1887

Chapter 20 : General Metabolism and Biochemical Pathways of Tubercle Bacilli

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

General Metabolism and Biochemical Pathways of Tubercle Bacilli, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817657/9781555812959_Chap20-1.gif /docserver/preview/fulltext/10.1128/9781555817657/9781555812959_Chap20-2.gif

Abstract:

This chapter focuses on the postgenomic advances, where a functional understanding of the genes and pathways predicted for intermediary metabolism in the complex has been obtained, as the framework for the chapter. An interesting spectrum of attenuation was obtained, from very slight in mutants with mutations in sulfur amino acid biosynthesis through strongly attenuated for proline, tryptophan, and leucine auxotrophs to lethal deletions that could not be rescued by the addition of amino acids to culture media for aspartokinase and for the gene in the shared part of aromatic amino biosynthesis. The principal carbon sources that are supplied to in culture are glucose, glycerol, lipids, and the carbon skeletons of amino acids. Regardless of which are used, they must be both dissimilated, via acetyl-CoA, to provide energy, and assimilated, notably into the copious glycans and lipids that characterize the mycobacteria. The publication of the annotated genome sequence has provided the basis for renewed interest in its metabolism. All the annotated genes have been modeled into biochemical pathways, and functional genomics has already provided new insights into its physiology, its regulation, and its relation to virulence. Patterns are already emerging, with genes involved in stress response, lipid catabolism, and anaerobiosis being linked to the persistence of tubercle bacilli. Together with biochemical demonstrations to verify suggested metabolic pathways or confirmation that individual genes encode key enzymes, these approaches provide a powerful weapon against the tubercle bacilli.

Citation: Wheeler P, Blanchard J. 2005. General Metabolism and Biochemical Pathways of Tubercle Bacilli, p 309-340. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch20

Key Concept Ranking

Aromatic Amino Acid Biosynthesis
0.43729573
Nuclear Magnetic Resonance Spectroscopy
0.40691632
0.43729573
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Biosynthesis of the aspartate family of amino acids. Unbroken arrows show chemical transformations, and broken arrows show pathways of several transformations.

Citation: Wheeler P, Blanchard J. 2005. General Metabolism and Biochemical Pathways of Tubercle Bacilli, p 309-340. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Branched chain amino acid biosynthesis. Unbroken arrows show chemical transformations, and broken arrows show pathways of several transformations.

Citation: Wheeler P, Blanchard J. 2005. General Metabolism and Biochemical Pathways of Tubercle Bacilli, p 309-340. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Sulfur metabolism—cysteine. Unbroken arrows show chemical transformations, and broken arrows show pathways of several transformations.

Citation: Wheeler P, Blanchard J. 2005. General Metabolism and Biochemical Pathways of Tubercle Bacilli, p 309-340. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Sulfur metabolism—methionine. Unbroken arrows show chemical transformations, and broken arrows show pathways of several transformations.

Citation: Wheeler P, Blanchard J. 2005. General Metabolism and Biochemical Pathways of Tubercle Bacilli, p 309-340. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Carbon metabolism and its links to metabolism in general, including lipid metabolism. Unbroken arrows show chemical transformations, and broken arrows show pathways of several transformations. OAA, oxaloacetate; PEP, phosphopyruvate.

Citation: Wheeler P, Blanchard J. 2005. General Metabolism and Biochemical Pathways of Tubercle Bacilli, p 309-340. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Carbon metabolism and its relation to cell wall biosynthesis. Unbroken arrows show chemical transformations, and broken arrows show pathways of several transformations.

Citation: Wheeler P, Blanchard J. 2005. General Metabolism and Biochemical Pathways of Tubercle Bacilli, p 309-340. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Respiration of . Electron flow is shown by unbroken arrows; broken arrows are used to show three other metabolic steps linking involved substrates.

Citation: Wheeler P, Blanchard J. 2005. General Metabolism and Biochemical Pathways of Tubercle Bacilli, p 309-340. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817657.chap20
1. Alexander, F. W.,, E. Sandmeier,, P. K. Mehta,, and P. Christen. 1994. Evolutionary relationships among pyridoxal-5'-phosphate-dependent enzymes. Regio-specific alpha, beta and gamma families. Eur. J. Biochem. 219: 953 960.
2. Allaudeen, H. S.,, and T. Ramakrishnan. 1971. Biosynthesis of isoleucine and valine in Mycobacterium tuberculosis H 37 Rv. 3. Purification and properties of acetohydroxy acid isomeroreductase. Indian J. Biochem. 8: 23 27.
3. Allaudeen, H. S.,, and T. Ramakrishnan. 1968. Biosynthesis of isoleucine and valine in Mycobacterium tuberculosis H37 Rv. Arch. Biochem. Biophys. 125: 199 209.
4. Allaudeen, H. S.,, and T. Ramakrishnan. 1970. Biosynthesis of isoleucine and valine in Mycobacterium tuberculosis H37Rv. II. Purification and properties of acetohydroxy acid isomerase. Arch. Biochem. Biophys. 140: 245 256.
5. Andersen, A. B.,, and E. B. Hansen. 1993. Cloning of the lysA gene from Mycobacterium tuberculosis. Gene 124: 105 109.
6. Argyrou, A.,, and J. S. Blanchard. 2001. Mycobacterium tuberculosis lipoamide dehydrogenase is encoded by Rv0462 and not by the lpdA or lpdB genes. Biochemistry 40: 11353 11363.
7. Artman, M.,, and A. Bekierkunst. 1961. Studies on Mycobacterium tuberculosis H37Rv grown in vivo. Am. Rev. Respir. Dis. 83: 100 106.
8. Bachhawat, N.,, and S. C. Mande. 1999. Identification of the INO1 gene of Mycobacterium tuberculosis H37Rv reveals a novel class of inositol-1-phosphate synthase enzyme. J. Mol. Biol. 291: 531 536.
9. Bai, N. J.,, M. R. Pai,, P. S. Murthy,, and T. A. Venkitasubramanian. 1974. Effect of oxygen tension on the aldolases of Mycobacterium tuberculosis H37Rv. FEBS Lett. 45: 68 70.
10. Bai, N. J.,, M. R. Pai,, P. S. Murthy,, and T. A. Venkitasubramanian. 1975. Fructose-1,6-diphosphate aldolase of Mycobacterium tuberculosis H37Rv. Indian J. Biochem. Biophys. 12: 181 183.
11. Bai, N. J.,, M. R. Pai,, P. S. Murthy,, and T. A. Venkitasubramanian. 1982. Fructose-bisphosphate aldolases from mycobacteria. Methods Enzymol. Ser. E 90: 241 250.
12. Bai, N. J.,, M. R. Pai,, P. S. Murthy,, and T. A. Venkitasubramanian. 1975. Pathways of carbohydrate metabolism in Mycobacterium tuberculosis H37Rv. Can. J. Microbiol. 21: 1688 1691.
13. Barclay, R.,, and P. R. Wheeler,. 1989. Metabolism of mycobacteria in tissues, p. 37 106. In C. Ratledge,, J. Stanford,, and G. Grange (ed.), The Biology of the Mycobacteria, vol. 3. Academic Press, Ltd., London, United Kingdom.
14. Barona-Gomez, F.,, and D. A. Hodgson. 2003. Occurrence of a putative ancient-like isomerase involved in histidine and tryptophan biosynthesis. EMBO Rep. 4: 296 300.
15. Baulard, A. R.,, S. S. Gurcha,, K. Gouffi,, C. Locht,, and G. S. Besra. 2003. In vivo interaction between the polyprenol phosphate mannose synthase Ppm1 and the integral membrane protein ppm2 from Mycobacterium smegmatis revealed by a bacterial two-hybrid system. J. Biol. Chem. 278: 2242 2248.
16. Beaman, T. W.,, J. S. Blanchard,, and S. L. Roderick. 1998. The conformational change and active site structure of tetrahydrodipicolinate N-succinyltransferase. Biochemistry 37: 10363 10369.
17. Besra, G. S.,, and D. Chatterjee,. 1994. Lipids and carbohydrates of Mycobacterium tuberculosis, p. 285 306. In B. R. Bloom (ed.), Tuberculosis: Pathogenesis, Protection, and Control. ASM Press, Washington, D.C.
18. Besra, G. S.,, C. B. Morehouse,, C. M. Rittner,, C. J. Waechter,, and P. J. Brennan. 1997. Biosynthesis of mycobacterial lipoarabinomannan. J. Biol. Chem. 272: 18460 18466.
19. Born, T. L.,, and J. S. Blanchard. 1999. Enzyme-catalyzed acylation of homoserine: mechanistic characterization of the Escherichia coli metA-encoded homoserine transsuccinylase. Biochemistry 38: 14416 14423.
20. Born, T. L.,, M. Franklin,, and J. S. Blanchard. 2000. Enzymecatalyzed acylation of homoserine: mechanistic characterization of the Haemophilus influenzae met2-encoded homoserine transacetylase. Biochemistry 39: 8556 8564.
21. Bowman, K. G.,, and C. R. Bertozzi. 1999. Carbohydrate sulfotransferases: mediators of extracellular communication. Chem. Biol. 6: R9 R22.
22. Brakhage, A. A.,, and K. Langfelder. 2002. Menacing mold: the molecular biology of Aspergillus fumigatus. Annu. Rev. Microbiol. 56: 433 455.
23. Brodie, A. F.,, and D. L. Gutnick,. 1972. Electron transport and oxidative phosphorylation in microbial systems, p. 599 681. In T. E. King, and M. Klingenberg (ed.), Electron and Coupled Energy Transfer Systems, vol. 1B. Marcel Dekker Inc., New York, N.Y.
24. Butcher, P. D.,, J. A. Mangan,, and I. M. Monahan. 1998. Intracellular gene expression. Analysis of RNA from mycobacteria in macrophages using RT-PCR. Methods Mol. Biol. 101: 285 306.
25. Camacho, L. R.,, D. Ensergueix,, E. Perez,, B. Gicquel,, and C. Guilhot. 1999. Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol. Microbiol. 34: 257 267.
26. Camargo, E. E.,, J. A. Kertcher,, S. M. Larson,, B. S. Tepper,, and H. N. Wagner, Jr. 1982. Radiometric measurement of differential metabolism of fatty acid by mycobacteria. Int. J. Lepr. Other Mycobact. Dis. 50: 200 204.
27. Campbell, J. W.,, and J. E. Cronan, Jr. 2002. The enigmatic Escherichia coli fadE gene is yafH. J. Bacteriol. 184: 3759 3764.
28. Camus, J. C.,, M. J. Pryor,, C. Medigue,, and S. T. Cole. 2002. Re-annotation of the genome sequence of Mycobacterium tuberculosis H37Rv. Microbiology 148: 2967 2973.
29. Chen, J. M.,, D. C. Alexander,, M. A. Behr,, and J. Liu. 2003 . Mycobacterium bovis BCG vaccines exhibit defects in alanine and serine catabolism. Infect. Immun. 71: 708 716.
30. Cho, Y.,, V. Sharma,, and J. C. Sacchettini. 2003. Crystal structure of ATP phosphoribosyltransferase from Mycobacterium tuberculosis. J. Biol. Chem. 278: 8333 8339.
31. Chopra, S.,, H. Pai,, and A. Ranganathan. 2002. Expression, purification, and biochemical characterization of Mycobacterium tuberculosis aspartate decarboxylase, PanD. Protein Expression Purif. 25: 533 540.
32. Cirilli, M.,, R. Zheng,, G. Scapin,, and J. S. Blanchard. 1998. Structural symmetry: the three-dimensional structure of Haemophilus influenzae diaminopimelate epimerase. Biochemistry 37: 16452 16458.
33. Cirillo, J. D.,, T. R. Weisbrod,, L. Pascopella,, B. R. Bloom,, and W. R. Jacobs, Jr. 1994. Isolation and characterization of the aspartokinase and aspartate semialdehyde dehydrogenase operon from mycobacteria. Mol. Microbiol. 11: 629 639.
34. Cole, S. T.,, R. Brosch,, J. Parkhill,, T. Garnier,, C. Churcher,, D. Harris,, S. V. Gordon,, K. Eiglmeier,, S. Gas,, C. E. Barry III,, F. Tekaia,, K. Badcock,, D. Basham,, D. Brown,, T. Chillingworth,, R. Connor,, R. Davies,, K. Devlin,, T. Feltwell,, S. Gentles,, N. Hamlin,, S. Holroyd,, T. Hornsby,, K. Jagels,, A. Krogh,, J. Mclean,, S. Moule,, L. Murphy,, K. Oliver,, J. Osborne,, M. A. Quail,, M.-A. Rajandream,, J. Rogers,, S. Rutter,, K. Seeger,, J. Skelton,, R. Squares,, S. Squares,, J. E. Sulstron,, K. Taylor,, S. Whitehead,, and B. G. Barrell. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393: 537 544. (Erratum, 396:190, 1998).
35. Cole, S. T.,, K. Eiglmeier,, J. Parkhill,, K. D. James,, N. R. Thomson,, P. R. Wheeler,, N. Honore,, T. Garnier,, C. Churcher,, D. Harris,, K. Mungall,, D. Basham,, D. Brown,, T. Chillingworth,, R. Connor,, R. M. Davies,, K. Devlin,, S. Duthoy,, T. Feltwell,, A. Fraser,, N. Hamlin,, S. Holroyd,, T. Hornsby,, K. Jagels,, C. Lacroix,, J. Maclean,, S. Moule,, L. Murphy,, K. Oliver,, M. A. Quail,, M.-A. Rajandream,, K. M. Rutherford,, S. Rutter,, K. Seeger,, S. Simon,, M. Simmonds,, J. Skelton,, R. Squares,, S. Squares,, K. Stevens,, K. Taylor,, S. Whitehead,, J. R. Woodward,, and B. G. Barrell. 2001. Massive gene decay in the leprosy bacillus. Nature 409: 1007 1011.
36. Collins, D. M.,, T. Wilson,, S. Campbell,, B. M. Buddle,, B. J. Wards,, G. Hotter,, and G. W. De Lisle. 2002. Production of avirulent mutants of Mycobacterium bovis with vaccine properties by the use of illegitimate recombination and screening of stationary-phase cultures. Microbiology 148: 3019 3027.
37. Couture, M.,, S. R. Yeh,, B. A. Wittenberg,, J. B. Wittenberg,, Y. Ouellet,, D. L. Rousseau,, and M. Guertin. 1999. A cooperative oxygen-binding hemoglobin from Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 96: 11223 11228.
38. Cox, J. S.,, B. Chen,, M. McNeil,, and W. R. Jacobs, Jr. 1999. Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 402: 79 83.
39. Denning, D. W.,, M. J. Anderson,, G. Turner,, J. P. Latge,, and J. W. Bennett. 2002. Sequencing the Aspergillus fumigatus genome. Lancet Infect. Dis. 2: 251 253.
40. De Smet, K. A.,, A. Weston,, I. N. Brown,, D. B. Young,, and B. D. Robertson. 2000. Three pathways for trehalose biosynthesis in mycobacteria. Microbiology 146: 199 208.
41. Deyhle, R. R.,, and L. L. Barton. 1977. Nicotinamide adenine dinucleotide-independent formate dehydrogenase in Mycobacterium phlei. Can. J. Microbiol. 23: 125 130.
42. Duine, J. A. 1999. Thiols in formaldehyde dissimilation and detoxification. Biofactors 10: 201 206.
43. Fahey, R. C. 2001. Novel thiols of prokaryotes. Annu. Rev. Microbiol. 55: 333 356.
44. Feng, Z.,, N. E. Caceres,, G. Sarath,, and R. G. Barletta. 2002. Mycobacterium smegmatis L-alanine dehydrogenase (Ald) is required for proficient utilization of alanine as a sole nitrogen source and sustained anaerobic growth. J. Bacteriol. 184: 5001 5010.
45. Fernandes, N. D.,, and P. E. Kolattukudy. 1996. Cloning, sequencing and characterization of a fatty acid synthase-encoding gene from Mycobacterium tuberculosis var. bovis BCG. Gene 170: 95 99.
46. Fitzmaurice, A. M.,, and P. E. Kolattukudy. 1998. An acyl- CoA synthase ( acoas) gene adjacent to the mycocerosic acid synthase ( mas) locus is necessary for mycocerosyl lipid synthesis in Mycobacterium tuberculosis var. bovis BCG. J. Biol. Chem. 273: 8033 8039.
47. Fitzmaurice, A. M.,, and P. E. Kolattukudy. 1997. Open reading frame 3, which is adjacent to the mycocerosic acid synthase gene, is expressed as an acyl coenzyme A synthase in Mycobacterium bovis BCG. J. Bacteriol. 179: 2608 2615.
48. Garnier, T.,, K. Eiglmeier,, J. C. Camus,, N. Medina,, H. Mansoor,, M. Pryor,, S. Duthoy,, S. Grondin,, C. Lacroix,, C. Monsempe,, S. Simon,, B. Harris,, R. Atkin,, J. Doggett,, R. Mayes,, L. Keating,, P. R. Wheeler,, J. Parkhill,, B. G. Barrell,, S. T. Cole,, S. V. Gordon,, and R. G. Hewinson. 2003. The complete genome sequence of Mycobacterium bovis. Proc. Natl. Acad. Sci. USA 100: 7877 7882.
49. Giegel, D. A.,, V. Massey,, and C. H. Williams. 1990. L-Lactate 2-monooxygenase from Mycobacterium smegmatis. Cloning, nucleotide sequence and primary structure homology within an enzyme family. J. Biol. Chem. 265: 6626 6632.
50. Glickman, M. S.,, S. M. Cahill,, and W. R. Jacobs, Jr. 2001. The Mycobacterium tuberculosis cmaA2 gene encodes a mycolic acid trans-cyclopropane synthetase. J. Biol. Chem. 276: 2228 2233.
51. Glickman, M. S.,, J. S. Cox,, and W. R. Jacobs, Jr. 2000. A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of Mycobacterium tuberculosis. Mol. Cell 5: 717 727.
52. Glickman, M. S.,, and W. R. Jacobs, Jr. 2001. Microbial pathogenesis of Mycobacterium tuberculosis: dawn of a discipline. Cell 104: 477 485.
53. Gokulan, K.,, B. Rupp,, M. S. Pavelka Jr.,, W. R. Jacobs, Jr.,, and J. C. Sacchettini. 2003. Crystal structure of Mycobacterium tuberculosis diaminopimelate decarboxylase, an essential enzyme in bacterial lysine biosynthesis. J. Biol. Chem. 278: 18588 18596.
54. Goldman, D. S. 1961. Enzyme systems in mycobacteria. Adv. Tuberc. Res. 11: 1 44.
55. Guleria, I.,, R. Teitelbaum,, R. A. McAdam,, G. Kalpana,, W. R. Jacobs, Jr.,, and B. R. Bloom. 1996. Auxotrophic vaccines for tuberculosis. Nat. Med. 2: 334 337.
56. Gupta, A.,, P. H. Kumar,, T. K. Dineshkumar,, U. Varshney,, and H. S. Subramanya. 2001. Crystal structure of Rv2118c: an AdoMet-dependent methyltransferase from Mycobacterium tuberculosis H37Rv. J. Mol. Biol. 312: 381 391.
57. Gurcha, S. S.,, A. R. Baulard,, L. Kremer,, C. Locht,, D. B. Moody,, W. Muhlecker,, C. E. Costello,, D. C. Crick,, P. J. Brennan,, and G. S. Besra. 2002. Ppm1, a novel polyprenol monophosphomannose synthase from Mycobacterium tuberculosis. Biochem. J. 365: 441 450.
58. Hensel, M.,, J. E. Shea,, C. Gleeson,, M. D. Jones,, E. Dalton,, and D. W. Holden. 1995. Simultaneous identification of bacterial virulence genes by negative selection. Science 269: 400 403.
59. Hiltunen, J. K.,, and Y. Qin. 2000. Beta-oxidation—strategies for the metabolism of a wide variety of acyl-CoA esters. Biochim. Biophys. Acta 1484: 117 128.
60. Hondalus, M. K.,, S. Bardarov,, R. Russell,, J. Chan,, W. R. Jacobs, Jr.,, and B. R. Bloom. 2000. Attenuation of and protection induced by a leucine auxotroph of Mycobacterium tuberculosis. Infect. Immun. 68: 2888 2898.
61. Honer Zu Bentrup, K.,, A. Miczak,, D. L. Swenson,, and D. G. Russell. 1999. Characterization of activity and expression of isocitrate lyase in Mycobacterium avium and Mycobacterium tuberculosis. J. Bacteriol. 181: 7161 7167.
62. Hsieh, P. C.,, B. C. Shenoy,, D. Samols,, and N. F. Phillips. 1996. Cloning, expression, and characterization of polyphosphate glucokinase from Mycobacterium tuberculosis. J. Biol. Chem. 271: 4909 4915.
63. Huang, C. C.,, C. V. Smith,, M. S. Glickman,, W. R. Jacobs, Jr.,, and J. C. Sacchettini. 2002. Crystal structures of mycolic acid cyclopropane synthases from Mycobacterium tuberculosis. J. Biol. Chem. 277: 11559 11569.
64. Ishaque, M. 1992. Energy generation mechanisms in the in vitro-grown Mycobacterium lepraemurium. Int. J. Lepr. Other Mycobact. Dis. 60: 61 70.
65. Jackson, M.,, D. C. Crick,, and P. J. Brennan. 2000. Phosphatidylinositol is an essential phospholipid of mycobacteria. J. Biol. Chem. 275: 30092 30099.
66. Kana, B. D.,, E. A. Weinstein,, D. Avarbock,, S. S. Dawes,, H. Rubin,, and V. Mizrahi. 2001. Characterization of the cydAB-encoded cytochrome bd oxidase from Mycobacterium smegmatis. J. Bacteriol. 183: 7076 7086.
67. Kaushal, D.,, B. G. Schroeder,, S. Tyagi,, T. Yoshimatsu,, C. Scott,, C. Ko,, L. Carpenter,, J. Mehrotra,, Y. C. Manabe,, R. D. Fleischmann,, and W. R. Bishai. 2002. Reduced immunopathology and mortality despite tissue persistence in a Mycobacterium tuberculosis mutant lacking alternative sigma factor, SigH. Proc. Natl. Acad. Sci. USA 99: 8330 8335.
68. Kikuchi, S.,, D. L. Rainwater,, and P. E. Kolattukudy. 1992. Purification and characterization of an unusually large fatty acid synthase from Mycobacterium tuberculosis var. bovis BCG. Arch. Biochem. Biophys. 295: 318 326.
69. Kim, S.,, Y. J. Jo,, S. H. Lee,, H. Motegi,, K. Shiba,, M. Sassanfar,, and S. A. Martinis. 1998. Biochemical and phylogenetic analyses of methionyl-tRNA synthetase isolated from a pathogenic microorganism, Mycobacterium tuberculosis. FEBS Lett. 427: 259 262.
70. Klutts, J. S.,, K. Hatanaka,, Y. T. Pan,, and A. D. Elbein. 2002. Biosynthesis of D-arabinose in Mycobacterium smegmatis: specific labeling from D-glucose. Arch. Biochem. Biophys. 398: 229 239.
71. Klutts, S.,, I. Pastuszak,, V. K. Edavana,, P. Thampi,, Y. T. Pan,, E. C. Abraham,, J. D. Carroll,, and A. D. Elbein. 2003. Purification, cloning, expression, and properties of mycobacterial trehalose-phosphate phosphatase. J. Biol. Chem. 278: 2093 2100.
72. Koledin, T.,, G. L. Newton,, and R. C. Fahey. 2002. Identification of the mycothiol synthase gene ( mshD) encoding the acetyltransferase producing mycothiol in actinomycetes. Arch. Microbiol. 178: 331 337.
73. Koo, C. W.,, and J. S. Blanchard. 1999. Chemical mechanism of Haemophilus influenzae diaminopimelate epimerase. Biochemistry 38: 4416 4422.
74. Kordulakova, J.,, M. Gilleron,, K. Mikusova,, G. Puzo,, P. J. Brennan,, B. Gicquel,, and M. Jackson. 2002. Definition of the first mannosylation step in phosphatidylinositol mannoside synthesis. PimA is essential for growth of mycobacteria. J. Biol. Chem. 277: 31335 31344.
75. LaMarca, B. B. D.,, W. Zhu,, J. E. L. Arcenaux,, B. R. Byers,, and M. D. Lundrigan. 2004. Participation of fad and mbt genes in synthesis of mycobactin in Mycobacterium smegmatis. J. Bacteriol. 186: 374 382.
76. Lee, R. E.,, P. J. Brennan,, and G. S. Besra. 1998. Synthesis of beta-D-arabinofuranosyl-1-monophosphoryl polyprenols: examination of their function as mycobacterial arabinosyl transferase donors. Bioorg. Med. Chem. Lett. 8: 951 954.
77. Li, M. S.,, I. M. Monahan,, S. J. Waddell,, J. A. Mangan,, S. L. Martin,, M. J. Everett,, and P. D. Butcher. 2001. cDNA-RNA subtractive hybridization reveals increased expression of mycocerosic acid synthase in intracellular Mycobacterium bovis BCG. Microbiology 147: 2293 2305.
78. Lorenz, M. C.,, and G. R. Fink. 2001. The glyoxylate cycle is required for fungal virulence. Nature 412: 83 86.
79. Losel, D. M., 1988. Fungal lipids, p. 699 806. In C. Ratledge, and S. G. Wilkinson (ed.), Microbial Lipids, vol. 1. Academic Press, Ltd., London, United Kingdom.
80. Ma, Y.,, J. A. Mills,, J. T. Belisle,, V. Vissa,, M. Howell,, K. Bowlin,, M. S. Scherman,, and M. McNeil. 1997. Determination of the pathway for rhamnose biosynthesis in mycobacteria: cloning, sequencing and expression of the Mycobacterium tuberculosis gene encoding alpha- D-glucose-1-phosphate thymidylyltransferase. Microbiology 143: 937 945.
81. Ma, Y.,, F. Pan,, and M. McNeil. 2002. Formation of dTDPrhamnose is essential for growth of mycobacteria. J. Bacteriol. 184: 3392 3395.
82. Ma, Y.,, R. J. Stern,, M. S. Scherman,, V. D. Vissa,, W. Yan,, V. C. Jones,, F. Zhang,, S. G. Franzblau,, W. H. Lewis,, and M. R. McNeil. 2001. Drug targeting Mycobacterium tuberculosis cell wall synthesis: genetics of dTDP-rhamnose synthetic enzymes and development of a microtiter plate-based screen for inhibitors of conversion of dTDP-glucose to dTDPrhamnose. Antimicrob. Agents Chemother. 45: 1407 1416.
83. Maher, P. A. 1993. Inhibition of the tyrosine kinase activity of the fibroblast growth factor receptor by the methyltransferase inhibitor 5'-methylthioadenosine. J. Biol. Chem. 268: 4244 4249.
84. Manganelli, R.,, M. I. Voskuil,, G. K. Schoolnik,, E. Dubnau,, M. Gomez,, and I. Smith. 2002. Role of the extracytoplasmicfunction sigma factor sigma(H) in Mycobacterium tuberculosis global gene expression. Mol. Microbiol. 45: 365 374.
85. McAdam, R. A.,, S. Quan,, D. A. Smith,, S. Bardarov,, J. C. Betts,, F. C. Cook,, E. U. Hooker,, A. P. Lewis,, P. Woollard,, M. J. Everett,, P. T. Lukey,, G. J. Bancroft,, W. R. Jacobs, Jr.,, and K. Duncan. 2002. Characterization of a Mycobacterium tuberculosis H37Rv transposon library reveals insertions in 351 ORFs and mutants with altered virulence. Microbiology 148: 2975 2986.
86. McAdam, R. A.,, T. R. Weisbrod,, J. Martin,, J. D. Scuderi,, A. M. Brown,, J. D. Cirillo,, B. R. Bloom,, and W. R. Jacobs, Jr. 1995. In vivo growth characteristics of leucine and methionine auxotrophic mutants of Mycobacterium bovis BCG generated by transposon mutagenesis. Infect. Immun. 63: 1004 1012.
87. McKinney, J. D.,, K. Honer zu Bentrup,, E. J. Munoz-Elias,, A. Miczak,, B. Chen,, W. T. Chan,, D. Swenson,, J. C. Sacchettini,, W. R. Jacobs, Jr., and D. G. Russell. 2000. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406: 735 738.
88. Miesel, L.,, T. R. Weisbrod,, J. A. Marcinkeviciene,, R. Bittman,, and W. R. Jacobs, Jr. 1998. NADH dehydrogenase defects confer isoniazid resistance and conditional lethality in Mycobacterium smegmatis. J. Bacteriol. 180: 2459 2467.
89. Minnikin, D. E., 1982. Lipids: complex lipids, their chemistry, biosynthesis and roles, p. 95 184. In C. Ratledge, and J. Stanford (ed.), The Biology of the Mycobacteria, vol. 1. Academic Press Ltd., London, United Kingdom.
90. Minnikin, D. E.,, L. Kremer,, L. G. Dover,, and G. S. Besra. 2002. The methyl-branched fortifications of Mycobacterium tuberculosis. Chem. Biol. 9: 545 553.
91. Monahan, I.,, J. Betts,, D. Banerjee,, and P. Butcher. 2001. Differential expression of mycobacterial proteins following phagocytosis by macrophages. Microbiology 147: 459 471.
92. Mori, T. 1975. Biochemical properties of cultivated Mycobacterium lepraemurium. Int. J. Lepr. Other Mycobact. Dis. 43: 210 217.
93. Morsczeck, C.,, S. Berger,, and G. Plum. 2001. The macrophage-induced gene ( mig) of Mycobacterium avium encodes a medium-chain acyl-coenzyme A synthetase. Biochim. Biophys. Acta. 1521: 59 65.
94. Mougous, J. D.,, R. E. Green,, S. J. Williams,, S. E. Brenner,, and C. R. Bertozzi. 2002. Sulfotransferases and sulfatases in mycobacteria. Chem. Biol. 9: 767 776.
95. Mougous, J. D.,, M. D. Leavell,, R. H. Senaratne,, C. D. Leigh,, S. J. Williams,, L. W. Riley,, J. A. Leary,, and C. R. Bertozzi. 2002. Discovery of sulfated metabolites in mycobacteria with a genetic and mass spectrometric approach. Proc. Natl. Acad. Sci. USA 99: 17037 17042.
95a.. Movahedzadeh, F.,, S. C. G. Rison,, P. R. Wheeler,, S. L. Kendall,, T. J. Larson,, and N. G. Stoker. The Mycobacterium tuberculosis Rv1099c gene encodes a GlpX-like class II fructose 1,6 bisphosphatase. Microbiology, in press.
96. Movahedzadeh, F.,, D. A. Smith,, R. A. Norman,, P. Dindayala,, J. Murray-Rust,, D. G. Russell,, S. L. Kendall,, S. C. G. Rison,, M. S. McAlister,, G. J. Bancroft,, N. Q. McDonald,, M. Daffe,, Y. Av-Gay,, and N. G. Stoker. 2004. The Mycobacterium tuberculosis ino1 gene is essential for growth and virulence. Mol. Microbiol. 51: 1003 1014.
97. Muh, U.,, V. Massey,, and C. H. Williams, Jr. 1994. Lactate monooxygenase. I. Expression of the mycobacterial gene in Escherichia coli and site-directed mutagenesis of lysine 266. J. Biol. Chem. 269: 7982 7988.
98. Mukhopadhyay, B.,, E. M. Concar,, and R. S. Wolfe. 2001. A GTP-dependent vertebrate-type phosphoenolpyruvate carboxykinase from Mycobacterium smegmatis. J. Biol. Chem. 276: 16137 16145.
99. Murthy, P. S.,, M. M. Sisri,, and T. Ramakrishnan. 1962. Tricarboxylic acid cycle and related enzymes in cell-free extracts of Mycobacterium tuberculosis H37Rv. Biochem. J. 84: 263 269.
100. Myers, R. W.,, J. W. Wray,, S. Fish,, and R. H. Abeles. 1993. Purification and characterization of an enzyme involved in oxidative carbon-carbon bond cleavage reactions in the methionine salvage pathway of Klebsiella pneumoniae. J. Biol. Chem. 268: 24785 24791.
101. Nagasawa, T.,, H. Kanzaki,, and H. Yamada. 1984. Cystathionine gamma-lyase of Streptomyces phaeochromogenes. The occurrence of cystathionine gamma-lyase in filamentous bacteria and its purification and characterization. J. Biol. Chem. 259: 10393 10403.
102. Nathan, C.,, and M. U. Shiloh. 2000. Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc. Natl. Acad. Sci. USA 97: 8841 8848.
103. Newton, G. L.,, K. Arnold,, M. S. Price,, C. Sherrill,, S. B. Delcardayre,, Y. Aharonowitz,, G. Cohen,, J. Davies,, R. C. Fahey,, and C. Davis. 1996. Distribution of thiols in microorganisms: mycothiol is a major thiol in most actinomycetes. J. Bacteriol. 178: 1990 1995.
104. Newton, G. L.,, Y. Av-Gay,, and R. C. Fahey. 2000. N-Acetyl-1- D- myo-inosityl-2-amino-2-deoxy-alpha- D-glucopyranoside deacetylase (MshB) is a key enzyme in mycothiol biosynthesis. J. Bacteriol. 182: 6958 6963.
105. Newton, G. L.,, C. A. Bewley,, T. J. Dwyer,, R. Horn,, Y. Aharonowitz,, G. Cohen,, J. Davies,, D. J. Faulkner,, and R. C. Fahey. 1995. The structure of U17 isolated from Streptomyces clavuligerus and its properties as an antioxidant thiol. Eur. J. Biochem. 230: 821 825.
106. Newton, G. L.,, T. Koledin,, B. Gorovitz,, M. Rawat,, R. C. Fahey,, and Y. Av-Gay. 2003. The glycosyltransferase gene encoding the enzyme catalyzing the first step of mycothiol biosynthesis ( mshA). J. Bacteriol. 185: 3476 3479.
107. Newton, G. L.,, M. D. Unson,, S. J. Anderberg,, J. A. Aguilera,, N. N. Oh,, S. B. delCardayre,, Y. Av-Gay,, and R. C. Fahey. 1999. Characterization of Mycobacterium smegmatis mutants defective in 1- D- myo-inosityl-2-amino-2-deoxy-alpha- D-glucopyranoside and mycothiol biosynthesis. Biochem. Biophys. Res. Commun. 255: 239 244.
108. Nigou, J.,, L. G. Dover,, and G. S. Besra. 2002. Purification and biochemical characterization of Mycobacterium tuberculosis SuhB, an inositol monophosphatase involved in inositol biosynthesis. Biochemistry 41: 4392 4398.
109. Norin, A.,, P. W. Van Ophem,, S. R. Piersma,, B. Persson,, J. A. Duine,, and H. Jornvall. 1997. Mycothiol-dependent formaldehyde dehydrogenase, a prokaryotic medium-chain dehydrogenase/reductase, phylogenetically links different eukaroytic alcohol dehydrogenases—primary structure, conformational modelling and functional correlations. Eur. J. Biochem. 248: 282 289.
110. Oliveira, J. S.,, C. A. Pinto,, L. A. Basso,, and D. S. Santos. 2001. Cloning and overexpression in soluble form of functional shikimate kinase and 5-enolpyruvylshikimate 3-phosphate synthase enzymes from Mycobacterium tuberculosis. Protein Expression Purif. 22: 430 435.
111. Ouellet, H.,, Y. Ouellet,, C. Richard,, M. Labarre,, B. Wittenberg,, J. Wittenberg,, and M. Guertin. 2002. Truncated haemoglobin HbN protects Mycobacterium bovis from nitric oxide. Proc. Natl. Acad. Sci. USA 99: 5902 5907.
112. Pan, F.,, M. Jackson,, Y. Ma,, and M. McNeil. 2001. Cell wall core galactofuran synthesis is essential for growth of mycobacteria. J. Bacteriol. 183: 3991 3998.
113. Pan, Y. T.,, J. D. Carroll,, and A. D. Elbein. 2002. Trehalosephosphate synthase of Mycobacterium tuberculosis. Cloning, expression and properties of the recombinant enzyme. Eur. J. Biochem. 269: 6091 6100.
114. Parish, T. 2003. Starvation survival response of Mycobacterium tuberculosis. J. Bacteriol. 185: 6702 6706.
115. Parish, T.,, and N. G. Stoker. 2002. The common aromatic amino acid biosynthesis pathway is essential in Mycobacterium tuberculosis. Microbiology 148: 3069 3077.
116. Patel, M. P.,, and J. S. Blanchard. 1999. Expression, purification, and characterization of Mycobacterium tuberculosis mycothione reductase. Biochemistry 38: 11827 11833.
117. Pathania, R.,, N. K. Navani,, A. M. Gardner,, P. R. Gardner,, and K. L. Dikshit. 2002. Nitric oxide scavenging and detoxification by the Mycobacterium tuberculosis haemoglobin, HbN in Escherichia coli. Mol. Microbiol. 45: 1303 1314.
118. Pathania, R.,, N. K. Navani,, G. Rajamohan,, and K. L. Dikshit. 2002. Mycobacterium tuberculosis hemoglobin HbO associates with membranes and stimulates cellular respiration of recombinant Escherichia coli. J. Biol. Chem. 277: 15293 15302.
119. Paulin, L. G.,, E. E. Brander,, and H. J. Poso. 1985. Specific inhibition of spermidine synthesis in Mycobacterium spp. By the dextro isomer of ethambutol. Antimicrob. Agents Chemother. 28: 157 159.
120. Pavelka, M. S., Jr.,, and W. R. Jacobs, Jr. 1996. Biosynthesis of diaminopimelate, the precursor of lysine and a component of peptidoglycan, is an essential function of Mycobacterium smegmatis. J. Bacteriol. 178: 6496 6507.
121. Pavelka, M. S., Jr.,, T. R. Weisbrod,, and W. R. Jacobs, Jr. 1997. Cloning of the dapB gene, encoding dihydrodipicolinate reductase, from Mycobacterium tuberculosis. J. Bacteriol. 179: 2777 2782.
122. Qureshi, N.,, N. Sathyamoorthy,, and K. Takayama. 1984. Biosynthesis of C30 to C56 fatty acids by an extract of Mycobacterium tuberculosis H37Ra. J. Bacteriol. 157: 46 52.
123. Ramakrishnan, T.,, P. S. Murthy,, and K. P. Gopinathan. 1972. Intermediary metabolism of mycobacteria. Bacteriol. Rev. 36: 65 108.
124. Ratledge, C., 1982. Nutrition, growth and metabolism, p. 186 272. In C. Ratledge, and J. Stanford (ed.), The Biology of the Mycobacteria, vol. 1. Academic Press, Ltd., London, United Kingdom.
125. Ratledge, C.,, and L. G. Dover. 2000. Iron metbolism in pathogenic bacteria. Annu. Rev. Microbiol. 54: 881 941.
126. Rawat, M.,, G. L. Newton,, M. Ko,, G. J. Martinez,, R. C. Fahey,, and Y. Av-Gay. 2002. Mycothiol-deficient Mycobacterium smegmatis mutants are hypersensitive to alkylating agents, free radicals, and antibiotics. Antimicrob. Agents Chemother. 46: 3348 3355.
127. Reed, D. J. 1995. Cystathionine. Methods Enzymol. 252: 92 102.
128. Rindi, L.,, L. Fattorini,, D. Bonanni,, E. Iona,, G. Freer,, D. Tan,, G. Deho,, G. Orefici,, and C. Garzelli. 2002. Involvement of the fadD33 gene in the growth of Mycobacterium tuberculosis in the liver of BALB/c mice. Microbiology 148: 3873 3880.
129. Rittmann, D.,, S. Schaffer,, V. F. Wendisch,, and H. Sahm. 2003. Fructose 1,6-bisphosphatase from Corynebacterium glutamicum: expression and deletion of the fbp gene and biochemical characterization of the enzyme. Arch. Microbiol. 180: 285 292.
130. Rivera-Marrero, C. A.,, J. D. Ritzenthaler,, S. A. Newburn,, J. Roman,, and R. D. Cummings. 2002. Molecular cloning and expression of a novel glycolipid sulfotransferase in Mycobacterium tuberculosis. Microbiology 148: 783 792.
131. Rosenkrands, I.,, R. A. Slayden,, J. Crawford,, C. Aagaard,, C. E. Barry III,, and P. Andersen. 2002. Hypoxic response of Mycobacterium tuberculosis studied by metabolic labelling and proteome analysis of cellular and extracellular proteins. J. Bacteriol. 184: 3485 3491.
132. Rosenkrands, I.,, K. Weldingh,, S. Jacobsen,, C. V. Hansen,, W. Florio,, I. Gianetri,, and P. Andersen. 2000. Mapping and identification of Mycobacterium tuberculosis proteins by two-dimensional gel electrophoresis, microsequencing and immunodetection. Electrophoresis 21: 935 948.
133. Sambandamurthy, V. K.,, X. Wang,, B. Chen,, R. G. Russell,, S. Derrick,, F. M. Collins,, S. L. Morris,, and W. R. Jacobs, Jr. 2002. A pantothenate auxotroph of Mycobacterium tuberculosis is highly attenuated and protects mice against tuberculosis. Nat. Med. 8: 1171 1174.
134. Sanders, D. A.,, A. G. Staines,, S. A. McMahon,, M. R. McNeil,, C. Whitfield,, and J. H. Naismith. 2001. UDP-galactopyranose mutase has a novel structure and mechanism. Nat. Struct. Biol. 8: 858 863.
135. Sareen, D.,, G. L. Newton,, R. C. Fahey,, and N. A. Buchmeier. 2003. Mycothiol is essential for growth of Mycobacterium tuberculosis Erdman. J. Bacteriol. 185: 6736 6740.
136. Sareen, D.,, M. Steffek,, G. L. Newton,, and R. C. Fahey. 2002. ATP-dependent L-cysteine:1 D- myo-inosityl 2-amino-2-deoxy-alpha- D-glucopyranoside ligase, mycothiol biosynthesis enzyme MshC, is related to class I cysteinyl-tRNA synthetases. Biochemistry 41: 6885 6890.
137. Sassetti, C. M.,, D. H. Boyd,, and E. J. Rubin. 2001. Comprehensive identification of conditionally essential genes in mycobacteria. Proc. Natl. Acad. Sci. USA 98: 12712 12717.
138. Sassetti, C. M.,, and E. J. Rubin. 2003. Genetic requirements for mycobacterial survival during infection. Proc. Natl. Acad. Sci. USA 100: 12989 12984.
139. Scherman, M. S.,, L. Kalbe-Bournonville,, D. Bush,, Y. Xin,, L. Deng,, and M. McNeil. 1996. Polyprenylphosphate-pentoses in mycobacteria are synthesized from 5-phosphoribose pyrophosphate. J. Biol. Chem. 271: 29652 29658.
140. Schnappinger, D.,, S. Ehrt,, M. I. Voskuil,, Y. Liu,, J. A. Mangan,, I. Monahan,, G. Dolganov,, B. Efron,, P. D. Butcher,, C. Nathan,, and S. G.K. 2003. Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J. Exp. Med. 198: 693 704.
141. Schroeder, B. G.,, and C. E. Barry III. 2001. The specificity of methyl transferases involved in trans mycolic acid biosynthesis in Mycobacterium tuberculosis and Mycobacterium smegmatis. Bioorg. Chem. 29: 164 177.
142. Sekowska, A.,, and A. Danchin. 2002. The methionine salvage pathway in Bacillus subtilis. BMC Microbiol. 2: 8 12.
143. Sharma, V.,, S. Sharma,, K. Hoener zu Bentrup,, J. D. McKinney,, D. G. Russell,, W. R. Jacobs, Jr.,, and J. C. Sacchettini. 2000. Structure of isocitrate lyase, a persistence factor of Mycobacterium tuberculosis. Nat. Struct. Biol. 7: 663 668.
144. Sherman, D. R.,, M. Voskuil,, D. Schnappinger,, R. Liao,, M. I. Harrell,, and G. K. Schoolnik. 2001. Regulation of the Mycobacterium tuberculosis hypoxic response gene encoding alpha- crystallin. Proc. Natl. Acad. Sci. USA 98: 7534 7539.
145. Smith, C. V.,, C. C. Huang,, A. Miczak,, D. G. Russell,, J. C. Sacchettini,, and K. Honer zu Bentrup. 2003. Biochemical and structural studies of malate synthase from Mycobacterium tuberculosis. J. Biol. Chem. 278: 1735 1743.
146. Smith, D. A.,, T. Parish,, N. G. Stoker,, and G. J. Bancroft. 2001. Characterization of auxotrophic mutants of Mycobacterium tuberculosis and their potential as vaccine candidates. Infect. Immun. 69: 1142 1150.
147. Sone, N.,, K. Nagata,, H. Kojima,, J. Tajima,, Y. Kodera,, T. Kanamaru,, S. Noguchi,, and J. Sakamoto. 2001. A novel hydrophobic diheme c-type cytochrome. Purification from Corynebacterium glutamicum and analysis of the QcrCBA operon encoding three subunit proteins of a putative cytochrome reductase complex. Biochim. Biophys. Acta 1503: 279 290.
148. Spiro, S.,, and J. R. Guest. 1991. Adaptive responses to oxygen limitation in Eschericia coli. Trends Biochem. Sci. 16: 310 314.
149. Sugantino, M.,, R. Zheng,, M. Yu,, and J. S. Blanchard. 2003. Mycobacterium tuberculosis ketopantoate hydroxymethyltransferase: tetrahydrofolate-independent hydroxymethyltransferase and enolization reactions with alpha-keto acids. Biochemistry 42: 191 199.
150. Sun, W.,, C. H. Williams, Jr.,, and V. Massey. 1997. The role of glycine 99 in L-lactate monooxygenase from Mycobacterium smegmatis. J. Biol. Chem. 272: 27065 27076.
151. Timm, J.,, F. A. Post,, L. G. Bekker,, G. B. Walther,, R. Manganelli,, W. T. Chan,, L. Tsenova,, B. Gold,, I. Smith,, G. Kaplan,, and J. D. McKinney. 2003. Differential expression of iron-, carbon-, and oxygen-responsive mycobacterial genes in the lungs of chronically infected mice and tuberculosis patients. Proc. Natl. Acad. Sci. USA 100: 14321 14326.
152. Treumann, A.,, F. Xidong,, L. McDonnell,, P. J. Derrick,, A. E. Ashcroft,, D. Chatterjee,, and S. W. Homans. 2002. 5-Methylthiopentose: a new substituent on lipoarabinomannan in Mycobacterium tuberculosis. J. Mol. Biol. 316: 89 100.
153. Trivedi, O. A.,, P. Arora,, V. Sridharan,, R. Tickoo,, D. Mohanty,, and R. S. Gokhale. 2004. Enzyme activation and transfer of fatty acids as acyl-adenylates in mycobacteria. Nature 428: 441 445.
154. Tyagi, A. K.,, T. L. Reddy,, and T. A. Venkitasubramanian. 1976. Effect of oxygen tension on oxidative phosphorylation in Mycobacterium phlei. Indian J. Biochem. Biophys. 13: 93 95.
155. Tyagi, A. K.,, T. L. Reddy,, and T. A. Venkitasubramanian. 1976. Oxidative phosphorylation in Mycobacterium tuberculosis BCG. Indian J. Biochem. Biophys. 13: 43 45.
156. Wayne, L. G.,, and G. A. Diaz. 1967. Autolysis and secondary growth of Mycobacterium tuberculosis in submerged culture. J. Bacteriol. 93: 1374 1381.
157. Wayne, L. G.,, and K. Y. Lin. 1982. Glyoxylate metabolism and adaptation of Mycobacterium tuberculosis to survival under anaerobic conditions. Infect. Immun. 37: 1042 1049.
158. Wayne, L. G.,, and C. D. Sohaskey. 2001. Nonreplicating persistence of Mycobacterium tuberculosis. Annu. Rev. Microbiol. 55: 139 163.
159. Weber, I.,, C. Fritz,, S. Ruttkowski,, A. Kreft,, and F. C. Bange. 2000. Anaerobic nitrate reductase ( narGHJI) activity of Mycobacterium bovis BCG in vitro and its contribution to virulence in immunodeficient mice. Mol. Microbiol. 35: 1017 1025.
160. Weston, A.,, R. J. Stern,, R. E. Lee,, P. M. Nassau,, D. Monsey,, S. L. Martin,, M. S. Scherman,, G. S. Besra,, K. Duncan,, and M. R. McNeil. 1997. Biosynthetic origin of mycobacterial cell wall galactofuranosyl residues. Tubercle Lung Dis. 78: 123 131.
161. Wheeler, P. R. 2003. Leprosy—clues about the biochemistry of Mycobacterium leprae and its host-dependency from the genome. World J. Microbiol. Biotechnol. 19: 1 16.
162. Wheeler, P. R. 1990. Recent research into the physiology of Mycobacterium leprae. Adv. Microb. Physiol. 31: 71 124.
163. Wheeler, P. R. 2001. Understanding the physiology of difficult, pathogenic bacteria from analysis of their genome sequences. J. Med. Microbiol. 51: 1 4.
164. Wheeler, P. R.,, K. Bulmer,, and C. Ratledge. 1991. Fatty acid oxidation and the beta-oxidation complex in Mycobacterium leprae and two axenically cultivable mycobacteria that are pathogens. J. Gen. Microbiol. 137: 885 893.
165. Wheeler, P. R.,, and C. Ratledge,. 1994. Metabolism of Mycobacterium tuberculosis, p. 353 388. In B. R. Bloom (ed.), Tuberculosis. Pathogenesis, Protection, and Control. ASM Press, Washington, D.C.
166. Williams, S. J.,, R. H. Senaratne,, J. D. Mougous,, L. W. Riley,, and C. R. Bertozzi. 2002. 5'-Adenosinephosphosulfate lies at a metabolic branch point in mycobacteria. J. Biol. Chem. 277: 32606 32615.
167. Wolucka, B. A.,, and E. De Hoffmann. 1995. The presence of beta- D-ribosyl-1-monophosphodecaprenol in mycobacteria. J. Biol. Chem. 270: 20151 20155.
168. Wolucka, B. A.,, M. R. McNeil,, E. de Hoffmann,, T. Chojnacki,, and P. J. Brennan. 1994. Recognition of the lipid intermediate for arabinogalactan/arabinomannan biosynthesis and its relation to the mode of action of ethambutol on mycobacteria. J. Biol. Chem. 269: 23328 23335.
169. Wooff, E.,, S. L. Michell,, S. V. Gordon,, M. A. Chambers,, S. Bardarov,, W. R. Jacobs, Jr.,, R. G. Hewinson,, and P. R. Wheeler. 2002. Functional genomics reveals the sole sulphate transporter of the Mycobacterium tuberculosis complex and its relevance to the acquisition of sulfur in vivo. Mol. Microbiol. 43: 653 663.
170. Xin, Y.,, R. E. Lee,, M. S. Scherman,, K. H. Khoo,, G. S. Besra,, P. J. Brennan,, and M. McNeil. 1997. Characterization of in vitro synthesized arabinan of mycobacterial cell walls. Biochim. Biophys. Acta 1335: 231 234.
171. Yeh, S. R.,, M. Couture,, Y. Ouellet,, M. Guertin,, and D. L. Rousseau. 2000. A cooperative oxygen binding haemoglobin from Mycobacterium tuberculosis. Stabilization of heme ligands by a distal tyrosine residue. J. Biol. Chem. 275: 1679 1684.
172. Yuan, Y.,, and C. E. Barry III. 1996. A common mechanism for the biosynthesis of methoxy and cyclopropyl mycolic acids in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 93: 12828 12833.
173. Yuan, Y.,, R. E. Lee,, G. S. Besra,, J. T. Belisle,, and C. E. Barry III. 1995. Identification of a gene involved in the biosynthesis of cyclopropanated mycolic acids in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 92: 6630 6634.
174. Zhang, L.,, M. B. Goren,, T. J. Holzer,, and B. R. Andersen. 1988. Effect of Mycobacterium tuberculosis-derived sulfolipid I on human phagocytic cells. Infect. Immun. 56: 2876 2883.
175. Zheng, R.,, and J. S. Blanchard. 2001. Steady-state and presteady-state kinetic analysis of Mycobacterium tuberculosis pantothenate synthetase. Biochemistry 40: 12904 12912.

Tables

Generic image for table
Table 1

Genes in biosynthesis of the aspartate family of amino acids

Citation: Wheeler P, Blanchard J. 2005. General Metabolism and Biochemical Pathways of Tubercle Bacilli, p 309-340. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch20
Generic image for table
Table 2

Genes in branched chain amino acid biosynthesis

Citation: Wheeler P, Blanchard J. 2005. General Metabolism and Biochemical Pathways of Tubercle Bacilli, p 309-340. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch20
Generic image for table
Table 3

Genes in sulfur metabolism—cysteine

Citation: Wheeler P, Blanchard J. 2005. General Metabolism and Biochemical Pathways of Tubercle Bacilli, p 309-340. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch20
Generic image for table
Table 4

Genes in sulfur metabolism—methionine

Citation: Wheeler P, Blanchard J. 2005. General Metabolism and Biochemical Pathways of Tubercle Bacilli, p 309-340. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch20
Generic image for table
Table 6

Biosynthesis of monomers for cell envelope glycans and glycolipids

Citation: Wheeler P, Blanchard J. 2005. General Metabolism and Biochemical Pathways of Tubercle Bacilli, p 309-340. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch20
Generic image for table
Table 5

Genes in pathways of carbon metabolism

Citation: Wheeler P, Blanchard J. 2005. General Metabolism and Biochemical Pathways of Tubercle Bacilli, p 309-340. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch20
Generic image for table
Table 7

Energy generation: genes for electron transport components

Citation: Wheeler P, Blanchard J. 2005. General Metabolism and Biochemical Pathways of Tubercle Bacilli, p 309-340. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch20

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error