,, L. Murphy,, K. Oliver,, J. Osborne,, M. A. Quail,, M.-A. Rajandream,, J. Rogers,, S. Rutter,, K. Saeger,, J. Skelton,, R. Squares,, S. Squares,, J. E. Sulsron,, K. Taylor,, S. Whitehead,, and B. G. Barrell. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393: 537 544.
33. Constant, P.,, E. Perez,, W. Malaga,, M. A. Lanéelle,, O. Saurel,, M. Daffé,, and C. Guilhot. 2002. Role of the pks15/1 gene in the biosynthesis of phenolglycolipids in the Mycobacterium tuberculosis complex. Evidence that all strains synthesize glycosylated p-hydroxybenzoic methyl esters and that strains devoid of phenolglycolipids harbor a frameshift mutation in the pks15/1 gene. J. Biol. Chem. 277: 38148 38158.
34. Converse, S. E.,, J. D. Mougous,, M. D. Leavell,, J. A. Leary,, C. R. Bertozzi,, and J. S. Cox. 2003. MmpL8 is required for sulfolipid-1 biosynthesis and Mycobacterium tuberculosis virulence. Proc. Natl. Acad. Sci. USA 100: 6121 6126.
35. Cox, J. S.,, B. Chen,, M. McNeil,, and W. R. Jacobs, Jr. 1999. Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 402: 79 83.
36. Daffé, M.,, C. Lacave,, M. A. Lanéelle,, and G. Lanéelle. 1987. Structure of the major triglycosyl phenol-phthiocerol of Mycobacterium tuberculosis (strain Canetti). Eur. J. Biochem. 167: 155 160.
37. Daffé, M.,, C. Lacave,, M. A. Lanéelle,, M. Gillois,, and G. Lanéelle. 1988. Polyphthienoyl trehalose, glycolipids specific for virulent strains of the tubercle bacillus. Eur. J. Biochem. 172: 579 584.
38. Daffé, M.,, M. A. Lanéelle,, and C. Lacave. 1991. Structure and stereochemistry of mycolic acids of Mycobacterium marinum and Mycobacterium ulcerans. Res. Microbiol. 142: 397 403.
39. Daffé, M.,, and P. Draper. 1998. The envelope layers of mycobacteria with reference to their pathogenicity. Adv. Microb. Physiol. 39: 131 203.
40. Dinadayala, P.,, F. Laval,, C. Raynaud,, A. Lemassu,, M. A. Lanéelle,, G. Lanéelle,, and M. Daffé. 2003. Tracking the putative biosynthetic precursors of oxygenated mycolates of Mycobacterium tuberculosis. Structural analysis of fatty acids of a mutant strain devoid of methoxy- and ketomycolates. J. Biol. Chem. 278: 7310 7319.
41. Dmitriev, B. A.,, S. Ehlers,, E. T. Rietschel,, and P. J. Brennan. 2000. Molecular mechanics of the mycobacterial cell wall: from horizontal layers to vertical scaffolds. Int. J. Med. Microbiol. 290: 251 258.
42. Dubey, V. S.,, T. D. Sirakova,, and P. E. Kolattukudy. 2002. Disruption of msl3 abolishes the synthesis of mycolipanoic and mycolipenic acids required for polyacyltrehalose synthesis in Mycobacterium tuberculosis H37Rv and causes cell aggregation. Mol. Microbiol. 45: 1451 1459.
43. Dubnau, E.,, J. Chan,, C. Raynaud,, V. P. Mohan,, M. A. Lanéelle,, K. Yu,, A. Quémard,, I. Smith,, and M. Daffé. 2000. Oxygenated mycolic acids are necessary for virulence of Mycobacterium tuberculosis in mice. Mol. Microbiol. 36: 630 637.
44. Ehlers, M. R.,, and M. Daffé. 1998. Interactions between Mycobacterium tuberculosis and host cells: are mycobacterial sugars the key? Trends Microbiol. 6: 328 335.
45. Escuyer, V. E.,, M. A. Lety,, J. B. Torrelles,, K. H. Khoo,, J. B. Tang,, C. D. Rithner,, C. Frehel,, M. R. McNeil,, P. J. Brennan,, and D. Chatterjee. 2001. The role of the embA and embB gene products in the biosynthesis of the terminal hexaarabinofuranosyl motif of Mycobacterium smegmatis arabinogalactan. J. Biol. Chem. 276: 48854 48862.
46. Fernandes, N. D.,, and P. E. Kolattukudy. 1998. A newly identified methyl-branched chain fatty acid synthesizing enzyme from Mycobacterium tuberculosis var . bovis BCG. J. Biol. Chem. 273: 2823 2828.
47. Fratti, R. A.,, J. Chua,, I. Vergne,, and V. Deretic. 2003. Mycobacterium tuberculosis glycosylated phosphatidylinositol causes phagosome maturation arrest. Proc. Natl. Acad. Sci. USA 100: 5437 5442.
48. George, K. M.,, Y. Yuan,, D. R. Sherman,, and C. E. Barry III. 1995. The biosynthesis of cyclopropanated mycolic acids in Mycobacterium tuberculosis. Identification and functional analysis of CMAS-2. J. Biol. Chem. 270: 27292 27298.
49. Gilleron, M.,, C. Ronet,, M. Mempel,, B. Monsarrat,, G. Gachelin,, and G. Puzo. 2001. Acylation state of the phosphatidylinositol mannosides from Mycobacterium bovis bacillus Calmette Guérin and ability to induce granuloma and recruit natural killer T cells. J. Biol. Chem. 276: 34896 34904.
50. Glickman, M. S.,, J. S. Cox,, and W. R. Jacobs, Jr. 2000. A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of Mycobacterium tuberculosis. Mol. Cell 5: 717 727.
51. Goren, M. B.,, P. D. Hart,, M. R. Young,, and J. A. Armstrong. 1976. Prevention of phagosome-lysosome fusion in cultured macrophages by sulfatides of Mycobacterium tuberculosis. Proc. Natl. Acad Sci USA 73: 2510 2514.
52. Guérardel, Y.,, E. Maes,, E. Elass,, Y. Leroy,, P. Timmerman,, G. S. Besra,, C. Locht,, G. Strecker,, and L. Kremer. 2002. Structural study of lipomannan and lipoarabinomannan from Mycobacterium chelonae: presence of unusual components with alpha-1,3-mannopyranose side chains. J. Biol. Chem. 277: 30635 30648.
53. Gurcha, S. S.,, A. R. Baulard,, L. Kremer,, C. Locht,, D. B. Moody,, W. Muhlecker,, C. E. Costello,, D. C. Crick,, P. J. Brennan,, and G. S. Besra. 2002. Ppm1, a novel polyprenol monophosphomannose synthase from Mycobacterium tuberculosis. Biochem. J. 365: 441 450.
54. Hamasaki, N.,, K. I. Isowa,, K. Kamada,, Y. Terano,, T. Matsumoto,, T. Arakawa,, K. Kobayashi,, and I. Yano. 2000. In vivo admnistration of mycobacterial cord factor (trehalose 6,6′-dimycolate) can induce lung and liver granulomas and thymic atrophy in rabbits. Infect. Immun. 68: 3704 3709.
55. Hoppe, H. C.,, B. J. M. De Wet,, C. Cywes,, M. Daffé,, and M. R. W. Ehlers. 1997. Identification of phosphatidylinositol mannoside as a mycobacterial adhesin mediating both direct and opsonic binding to nonphagocytic mammalian cells. Infect. Immun. 65: 3896 3905.
56. Hunter, S. W.,, and P. J. Brennan. 1990. Evidence for the presence of a phosphatidylinositol anchor on the lipoarabinomannan of Mycobacterium tuberculosis. J. Biol. Chem. 265: 9272 9279.
57. Jackson, M.,, D. Portnoi,, D. Catheline,, L. Dumail,, J. Rauzier,, P. Legrand,, and B. Gicquel. 1997. Mycobacterium tuberculosis Des protein: an immunodominant target for the humoral response of tuberculosis patients. Infect. Immun. 65: 2883 2889.
58. Jackson, M.,, D. C. Crick,, and P. J. Brennan. 2000. Phosphatidylinositol is an essential phospholipid of mycobacteria. J. Biol. Chem. 275: 30092 30099.
59. Kato, M. 1970. Site II-specific inhibition of mitochondria oxidative phosphorylation by trehalose-6,6'-dimycolate (cord factor) of Mycobacterium tuberculosis. Arch. Biochem. Biophys. 140: 379 390.
60. Kaur, D.,, T. L. Lowary,, V. D. Vissa,, D. C. Crick,, and P. J. Brennan. 2002. Characterization of the epitope of antilipoarabinomannan antibodies as the terminal hexaarabinofuranosyl motif of mycobacterial arabinans. Microbiology 148: 3049 3057.
61. Khoo, K. H.,, A. Dell,, H. R. Morris,, P. J. Brennan,, and D. Chatterjee. 1995. Inositol phosphate capping of the nonreducing termini of lipoarabinomannan from rapidly growing strains of Mycobacterium. J. Biol. Chem. 270: 12380 12389.
62. Khoo, K. H.,, E. Douglas,, P. Parastoo,, J. M. Inamine,, G. S. Besra,, K. Mikusová,, P. J. Brennan,, and D. Chatterjee. 1996. Truncated structural variants of lipoarabinomannan in ethambutol drug-resistant strains of Mycobacterium smegmatis. J. Biol. Chem. 271: 28682 28690.
63. Kordulakova, J.,, M. Gilleron,, K. Mikusová,, G. Puzo,, P. J. Brennan,, B. Gicquel,, and M. Jackson. 2002. Definition of the first mannosylation step in phosphatidylinositol mannoside synthesis. PimA is essential for growth of myocbacteria. J. Biol. Chem. 277: 31335 31344.
64. Kordulakova, J.,, M. Gilleron,, G. Puzo,, P. J. Brennan,, B. Gicquel,, K. Mikusova,, and M. Jackson. 2003. Identification of the required acyltransferase step in the biosynthesis of the phosphatidylinositol mannosides of Mycobacterium species. J. Biol. Chem. 278: 36285 36295.
65. Kremer, L.,, J. D. Douglas,, A. R. Baulard,, C. Morehouse,, M. R. Guy,, D. Alland,, L. G. Dover,, J. H. Lakey,, W. R. Jacobs, Jr.,, P. J., Brennan,, D. E. Minnikin,, and G. S. Besra. 2000. Thiolactomycin and related analogues as novel antimycobacterial agents targeting KasA and KasB condensing enzymes in Mycobacterium tuberculosis. J. Biol. Chem. 275: 16857 16864.
66. Kremer, L.,, K. M. Nampoothiri,, S. Lesjean,, L. G. Dover,, S. Graham,, J. Betts,, P. J. Brennan,, D. E. Minnikin,, C. Locht,, and G. S. Besra. 2001. Biochemical characterization of acyl carrier protein (AcpM) and malonyl-CoA:AcpM transacylase (mtFabD), two major components of Mycobacterium tuberculosis fatty acid synthase II. J. Biol. Chem. 276: 27967 27974.
67. Kremer, L.,, L. G. Dover,, S. Carrère,, K. M. Nampoothiri,, S. Lesjean,, A. K. Brown,, P. J. Brennan,, D. E. Minnikin,, C. Locht,, and G. S. Besra. 2002. Mycolic acid biosynthesis and enzymic characterization of the β-ketoacyl-ACP synthase A-condensing enzyme from Mycobacterium tuberculosis. Biochem. J. 364: 423 430.
68. Kremer, L.,, S. S. Gurcha,, P. Bifani,, P. G. Hitchen,, A. Baulard,, H. R. Morris,, A. Dell,, P. J. Brennan,, and G. S. Besra. 2002. Characterization of a putative α mannosyltransferase involved in phosphatidylinositol trimannoside biosynthesis in Mycobacterium tuberculosis. Biochem. J. 363: 437 447.
69. Kremer, L.,, L. G. Dover,, H. R. Morbidoni,, C. Vilchèze,, W. N. Maughan,, A. Baulard,, S. C. Tu,, N. Honoré,, V. Deretic,, J. C. Sacchettini,, C. Locht,, W. R. Jacobs, Jr.,, and G. S. Besra. 2003. Inhibition of InhA activity, but not KasA activity, induces formation of a KasA-containing complex in mycobacteria. J. Biol. Chem. 278: 20547 20554.
70. Larsen, M. H.,, C. Vilchèze,, L. Kremer,, G. S. Besra,, L. Parsons,, M. Salfinger,, L. Heifets,, M. H. Hazbon,, D. Alland,, J. C. Sacchettini,, and W. R. Jacobs, Jr. 2002. Overexpression of inhA, but not kasA, confers resistance to isoniazid and ethionamide in Mycobacterium smegmatis, M. bovis BCG, and M. tuberculosis. Mol. Microbiol. 46: 453 466.
71. Maeda, N.,, J. Nigou,, J. L. Herrmann,, M. Jackson,, A. Amara,, P. H. Lagrange,, G. Puzo,, B. Gicquel,, and O. Neyrolles. 2003. The cell surface receptor DC-SIGN discriminates between Mycobacterium species through selective recognition of the mannose caps on lipoarabinomannan. J. Biol. Chem. 278: 5513 5516.
72. Marrakchi, H.,, S. Ducasse,, G. Labesse,, H. Montrozier,, E. Margeat,, L. Emorine,, X. Charpentier,, M. Daffé,, and A. Quémard. 2002. MabA (FabG1), a Mycobacterium tuberculosis protein involved in the long-chain fatty acid elongation system FAS-II. Microbiology 148: 951 960.
73. Mdluli, K.,, R. A. Slayden,, Y. Zhu,, S. Ramaswamy,, X. Pan,, D. Mead,, D. D. Crane,, J. M. Musser,, and C. E. Barry III. 1998. Inhibition of a Mycobacterium tuberculosis β-ketoacyl ACP synthase by isoniazid. Science 280: 1607 1610.
74. Minnikin, D. E.,, and M. Goodfellow,. 1980. Lipid composition in the classification and Identification of acid fast bacteria, p. 189 256. In M. Goodfellow, and R. G. Board (ed.), Microbiological Classification and Identification. Academic Press, Ltd., London, United Kingdom.
75. Minnikin, D. E., 1982. Lipids: complex lipids, their chemistry, biosynthesis and roles, p. 95 184. In C. Ratledge, and J. Stanford (ed.), The Biology of Mycobacteria. Academic Press, Ltd., London, United Kingdom.
76. Minnikin, D. E.,, L. Kremer,, L. G. Dover,, and G. S. Besra. 2002. The methyl-branched fortifications of Mycobacterium tuberculosis. Chem. Biol. 9: 545 553.
77. Molloy, A.,, G. Gaudernack,, W. R. Levis,, Z. A. Cohn,, and G. Kaplan. 1990. Suppression of T-cell proliferation by Mycobacterium leprae and its products: the role of lipopolysaccharide. Proc. Natl. Acad Sci. USA 8: 973 977.
78. Ng, V.,, G. Zanazzi,, R. Timpl,, J. F. Talts,, J. L. Salzer,, P. J. Brennan,, and A. Rambukkana. 2000. Role of the cell wall phenolic glycolipid-1 in the peripheral nerve predilection of Mycobacterium leprae. Cell 103: 511 524.
79. Nigou, J.,, M. Gilleron,, B. Cahuzac,, J. D. Bounéri,, M. Herold,, M. Thurnher,, and G. Puzo. 1997. The phosphatidyl myo-inositol anchor of the lipoarabinomannans from Mycobacterium bovis bacillus Calmette Guérin. Heterogeneity, structure, and role in the regulation of cytokine secretion. J. Biol. Chem. 272: 23094 23103.
80. Nigou, J.,, M. Gilleron,, and G. Puzo. 2003. Lipoarabinomannans: from structure to biosynthesis. Biochimie 85: 153 166.
81. Nigou, J.,, M. Gilleron,, M. Rojas,, L. F. Garcia,, M. Thurnher,, and G. Puzo. 2002. Mycobacterial lipoarabinomannans: modulators of dendritic cell function and the apoptotic response. Microbes Infect. 4: 945 953.
82. Ozeki, Y.,, K. Kaneda,, N. Fujiwara,, M. Morimoto,, S. Oka,, and I. Yano. 1997. In vivo induction of apoptosis in the thymus by administration of mycobacterial cord factor (trehalose 6,6'-dimycolate). Infect. Immun. 65: 1793 1799.
83. Porcelli, S. A.,, and G. S. Besra,. 2002. Immune recognition of the mycobacterial cell wall, p. 230 249. In J. P. Gorvel (ed.), Intracellular Pathogens in Membrane Interactions and Vacuole Biogenesis. ASM Press, Washington, D.C.
84. Prasad, H. K.,, R. S. Misrah,, and I. Nath. 1987. Phenolic glycolipid- I of Mycobacterium leprae induces general suppression of in vitro concanvalin A responses unrelated to leprosy type. J. Exp. Med. 165: 239 244.
85. Quémard, A.,, M. A. Lanéelle,, H. Marrakchi,, D. Prome,, E. Dubnau,, and M. Daffé. 1997. Structure of a hydroxymycolic acid potentially involved in the synthesis of oxygenated mycolic acids of the Mycobacterium tuberculosis complex. Eur. J. Biochem. 250: 758 763.
86. Qureshi, N.,, K. Takayama,, and H. K. Schnoes. 1980. Purification of C30-56 fatty acids from Mycobacterium tuberculosis H37Ra. J. Biol. Chem. 255: 182 189.
87. Qureshi, N.,, N. Sathyamoorthy,, and K. Takayama. 1984. Biosynthesis of C-30 to C-56 fatty-acids by an extract of Mycobacterium tuberculosis H37Ra. J. Bacteriol. 157: 46 52.
88. Rainwater, D. L.,, and P. E. Kolattukudy. 1985. Fatty acid biosynthesis in Mycobacterium tuberculosis var. bovis bacillus Calmette-Guérin. Purification and characterization of a novel fatty acid synthase, mycocerosic acid synthase, which elongates n-fatty acyl-CoA with methylmalonyl-CoA. J. Biol. Chem. 260: 616 623.
89. Rhoades, E.,, F. F. Hsu,, J. B. Torrelles,, J. Turk,, D. Chatterjee,, and D. G. Russell. 2003. Indentification and macrophage-activating activity of glycolipids released from intracellular Mycobacterium bovis BCG. Mol. Microbiol. 48: 875 888.
90. Ribi, E.,, D. L. Granger,, K. C. Milner,, K. Yamamoto,, S. M. Strain,, R. Parker,, R. W. Smith,, W. Brehmer,, and I. Azuma. 1982. Induction of resistance to tuberculosis in mice with defined components of mycobacteria and with some unrelated materials. Immunology 46: 297 305.
91. Rousseau, C.,, O. Neyrolles,, Y. Bordat,, S. Giroux,, T. D. Sirakova,, M. C. Prevost,, P. E. Kolattukudy,, B. Gicquel,, and M. Jackson. 2003. Deficiency in mycolipenate- and mycosanoate-derived acyltrehaloses enhances early interactions of Mycobacterium tuberculosis with host cells. Cell. Microbiol. 5: 405 415.
92. Rozwarski, D. A.,, C. Vilchèze,, M. Sugantino,, R. Bittman,, and J. C. Sacchettini. 1999. Crystal structure of the Mycobacterium tuberculosis enoyl-ACP reductase, InhA, in complex with NAD + and a C 16 fatty acyl substrate. J. Biol. Chem. 274: 15582 15589.
93. Ryll, R.,, K. Watanabe,, N. Fujiwara,, H. Takimoto,, R. Hasunuma,, Y. Kumazawa,, M. Okada,, and I. Yano. 2001. Mycobacterial cord factor, but not sulfolipid, causes depletion of NKT cells and upregulation of CD1d1 on murine macrophages. Microbes Infect. 3: 611 619.
94. Saavedra, R.,, E. Segura,, R. Leyva,, L. A. Esparza,, and L. M. López-Marin. 2001. Mycobacterial di- O-acyl-trehalose inhibits mitogen- and antigen-induced proliferation of murine T cells in vitro. Clin. Diagn. Lab. Immunol. 8: 1081 1088.
95. Scarsdale, N.,, G. Kazanina,, X. He,, K. A. Reynolds,, and H. T. Wright. 2001. Crystal structure of the Mycobacterium tuberculosis β-keto-acyl carrier protein synthase III. J. Biol. Chem. 276: 20516 20522.
96. Schaeffer, M.,, K. H. Khoo,, G. S. Besra,, D. Chatterjee,, P. J. Brennan,, J. T. Belisle,, and J. Inamine. 1999. The pimB gene of Mycobacterium tuberculosis encodes a mannosyltransferase involved in lipoarabinomannan biosynthesis. J. Biol. Chem. 274: 31625 31631.
97. Schaeffer, M. L.,, G. Agnihotri,, C. Volker,, H. Kallender,, P. J. Brennan,, and J. T. Lonsdale. 2001. Purification and biochemical characterization of the Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein synthases KasA and KasB. J. Biol. Chem. 276: 47029 47037.
98. Schlesinger, L. S.,, S. R. Hull,, and T. M. Kaufman. 1994. Binding of the terminal mannosyl units of lipoarabinomannan from a virulent strain of Mycobacterium tuberculosis to human macrophages. J. Immunol. 152: 4070 4079.
99. Schroeder, B. G.,, and C. E. Barry III. 2001. The specificity of methyl transferases involved in trans mycolic acid biosynthesis in Mycobacterium tuberculosis and Mycobacterium smegmatis. Bioorg. Chem. 29: 164 177.
100. Sibley, L. D.,, S. W. Hunter,, P. J. Brennan,, and J. L. Krahenbuhl. 1988. Mycobacterial lipoarabinomannan inhibits gamma interferon-mediated activation of macrophages. Infect. Immun. 56: 1232 1236.
101. Sirakova, T. D.,, A. K. Thirumala,, V. S. Dubey,, H. Sprecher,, and P. E. Kolattukudy. 2001. The Mycobacterium tuberculosis pks2 gene encodes the synthase for the hepta- and octamethyl- branched fatty acids required for sulfolipid synthesis. J. Biol. Chem. 276: 16833 16839.
102. Takayama, K.,, N. Qureshi,, and H. K. Schnoes. 1978. Isolation and characterization of monounsaturated long-chain fatty acids in Mycobacterium tuberculosis. Lipids 13: 575 579.
103. Takayama, K.,, and N. Qureshi,. 1984. Structure and synthesis of lipids, p. 315 344. In G. B. Kubica, and L. G. Wayne (ed.), The Mycobacteria. A Sourcebook. Marcel Dekker, Inc., New York, N.Y.
104. Telenti, A.,, W. J. Philipp,, S. Sreevatsan,, C. Bernasconi,, K. E. Stockbauer,, B. Wieles,, J. M. Musser,, and W. R. Jacobs, Jr. 1997. The emb operon, a gene cluster of Mycobacterium tuberculosis involved in resistance to ethambutol. Nat. Med. 3: 567 570.
105. Vachula, M.,, T. J. Holzer,, and B. R. Andersen. 1989. Suppression of monocyte oxidative response by phenolic glycolipid I of Mycobacterium leprae. J. Immunol. 142: 1696 1701.
106. Vercellone, A.,, J. Nigou,, and G. Puzo. 1998. Relationships between the structure and the roles of lipoarabinomannans and related glycoconjugates in tuberculosis pathogenesis. Front. Biosci. 3: e149 e163.
107. Vignal, C.,, Y. Guérardel,, L. Kremer,, M. Masson,, D. Legrand,, J. Mazurier,, and E. Elass. 2003. Lipomannans, but not lipoarabinomannans, purified from Mycobacterium chelonae and Mycobacterium kansasii induce TNF-α and IL-8 secretion by a CD14-TLR2 dependent mechanism. J. Immunol. 171: 2014 2023.
108. Watanabe, M.,, Y. Aoyagi,, M. Ridell,, and D. E. Minnikin. 2001. Separation and characterization of individual mycolic acids in representative mycobacteria. Microbiology 147: 1825 1837.
109. Watanabe, M.,, Y. Aoyagi,, H. Mitome,, T. Fujita,, H. Naoki,, M. Ridell,, and D. E. Minnikin. 2002. Location of functional groups in mycobacteria meromycolate chain: the recognition of new structural principles in mycolic acids. Microbiology 148: 1881 1902.
110. Wolucka, P. J.,, M. McNeil,, E. de Hoffmann,, T. Chojnacki,, and P. J. Brennan. 1994. Recognition of the lipid intermediate for arabinogalactan/arabinomannan biosynthesis and its relation to the mode of action of ethambutol on mycobacteria. J. Biol. Chem. 269: 23328 23335.
111. Wong, H. C.,, G. Liu,, Y. M. Zhang,, C. O. Rock,, and J. Zheng. 2002. The solution structure of acyl carrier protein from Mycobacterium tuberculosis. J. Biol. Chem. 277: 15874 15880.
112. Woodbury, J. L.,, and W. W. Barrow. 1989. Radiolabelling of Mycobacterium avium oligosaccharide determinant and use in macrophage studies. J. Gen. Microbiol. 135: 1875 1884.
113. Yamagami, H.,, T. Matsumoto,, N. Fujiwara,, T. Arakawa,, K. Kaneda,, I. Yano,, and K. Kobayashi. 2001. Trehalose 6,6'-dimycolate (cord factor) of Mycobacterium tuberculosis induces foreign-body and hypersensitivity-type granulomas in mice. Infect. Immun. 69: 810 815.
114. Yuan, Y.,, R. E. Lee,, G. S. Besra,, J. T. Belisle,, and C. E. Barry III. 1995. Identification of a gene involved in the biosynthesis of cyclopropanated mycolic acids in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 92: 6630 6634.
115. Yuan, Y.,, and C. E. Barry III. 1996. A common mechanism for the biosynthesis of methoxy and cyclopropyl mycolic acids in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 93: 12828 12833.
116. Yuan, Y.,, D. C. Crane,, J. M. Musser,, S. Streevatsan,, and C. E. Barry III. 1997. MMAS-1, the branch point between cis- and trans-cyclopropane containing oxygenated mycolates in Mycobacterium tuberculosis. J. Biol. Chem. 272: 10041 10049.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error