1887

Chapter 31 : Th1 and Th2 Cytokines in the Human Immune Response to Tuberculosis

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Th1 and Th2 Cytokines in the Human Immune Response to Tuberculosis, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817657/9781555812959_Chap31-1.gif /docserver/preview/fulltext/10.1128/9781555817657/9781555812959_Chap31-2.gif

Abstract:

Immune defenses against are mediated primarily by T cells, and IFN-γ is essential for protective immunity. Investigators have studied cytokine production and mRNA expression in bronchoalveolar lavage fluid and in lung tissue from patients with pulmonary tuberculosis, pleural fluid from those with tuberculous pleuritis, and lymph nodes from patients with tuberculous lymphadenitis. Most investigators have reported that peripheral blood mononuclear cells (PBMC) of tuberculosis patients show decreased induced IFN-γ production. Helminthic infections and tuberculosis are both common in developing nations, and current or prior helminthic infections can strongly bias mycobacterial antigen-elicited cytokine production toward a Th2 response. Dysregulation of the systemic Th1 and Th2 cytokine responses may be a secondary effect of tuberculosis, since tuberculosis commonly results in malnutrition, which in turn is associated with enhanced Th2 and reduced Th1 cytokine responses. Local administration of cytokines is theoretically more appealing than systemic therapy, since the former approach is likely to result in fewer side effects.

Citation: Barnes P, Vankayalapati R. 2005. Th1 and Th2 Cytokines in the Human Immune Response to Tuberculosis, p 489-496. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch31

Key Concept Ranking

Transforming Growth Factor beta
0.43054238
0.43054238
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Cytokine production in human tuberculosis. At the tissue sites of disease, macrophages produce cytokines that favor the production of Th1 cells. Cytokines such as IL-10, IL-18, and IFN-γ leak into the systemic circulation, resulting in high levels in serum. In the blood, monocytes produce TGF-β and IL-10, which favor the development of Th2 cells, resulting in systemic production of IL-4. Elevated cortisol levels and helminthic infections probably contribute to these effects. M?, macrophage.

Citation: Barnes P, Vankayalapati R. 2005. Th1 and Th2 Cytokines in the Human Immune Response to Tuberculosis, p 489-496. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch31
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817657.chap31
1. Altare, F.,, A. Durandy,, D. Lammas,, J.-F. Emile,, S. Lamhamedi,, F. Le Deist,, P. Drysdale,, E. Jouanguy,, R. Doffinger,, F. Bernaudin,, O. Jeppsson,, J. A. Gollob,, E. Meinl,, A. W. Segal,, A. Fischer,, D. Kumurante,, and J.-L. Casanova. 1998. Impairment of mycobacterial immunity in human interleukin- 12 receptor deficiency. Science 280: 1432 1435.
2. Aubert-Pivert, E. M.,, F. M. Chedevergne,, G. M. Lopez- Ramirez,, J. H. Colle,, P. L. Scheinmann,, B. M. Gicquel,, and J. M. de Blic. 2000. Cytokine transcripts in pediatric tuberculosis: a study with bronchoalveolar cells. Tubercle Lung Dis. 80: 249 258.
3. Baker, R. W.,, B. R. Walker,, R. J. Shaw,, J. W. Honour,, D. S. Jessop,, S. L. Lightman,, A. Zumla,, and G. A. W. Rook. 2000. Increased cortisol:cortisone ratio in acute pulmonary tuberculosis. Am. J. Respir. Crit. Care Med. 162: 1641 1647.
4. Barnes, P. F.,, S. Lu,, J. S. Abrams,, E. Wang,, M. Yamamura,, and R. L. Modlin. 1993. Cytokine production at the site of disease in human tuberculosis. Infect. Immun. 61: 3482 3489.
5. Bhattacharyya, S.,, R. Singla,, A. B. Dey,, and H. K. Prasad. 1999. Dichotomy of cytokine profiles in patients and high-risk healthy subjects exposed to tuberculosis. Infect. Immun. 67: 5597 5603.
6. Boussiotis, V.A.,, E. Y. Tsai,, E. J. Yunis,, S. Thim,, J. C. Delgado,, C. C. Dascher,, A. Berezovskaya,, D. Rousset,, J.-M. Reynes,, and A. E. Goldfeld. 2000. IL-10-producing T cells suppress immune responses in anergic tuberculosis patients. J. Clin. Investig. 105: 1317 1325.
7. Condos, R.,, W. N. Rom,, and N. W. Schluger. 1997. Treatment of multidrug-resistant pulmonary tuberculosis with interferon- gamma via aerosol. Lancet 349: 1513 1515.
8. Dlugovitzky, D.,, A. Torres-Morales,, L. Rateni,, M. A. Farroni,, C. Largacha,, O. Molteni,, and O. Bottasso. 1997. Circulating profile of Th1 and Th2 cytokines in tuberculosis patients with different degrees of pulmonary involvement. FEMS Immunol. Med. Microbiol. 18: 203 207.
9. Dooley, D. P.,, J. L. Carpenter,, and S. Rademacher. 1997. Adjunctive corticosteroid therapy for tuberculosis: a critical reappraisal of the literature. Clin. Infect. Dis. 25: 872 887.
10. Fenhalls, G.,, L. Stevens,, J. Bezuidenhout,, G. E. Amphlett,, K. Duncan,, P. Bardin,, and P. T. Lukey. 2002. Distribution of IFN-γ, IL-4 and TNF-α protein and CD8 T cells producing IL- 12p40 mRNA in human lung tuberculous granulomas. Immunology 105: 325 335.
11. Gerosa, F.,, C. Nisii,, S. Righetti,, R. Micciolo,, M. Marchesini,, A. Cazzadori,, and G. Trinchieri. 1999. CD4 + T-cell clones producing both interferon-γ and interleukin-10 predominate in bronchoalveolar lavages of active pulmonary tuberculosis patients. Clin. Immunol. 92: 224 234.
12. Hirsch, C. S.,, J. J. Ellner,, R. Blinkhorn,, and Z. Toossi. 1997. In vitro restoration of T-cell responses in tuberculosis and augmentation of monocyte effector function against Mycobacterium tuberculosis by natural inhibitors of transforming growth factor β. Proc. Natl. Acad. Sci. USA 94: 3926 3931.
13. Hirsch, C. S.,, R. Hussain,, Z. Toossi,, G. Dawood,, F. Shahid,, and J. J. Ellner. 1996. Cross-modulation by transforming growth factor β in human tuberculosis: suppression of antigen- driven blastogenesis and interferon γ production. Proc. Natl. Acad. Sci. USA 93: 3193 3198.
14. Hirsch, C. S.,, Z. Toossi,, C. Othieno,, J. L. Johnson,, S. K. Schwander,, S. Robertson,, R. S. Wallis,, K. Edmonds,, A. Okwera,, R. Mugerwa,, P. Peters,, and J. J. Ellner. 1999. Depressed T-cell interferon-γ responses in pulmonary tuberculosis: analysis of underlying mechanisms and modulation with therapy. J. Infect. Dis. 180: 2069 2073.
15. Hirsch, C. S.,, Z. Toossi,, G. Vanham,, J. L. Johnson,, P. Peters,, A. Okwera,, R. Mugerwa,, P. Mugyenyi,, and J. J. Ellner. 1999. Apoptosis and T-cell hyporesponsiveness in pulmonary tuberculosis. J. Infect. Dis. 179: 945 953.
16. Hoshino, T.,, R. H. Wiltrout,, and H. A. Young. 1999. IL-18 is a potent coinducer of IL-13 in NK and T cells: a new potential role for IL-18 in modulating the immune response. J. Immunol. 162: 5070 5077
17. Johnson, B.J.,, L.G. Bekker,, R. Rickman,, S. Brown,, M. Lesser,, S. Ress,, P. Willcox,, L. Steyn,, and G. Kaplan. 1997. rhuIL-2 adjunctive therapy in multidrug resistant tuberculosis: a comparison of two treatment regimens and placebo. Tubercle Lung Dis. 78: 195 203.
18. Lee, B. O.,, L. Haynes,, S. M. Eaton,, S. L. Swain,, and T. D. Randall. 2002. The biological outcome of CD40 signaling is dependent on the duration of CD40 ligand expression: reciprocal regulation by interleukin (IL)-4 and IL-12. J. Exp. Med. 196: 693 704.
19. Lienhardt, C.,, A. Azzurri,, A. Amedel,, K. Fielding,, J. Sillah,, O. Y. Sow,, B. Bah,, M. Beneglano,, A. Diallo,, R. Manetti,, K. Manneh,, P. Gustafson,, S. Bennett,, M. M. D’Elios,, K. McAdam,, and G. Del Prete. 2002. Active tuberculosis in Africa is associated with reduced Th1 and increased Th2 activity in vivo. Eur. J. Immunol. 32: 1605 1613.
20. Lin, Y.,, M. Zhang,, F. M. Hofman,, J. Gong,, and P. F. Barnes. 1996. Absence of a prominent Th2 cytokine response in human tuberculosis. Infect. Immun. 64: 1351 1356.
21. Lord, G. M.,, G. Matarese,, J. K. Howard,, R. J. Baker,, S. R. Bloom,, and R. I. Lechler. 1998. Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature 394: 897 901.
22. Malhotra, I.,, P. Mungai,, A. Wamachi,, J. Kioko,, J. H. Ouma,, J. W. Kazura,, and C. L. King. 1999. Helminth- and bacillus Calmette-Guérin-induced immunity in children sensitized in utero to filariasis and schistosomiasis. J. Immunol. 162: 6843 6848.-
23. Ottenhoff, T. H. M.,, D. Kumararatne,, and J.-L. Casanova. 1998. Novel human immunodeficiencies reveal the essential role of type-I cytokines in immunity to intracellular bacteria. Immunol. Today 19: 491 494.
24. Robinson, D. S.,, S. Ying,, I. K. Taylor,, A. Wangoo,, D. M. Mitchell,, A. B. Kay,, Q. Hamid,, and R. J. Shaw. 1994. Evidence for a Th1-like bronchoalveolar T-cell subset and predominance of interferon-gamma gene activation in pulmonary tuberculosis. Am. J. Respir. Crit. Care Med. 149: 989 993.
25. Rojas, R. E.,, K. N. Balaji,, A. Subramanian,, and W. H. Boom. 1999. Regulation of human CD4 + αβ T-cell-receptor-positive (TCR +) and γδ TCR + T-cell responses to Mycobacterium tuberculosis by interleukin-10 and transforming growth factor β. Infect. Immun. 67: 6461 6472.
26. Samten, B.,, P. Ghosh,, A. Yi,, S. E. Weis,, D. L. Lakey,, R. Gonsky,, U. Pendurthi,, B. Wizel,, Y. Zhang,, M. Zhang,, J. Gong,, M. Fernandez,, H. Safi,, R. Vankayalapati,, H. A. Young,, and P. F. Barnes. 2002. Reduced expression of nuclear cyclic adenosine 5′-monophospate response element-binding proteins and IFN-γ promoter function in disease due to an intracellular pathogen. J. Immunol. 168: 3520 3526.
27. Samten, B.,, E. K. Thomas,, J.-H. Gong,, and P. F. Barnes. 2000. Depressed CD40 ligand expression contributes to reduced gamma interferon production in human tuberculosis. Infect. Immun. 68: 3002 3006.
28. Scala, E.,, M. Carbonari,, P. Del Porto,, M. Cibati,, T. Tedesco,, A. M. Mazzone,, R. Paganelli,, and M. Fiorilli. 1998. Lymphocyte activation gene-3 (LAG-3) expression and IFN-γ production are variably coregulated in different human T lymphocyte subpopulations. J. Immunol. 161: 489 493.
29. Schwander, S. K.,, M. Torres,, C. C. Carranza,, D. Escobedo,, M. Tary-Lehmann,, P. Anderson,, Z. Toossi,, J. J. Ellner,, E. A. Rich,, and E. Sada. 2000. Pulmonary mononuclear cell responses to antigens of Mycobacterium tuberculosis in healthy household contacts of patients with active tuberculosis and healthy controls from the community. J. Immunol. 165: 1479 1485.
30. Schwander, S. K.,, M. Torres,, E. Sada,, C. Carranza,, E. Ramos,, M. Tary-Lehmann,, R. S. Wallis,, J. Sierra,, and E. A. Rich. 1998. Enhanced responses to Mycobacterium tuberculosis antigens by human alveolar lymphocytes during active pulmonary tuberculosis. J. Infect. Dis. 178: 1434 1445.
31. Seah, G. T.,, and G. A. W. Rook. 2001. IL-4 influences apoptosis of mycobacterium-reactive lymphocytes in the presence of TNF-α. J. Immunol. 167: 1230 1237.
32. Seah, G. T.,, G. M. Scott,, and G. A. W. Rook. 2000. Type 2 cytokine gene activation and its relationship to extent of disease in patients with tuberculosis. J. Infect. Dis. 181: 385 389.
33. Smith, S. M.,, M. R. Klein,, J. Sillah,, K. P. W. J. McAdam,, and H. M. Dockrell. 2002. Decreased IFN-γ and increased IL-4 production by human CD8 + T cells in response to Mycobacterium tuberculosis in tuberculosis patients. Tuberculosis 82: 7 13.
34. Song, C.-H.,, H.-J. Kim,, J.-K. Park,, J.-H. Lim,, U.-O. Kim,, J.-S. Kim,, T.-H. Paik,, K.-Y. Kim,, J.-W. Suhr,, and E.-K. Jo. 2000. Depressed interleukin-12 (IL-12), but not IL-18, production in response to a 30- or 32-kilodalton mycobacterial antigen in patients with active pulmonary tuberculosis. Infect. Immun. 68: 4477 4484.
35. Surcel, H.-M.,, M. Troye-Blomberg,, S. Paulie,, G. Andersson,, C. Moreno,, G. Pasvol,, and J. Ivanyi. 1994. Th1/Th2 profiles in tuberculosis, based on the proliferation and cytokine responses of blood lymphocytes to mycobacterial antigens. Immunology 81: 171 176.
36. Taha, R. A.,, T. C. Kotsimbos,, Y. Song,, D. Menzies,, and Q. Hamid. 1997. IFN-γ and IL-12 are increased in active compared with inactive tuberculosis. Am. J. Respir. Crit. Care Med. 155: 1135 1139.
37. Ting, L.-M.,, A.C. Kim,, A. Cattamanchi,, and J. D. Ernst. 1999. Mycobacterium tuberculosis inhibits IFN-γ transcriptional responses without inhibiting activation of STAT1. J. Immunol. 163: 3898 3906.
38. Torres, M.,, T. Herrera,, H. Villareal,, E. A. Rich,, and E. Sada. 1998. Cytokine profiles for peripheral blood lymphocytes from patients with active pulmonary tuberculosis and healthy household contacts in response to the 30-kilodalton antigen of Mycobacterium tuberculosis. Infect. Immun. 66: 176 180.
39. Tsao, T. C. Y.,, C. C. Huang,, W.-K. Chiou,, P.-Y. Yang,, M.-J. Hsieh,, and K.-C. Tsao. 2002. Levels of interferon-γ and interleukin- 2 receptor-α for bronchoalveolar lavage fluid and serum were correlated with clinical grade and treatment of pulmonary tuberculosis. Int. J. Tuberc. Lung Dis. 6: 720 727.
40. van Creve, R.,, E. Karyadi,, F. Preyers,, M. Leenders,, B.-J. Kullberg,, R. H. H. Nelwan,, and J. W. M. van der Meer. 2000. Increased production of interleukin 4 by CD4 + and CD8 + T cells from patients with tuberculosis is related to the presence of pulmonary cavities. J. Infect Dis. 181: 1194 1197.
41. Vankayalapati, R.,, B. Wizel,, S. E. Weis,, P. Klucar,, H. Shams,, B. Samten,, and P. F. Barnes. 2003. Serum cytokine concentrations do not parallel Mycobacterium tuberculosis-induced cytokine production in patients with tuberculosis. Clin. Infect. Dis. 36: 24 28.
42. Vankayalapati, R.,, B. Wizel,, S. E. Weis,, B. Samten,, W. M. Girard,, and P. F. Barnes. 2000. Production of interleukin-18 in human tuberculosis. J. Infect. Dis. 182: 234 239.
43. Verbon, A.,, N. Juffermans,, S. J. H. van Deventer,, P. Speelman,, H. Van Deutekom,, and T. van der Poll. 1999. Serum concentrations of cytokines in patients with active tuberculosis and after treatment. Clin. Exp. Immunol. 115: 110 113.
44. Wild, J. S.,, A. Sigounas,, N. Sur,, M. S. Siddiqui,, R. Alam,, M. Kurimoto,, and S. Sur. 2000. IFN-γ-inducing factor (IL-18) increases allergic sensitization, serum IgE, Th2 cytokines, and airway eosinophilia in a mouse model of allergic asthma. J. Immunol. 164: 2701 2710.
45. Yamada, G.,, N. Shijubo,, K. Shigehara,, H. Okamura,, M. Kurimoto,, and S. Abe. 2000. Increased levels of circulating interleukin-18 in patients with advanced tuberculosis. Am. J. Respir. Crit. Care Med. 161: 1786 1789.
46. Zhang, M.,, M. K. Gately,, E. Wang,, J. Gong,, S. F. Wolf,, S. Lu,, R. L. Modlin,, and P. F. Barnes. 1994. Interleukin-12 at the site of disease in tuberculosis. J. Clin. Investig. 93: 1733 1739.
47. Zhang, M.,, J.-H. Gong,, D. H. Presky,, W. Xue,, and P. F. Barnes. 1999. Expression of the IL-12 receptor β1 and β2 subunits in human tuberculosis. J. Immunol. 162: 2441 2447.
48. Zhang, M.,, Y. Lin,, D. V. Iyer,, J. Gong,, J. S. Abrams,, and P. F. Barnes. 1995. T-cell cytokine responses in human infection with Mycobacterium tuberculosis. Infect. Immun. 63: 3231 3234.
49. Zhang, X.,, T. Brunner,, L. Carter,, R. W. Dutton,, P. Rogers,, L. Bradley,, T. Sato,, J. C. Reed,, D. Green,, and S. L. Swain. 1997. Unequal death in T helper cell (Th)1 and Th2 effectors: Th1, but not Th2, effectors undergo rapid Fas/FasL-mediated apoptosis. J. Exp. Med. 185: 1837 1849.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error