Chapter 26 : the Indigestible Microbe

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

the Indigestible Microbe, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817657/9781555812959_Chap26-1.gif /docserver/preview/fulltext/10.1128/9781555817657/9781555812959_Chap26-2.gif


survives within the phagocytes of its host, yet these cells are key to the effective control of the infection. The macrophage is both an antigen-presenting cell and an immune-effector cell capable of killing if given the correct stimuli. The subtle and not so subtle influence of the host immune system on this environment was demonstrated previously through the regulated expression and dependence on isocitrate lyase (ICL1), the gating enzyme into the glyoxylate pathway. Clemens and Horwitz reported the detection of major histocompatibility complex (MHC) class II molecules in infected macrophages analyzed by immunoelectron microscopy. Researchers went on to confirm that treatment of macrophages with gamma interferon rendered the -containing vacuoles accessible to MHC class II molecules and also H-2M molecules, inferring that activation of the macrophage relocated the pathogen into the antigen-sampling and processing pathway of the cell. It has been shown recently that dendritic cells will present bacterial lipids acquired through internalization of vesicles derived from the apoptotic death of infected bystander macrophages. Macrophages activated by gamma interferon prior to infection deliver the bacteria to acidic, hydrolytically competent lysosomes. The success of as a pathogen hinges on its ability to either modulate or respond to its host cell, the macrophage, throughout the changing phases of the infection in its host.

Citation: Russell D. 2005. the Indigestible Microbe, p 427-436. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch26

Key Concept Ranking

Bacterial Proteins
Class III Phosphatidylinositol 3-Kinase
Bacterial Cell Wall
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Electron micrograph of a murine macrophage infected 4 days previously with . The bacteria reside in membrane-bound vacuoles, many of which remain in tight association with the surface of the bacteria.

Citation: Russell D. 2005. the Indigestible Microbe, p 427-436. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Immunoelectron micrograph of a murine macrophage infected 4 days previously with , demonstrating that the bacterium-containing phagosomes show minimal interaction with dense lysosomal compartments loaded with biotinylated, mannosylated bovine serum albumin. The infected macrophages were incubated with biotinylated mannosylated bovine serum albumin for 45 min, rinsed, and fixed. The biotinylated, mannosylated bovine serum albumin was detected by incubation of the sections with streptavidin/antistreptavidin and 18-nm-diameter gold particles with conjugated secondary antibody, as detailed previously ( ).

Citation: Russell D. 2005. the Indigestible Microbe, p 427-436. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Diagram illustrating the major intracellular trafficking pathways that intersect with the vacuoles containing live, virulent bacilli. These vacuoles are accessed by the recycling endosomal system, as evidenced by their acquisition of transferrin. Components of the bacteria released into the bacterium-containing vacuoles traffic out of the vacuoles and coalesce in dense lysosomal compartments. Finally, the bacterium-containing vacuoles, in common with most endosomal-lysosomal stages, show intersection with delivery vesicles derived from the -Golgi network of the host cell.

Citation: Russell D. 2005. the Indigestible Microbe, p 427-436. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Diagram illustrating the contrasting regulatory pathways proposed to control EEA1 binding to phagosomes. (A) Vergne et al. reported that activity of vps34, a PI 3-kinase, was regulated by calmodulin ( ). They suggested that the bacterial cell wall lipid LAM suppresses the [Ca] flux required to activate vps34 and that therefore no PI 3-P is generated in the membranes of the bacterium-containing phagosomes that fail to acquire EEA1. This model would predict a direct correlation between PI 3-P presence and EEA1 binding. (B) In contrast, Lawe et al. failed to observe any modulation of vps34 activity by calmodulin but found that EEA1 binding was dependent on Ca/calmodulin activation through the IQ domain and other calmodulin-responsive domains ( ). This latter model predicts that PI 3-P presence does not necessarily correspond to EEA1 acquisition.

Citation: Russell D. 2005. the Indigestible Microbe, p 427-436. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Alvarez-Dominguez, C.,, A. M. Barbieri,, W. Beron,, A. Wandinger-Ness,, and P. D. Stahl. 1996. Phagocytosed live Listeria monocytogenes influences Rab5-regulated in vitro phagosome-endosome fusion. J. Biol. Chem. 271:1383413843.
2. Anes, E.,, M. P. Kuhnel,, E. Bos,, J. Moniz-Pereira,, A. Habermann,, and G. Griffiths. 2003. Selected lipids activate phagosome actin assembly and maturation resulting in killing of pathogenic mycobacteria. Nat. Cell Biol. 5:793802.
3. Armstrong, J. A.,, and P. D. Hart. 1975. Phagosome-lysosome interactions in cultured macrophages infected with virulent tubercle bacilli. Reversal of the usual nonfusion pattern and observations on bacterial survival. J. Exp. Med. 142:116.
4. Armstrong, J. A.,, and P. D. Hart. 1971. Response of cultured macrophages to M. tuberculosis with observations of fusion of lysosomes with phagosomes. J. Exp. Med. 134:713740.
5. Beatty, W. L.,, E. R. Rhoades,, H. J. Ullrich,, D. Chatterjee,, J. E. Heuser,, and D. G. Russell. 2000. Trafficking and release of mycobacterial lipids from infected macrophages. Traffic 1: 235247.
6. Beatty, W. L.,, and D. G. Russell. 2000. Identification of mycobacterial surface proteins released into subcellular compartments of infected macrophages. Infect. Immun. 68:69977002.
7. Beatty, W. L.,, H. J. Ullrich,, and D. G. Russell. 2001. Mycobacterial surface moieties are released from infected macrophages by a constitutive exocytic event. Eur. J. Cell. Biol. 80: 3140.
8. Brown, C. A.,, P. Draper,, and P. D. Hart. 1969. Mycobacteria and lysosomes: a paradox. Nature 221:65860.
9. Christoforidis, S.,, H. M. McBride,, R. D. Burgoyne,, and M. Zerial. 1999. The Rab5 effector EEA1 is a core component of endosome docking. Nature 397:621625.
10. Clemens, D. L. 1996. Characterization of the Mycobacterium tuberculosis phagosome. Trends Microbiol. 4:113118.
11. Clemens, D. L.,, and M. A. Horwitz. 1995. Characterization of the Mycobacterium tuberculosis phagosome and evidence that phagosomal maturation is inhibited. J. Exp. Med. 181:257270.
12. Clemens, D. L.,, and M. A. Horwitz. 1996. The Mycobacterium tuberculosis phagosome interacts with early endosomes and is accessible to exogenously administered transferrin. J. Exp. Med. 184:13491355.
13. Clemens, D. L.,, B. Y. Lee,, and M. A. Horwitz. 2000. Deviant expression of Rab5 on phagosomes containing the intracellular pathogens Mycobacterium tuberculosis and Legionella pneumophila is associated with altered phagosomal fate. Infect. Immun. 68:26712684.
14. Crowe, L. M.,, B. J. Spargo,, T. Ioneda,, B. L. Beaman,, and J. H. Crowe. 1994. Interaction of cord factor (α, α′-trehalose- 6,6′-dimycolate) with phospholipids. Biochim. Biophys. Acta 1194:5360.
15. Crowle, A. J.,, R. Dahl,, E. Ross,, and M. H. May. 1991. Evidence that vesicles containing living, virulent Mycobacterium tuberculosis or Mycobacterium avium in cultured human macrophages are not acidic. Infect. Immun. 59:18231831.
16. de Chastellier, C.,, and L. Thilo. 1998. Modulation of phagosome processing as a key strategy for Mycobacterium avium survival within macrophages. Res. Immunol. 149:699702.
17. Deretic, V.,, and R. A. Fratti. 1999. Mycobacterium tuberculosis phagosome. Mol. Microbiol. 31:16031609.
18. Dermine, J. F.,, S. Scianimanico,, C. Prive,, A. Descoteaux,, and M. Desjardins. 2000. Leishmania promastigotes require lipophosphoglycan to actively modulate the fusion properties of phagosomes at an early step of phagocytosis. Cell Microbiol. 2:115126.
19. Desjardins, M.,, and A. Descoteaux. 1997. Inhibition of phagolysosomal biogenesis by the Leishmania lipophosphoglycan. J. Exp. Med. 185:20612068.
20. Doenhoff, M. J. 1998. Granulomatous inflammation and the transmission of infection: schistosomiasis--and TB too? Immunol. Today 19:462467.
21. Doenhoff, M. J. 1997. A role for granulomatous inflammation in the transmission of infectious disease: schistosomiasis and tuberculosis. Parasitology 115(Suppl.):S113S125.
22. Fenhalls, G.,, L. Stevens,, L. Moses,, J. Bezuidenhout,, J. C. Betts,, P. van Helden,, P. T. Lukey,, and K. Duncan. 2002. In situ detection of Mycobacterium tuberculosis transcripts in human lung granulomas reveals differential gene expression in necrotic lesions. Infect. Immun. 70:63306338.
23. Ferrari, G.,, H. Langen,, M. Naito,, and J. Pieters. 1999. A coat protein on phagosomes involved in the intracellular survival of mycobacteria. Cell 97:435447.
24. Fratti, R. A.,, J. M. Backer,, J. Gruenberg,, S. Corvera,, and V. Deretic. 2001. Role of phosphatidylinositol 3-kinase and Rab5 effectors in phagosomal biogenesis and mycobacterial phagosome maturation arrest. J. Cell Biol. 154:631644.
25. Fratti, R. A.,, J. Chua,, I. Vergne,, and V. Deretic. 2003. Mycobacterium tuberculosis glycosylated phosphatidylinositol causes phagosome maturation arrest. Proc. Natl. Acad. Sci. USA 100:54375442.
26. Frehel, C.,, C. de Chastellier,, T. Lang,, and N. Rastogi. 1986. Evidence for inhibition of fusion of lysosomal and prelysosomal compartments with phagosomes in macrophages infected with pathogenic Mycobacterium avium. Infect. Immun. 52:252262.
27. Gaullier, J. M.,, E. Ronning,, D. J. Gillooly,, and H. Stenmark. 2000. Interaction of the EEA1 FYVE finger with phosphatidylinositol 3-phosphate and early endosomes. Role of conserved residues. J. Biol. Chem. 275:2459524600.
28. Gaullier, J. M.,, A. Simonsen,, A. D’Arrigo,, B. Bremnes,, H. Stenmark,, and R. Aasland. 1998. FYVE fingers bind PtdIns( 3)P. Nature 394:432433.
29. Gordon, A. H.,, P. D. Hart,, and M. R. Young. 1980. Ammonia inhibits phagosome-lysosome fusion in macrophages. Nature 286:7980.
30. Goren, M. B.,, P. D’Arcy Hart,, M. R. Young,, and J. A. Armstrong. 1976. Prevention of phagosome-lysosome fusion in cultured macrophages by sulfatides of Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 73:25102514.
31. Graeler, M.,, and E. J. Goetzl. 2002. Activation-regulated expression and chemotactic function of sphingosine 1-phosphate receptors in mouse splenic T cells. FASEB J. 16:18741878.
32. Graler, M. H.,, and E. J. Goetzl. 2002. Lysophospholipids and their G protein-coupled receptors in inflammation and immunity. Biochim. Biophys. Acta 1582:168174.
33. Honer zu Bentrup, K.,, A. Miczak,, D. L. Swenson,, and D. G. Russell. 1999. Characterization of activity and expression of isocitrate lyase in Mycobacterium avium and Mycobacterium tuberculosis. J. Bacteriol. 181:71617167.
34. Honer zu Bentrup, K.,, and D. G. Russell. 2001. Mycobacterial persistence: adaptation to a changing environment. Trends Microbiol. 9:597605.
35. Hornuss, C.,, R. Hammermann,, M. Fuhrmann,, U. R. Juergens,, and K. Racke. 2001. Human and rat alveolar macrophages express multiple EDG receptors. Eur. J. Pharmacol. 429:303308.
36. Indrigo, J.,, R. L. Hunter, Jr.,, and J. K. Actor. 2003. Cord factor trehalose 6,6′-dimycolate (TDM) mediates trafficking events during mycobacterial infection of murine macrophages. Microbiology 149:20492059.
37. Lawe, D. C.,, N. Sitouah,, S. Hayes,, A. Chawla,, J. V. Virbasius,, R. Tuft,, K. Fogarty,, L. Lifshitz,, D. Lambright,, and S. Corvera. 2003. Essential role of Ca2+/calmodulin in early endosome antigen-1 localization. Mol. Biol. Cell 14:29352945.
38. MacMicking, J. D.,, R. J. North,, R. LaCourse,, J. S. Mudgett,, S. K. Shah,, and C. F. Nathan. 1997. Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc. Natl. Acad. Sci. USA 94:52435248.
39. MacMicking, J. D.,, G. A. Taylor,, and J. D. McKinney. 2003. Immune control of tuberculosis by IFN-gamma-inducible LRG-47. Science 302:654659.
40. Malik, Z. A.,, G. M. Denning,, and D. J. Kusner. 2000. Inhibition of Ca2+ signaling by Mycobacterium tuberculosis is associated with reduced phagosome-lysosome fusion and increased survival within human macrophages. J. Exp. Med. 191:287302.
41. Malik, Z. A.,, S. S. Iyer,, and D. J. Kusner. 2001. Mycobacterium tuberculosis phagosomes exhibit altered calmodulindependent signal transduction: contribution to inhibition of phagosome-lysosome fusion and intracellular survival in human macrophages. J. Immunol. 166:33923401.
42. Malik, Z. A.,, C. R. Thompson,, S. Hashimi,, B. Porter,, S. S. Iyer,, and D. J. Kusner. 2003. Cutting edge: Mycobacterium tuberculosis blocks Ca2+ signaling and phagosome maturation in human macrophages via specific inhibition of sphingosine kinase. J. Immunol. 170:28112815.
43. McKinney, J. D.,, K. Honer zu Bentrup,, E. J. Munoz-Elias,, A. Miczak,, B. Chen,, W. T. Chan,, D. Swenson,, J. C. Sacchettini,, W. R. Jacobs, Jr.,, and D. G. Russell. 2000. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406:735738.
44. Mills, I. G.,, S. Urbe,, and M. J. Clague. 2001. Relationships between EEA1 binding partners and their role in endosome fusion. J. Cell Sci. 114:19591965.
45. Moreira, A. L.,, L. Tsenova,, M. H. Aman,, L. G. Bekker,, S. Freeman,, B. Mangaliso,, U. Schroder,, J. Jagirdar,, W. N. Rom,, M. G. Tovey,, V. H. Freedman,, and G. Kaplan. 2002. Mycobacterial antigens exacerbate disease manifestations in Mycobacterium tuberculosis-infected mice. Infect. Immun. 70:21002107.
46. Nathan, C. 2002. Inducible nitric oxide synthase in the tuberculous human lung. Am. J. Respir. Crit. Care Med. 166:130131.
47. Nathan, C.,, and M. U. Shiloh. 2000. Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc. Natl. Acad. Sci. USA 97:88418848.
48. Pancholi, P.,, A. Mirza,, N. Bhardwaj,, and R. M. Steinman. 1993. Sequestration from immune CD4+ T cells of mycobacteria growing in human macrophages. Science 260:984986.
49. Ramachandra, L.,, E. Noss,, W. H. Boom,, and C. V. Harding. 2001. Processing of Mycobacterium tuberculosis antigen 85B involves intraphagosomal formation of peptide-major histocompatibility complex II complexes and is inhibited by live bacilli that decrease phagosome maturation. J. Exp. Med. 194:14211432.
50. Rhoades, E. R.,, F.-F. Hsu,, J. B. Torrelles,, J. Turk,, D. Chatterjee,, and D. G. Russell. 2003. Identification and macrophage activating activity of glycolipids released from intracellular Mycobacterium spp. Mol. Microbiol. 48:875888.
51. Russell, D. G. 2001. Mycobacterium tuberculosis: here today, and here tomorrow. Nat. Rev. Mol. Cell Biol. 2:569577.
52. Russell, D. G.,, J. Dant,, and S. Sturgill-Koszycki. 1996. Mycobacterium avium- and Mycobacterium tuberculosis-containing vacuoles are dynamic, fusion-competent vesicles that are accessible to glycosphingolipids from the host cell plasmalemma. J. Immunol. 156:47644773.
53. Russell, D. G.,, H. C. Mwandumba,, and E. E. Rhoades. 2002. Mycobacterium and the coat of many lipids. J. Cell Biol. 158:421426.
54. Schaible, U. E.,, K. Hagens,, K. Fischer,, H. L. Collins,, and S. H. Kaufmann. 2000. Intersection of group I CD1 molecules and mycobacteria in different intracellular compartments of dendritic cells. J. Immunol. 164:48434852.
55. Schaible, U. E.,, S. Sturgill-Koszycki,, P. H. Schlesinger,, and D. G. Russell. 1998. Cytokine activation leads to acidification and increases maturation of Mycobacterium avium-containing phagosomes in murine macrophages. J. Immunol. 160: 12901296.
56. Schaible, U. E.,, F. Winau,, P. A. Sieling,, K. Fischer,, H. L. Collins,, K. Hagens,, R. L. Modlin,, V. Brinkmann,, and S. H. Kaufmann. 2003. Apoptosis facilitates antigen presentation to T lymphocytes through MHC-I and CD1 in tuberculosis. Nat. Med. 9:10391046.
57. Schnappinger, D.,, S. Ehrt,, M. I. Voskuil,, Y. Liu,, J. A. Mangan,, I. M. Monahan,, G. Dolganov,, B. Efron,, P. D. Butcher,, C. Nathan,, and G. K. Schoolnik. 2003. Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J. Exp. Med. 198: 693704.
58. Schuller, S.,, J. Neefjes,, T. Ottenhoff,, J. Thole,, and D. Young. 2001. Coronin is involved in uptake of Mycobacterium bovis BCG in human macrophages but not in phagosome maintenance. Cell Microbiol. 3:785793.
59. Spargo, B. J.,, L. M. Crowe,, T. Ioneda,, B. L. Beaman,, and J. H. Crowe. 1991. Cord factor (α, α′-trehalose-6,6′-dimycolate) inhibits fusion between phospholipid vesicles. Proc. Natl. Acad. Sci. USA 88:737740.
60. Stenmark, H.,, and D. J. Gillooly. 2001. Intracellular trafficking and turnover of phosphatidylinositol 3-phosphate. Semin. Cell Dev. Biol. 12:193199.
61. Sturgill-Koszycki, S.,, U. E. Schaible,, and D. G. Russell. 1996. Mycobacterium-containing phagosomes are accessible to early endosomes and reflect a transitional state in normal phagosome biogenesis. EMBO. J. 15:69606968.
62. Sturgill-Koszycki, S.,, P. H. Schlesinger,, P. Chakraborty,, P. L. Haddix,, H. L. Collins,, A. K. Fok,, R. D. Allen,, S. L. Gluck,, J. Heuser,, and D. G. Russell. 1994. Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science 263:678681.
63. Timm, J.,, F. A. Post,, L. G. Bekker,, G. B. Walther,, H. C. Wainwright,, R. Manganelli,, W. T. Chan,, L. Tsenova,, B. Gold,, I. Smith,, G. Kaplan,, and J. D. McKinney. 2003. Differential expression of iron-, carbon-, and oxygen-responsive mycobacterial genes in the lungs of chronically infected mice and tuberculosis patients. Proc. Natl. Acad. Sci. USA 100: 1432114326.
64. Ullrich, H. J.,, W. L. Beatty,, and D. G. Russell. 1999. Direct delivery of procathepsin D to phagosomes: implications for phagosome biogenesis and parasitism by Mycobacterium. Eur. J. Cell Biol. 78:739748.
65. Ullrich, H. J.,, W. L. Beatty,, and D. G. Russell. 2000. Interaction of Mycobacterium avium-containing phagosomes with the antigen presentation pathway. J. Immunol. 165:60736080.
66. Vergne, I.,, J. Chua,, and V. Deretic. 2003. Mycobacterium tuberculosis phagosome maturation arrest: selective targeting of PI3P-dependent membrane trafficking. Traffic 4:600606.
67. Vergne, I.,, J. Chua,, and V. Deretic. 2003. Tuberculosis toxin blocking phagosome maturation inhibits a novel Ca2+/ calmodulin-PI3K hVPS34 cascade. J. Exp. Med. 198:653659.
68. Via, L. E.,, D. Deretic,, R. J. Ulmer,, N. S. Hibler,, L. A. Huber,, and V. Deretic. 1997. Arrest of mycobacterial phagosome maturation is caused by a block in vesicle fusion between stages controlled by rab5 and rab7. J. Biol. Chem. 272:1332613331.
69. Via, L. E.,, R. A. Fratti,, M. McFalone,, E. Pagan-Ramos,, D. Deretic,, and V. Deretic. 1998. Effects of cytokines on mycobacterial phagosome maturation. J. Cell Sci. 111:897905.
70. Xu, S.,, A. Cooper,, S. Sturgill-Koszycki,, T. van Heyningen,, D. Chatterjee,, I. Orme,, P. Allen,, and D. G. Russell. 1994. Intracellular trafficking in Mycobacterium tuberculosis and Mycobacterium avium-infected macrophages. J. Immunol. 153:25682578.
71. Zimmerli, S.,, S. Edwards,, and J. D. Ernst. 1996. Selective receptor blockade during phagocytosis does not alter the survival and growth of Mycobacterium tuberculosis in human macrophages. Am. J. Respir. Cell Mol. Biol. 15:760770.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error