1887

Chapter 33 : The PE and PPE Multigene Families of Mycobacteria

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

The PE and PPE Multigene Families of Mycobacteria, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817657/9781555812959_Chap33-1.gif /docserver/preview/fulltext/10.1128/9781555817657/9781555812959_Chap33-2.gif

Abstract:

Epidemiologists searching for new molecular tools to compare strains and to differentiate between species of mycobacteria first recognized an abundance of genes containing the repetitive sequences -CGGCGGCAA- and -GCCGGTGTTG- within the genomes of pathogenic mycobacteria. In this genomic era, we now recognize that the redundant polymorphic GC-rich repetitive sequence (PGRS) present in and other mycobacteria belongs to the subfamily of PE_PGRS genes present in the PE multigene family. This chapter reviews what is known about the expression, function, and immunological response to the PE, PE_PGRS, and PPE genes. Importantly, several studies using microarray analysis have also suggested that expression of PPE genes within mycobacteria may be regulated by specific changes in environmental conditions. Due to their highly polymorphic C-terminal domains, PPE genes may serve as a source of antigenic variation for mycobacteria. The PPE-MPTR protein Rv1917c has been the focus of an extensive investigation and has been found to be expressed in liquid cultures of H37Rv, to be localized in the cell wall, and to be at least partly exposed on the cell surface of mycobacteria. Although there has been some progress, the function(s) of the PPE proteins remains vague. In addition to a possible role in antigenic variation, it has been postulated that PPE proteins could function as storage proteins for the rare amino acid asparagine, since asparagines are preferred nitrogen sources of .

Citation: Brennan M, Gey van Pittius N, Espitia C. 2005. The PE and PPE Multigene Families of Mycobacteria, p 513-526. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch33

Key Concept Ranking

Major Histocompatibility Complex Class I
0.4227957
0.4227957
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Schematic showing the most typical members of the PE and PPE multi-gene families. (A) In addition to ORFs encoding simple PE proteins, these sequences are present as N-terminal domains of more complex genes. The predominant subfamily consists of the PE_PGRS gene products in which the PGRS domain can vary in size but is typically composed of Gly-Ala repetitive sequences. A few PE_PGRS gene products contain atypical sequences at the C-terminus, and a few PE genes are also linked to other non-PGRS sequences, including one, that encodes a putative lipase ( ). (B) The predominant subfamily of the PPE gene family consists of the PPE-MPTR genes, where the MPTR domain can vary in size but is typically composed of AsnXGlyXGlyAsnXGly repetitive sequences. The second most dominant subfamily is the PPE-SVP subfamily, containing the motif GlyXXSerValProXXTrp at around position 350 in the amino acid (aa) sequence. Other atypical members also exist.

Citation: Brennan M, Gey van Pittius N, Espitia C. 2005. The PE and PPE Multigene Families of Mycobacteria, p 513-526. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch33
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

A comparison of the amino acid products of the corresponding PE_PGRS and PPE-MPTR genes in two genomes shows both deletions and insertions within the repetitive domains. (A) Amino acid (aa) sequence encoded by the PE_PGRS gene from H37Rv, compared with the amino acid sequence encoded by the corresponding gene, , found in the clinical isolate CDC 1551. A 33-codon deletion in within the PGRS domain accounts for the loss of four -GGAGGX- repeats. also contains an -AGG- insert compared with the PE_PGRS gene. (B) Amino acid (aa) sequence encoded by the PPE gene from sis H37Rv, aligned to the amino acid sequence encoded by the corresponding gene, , found in the clinical sis isolate CDC 1551. There are three insertions/deletions present in the MPTR regions of these genes, corresponding to differences of 25, 46, and 92 amino acids, respectively.

Citation: Brennan M, Gey van Pittius N, Espitia C. 2005. The PE and PPE Multigene Families of Mycobacteria, p 513-526. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch33
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Fluorescence microscopy of transformed cells expressing PE_PGRS protein (A) or PE protein (B) as fusions with EGFP. The full-length PE_PGRS and PE domain of the gene ( ) were fused to EGFP and transformed into using the pMV206 vector ( ). These observations suggest that the PE_PGRS-GFP protein is uniformly distributed throughout the cell wall while the PE-GFP protein is more localized to defined, possibly polar regions within the cell wall. We are grateful to Giovanni Delogu for permission to use his unpublished data.

Citation: Brennan M, Gey van Pittius N, Espitia C. 2005. The PE and PPE Multigene Families of Mycobacteria, p 513-526. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch33
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Multiple alignment of the amino acid sequence encoded by PE genes from (MaPE), H37Rv (PE gene ), CDC 1551 (PE gene ), part of the PE domain of the PE_PGRS gene from H37Rv (1818-PE), and (PE gene ML2534). Conserved amino acids are shaded, and alignment was performed using the Clustal W sequence alignment provided by Computational Molecular Biology at the National Institutes of Health (http://www.molbio.info.nih.gov/molbio/).

Citation: Brennan M, Gey van Pittius N, Espitia C. 2005. The PE and PPE Multigene Families of Mycobacteria, p 513-526. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch33
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817657.chap33
1. Abou-Zeid, C.,, T. Garbe,, R. Lathigra,, H. G. Wiker,, M. Harboe,, G. A. Rook,, and D. B. Young. 1991. Genetic and immunological analysis of Mycobacterium tuberculosis fibronectin-binding proteins. Infect. Immun. 59:27122718.
2. Abraham, S. N.,, A. B. Jonsson,, and S. Normark. 1998. Fimbriae-mediated host-pathogen cross-talk. Curr. Opin. Microbiol. 1:7581.
3. Adindla, S.,, and L. Guruprasad. 2003. Sequence analysis corresponding to the PPE and PE proteins in Mycobacterium tuberculosis and other genomes. J. Biosci. 28:169179.
4. Banu, S.,, N. Honore,, B. Saint-Joanis,, D. Philpott,, M. C. Prevost,, and S. T. Cole. 2002. Are the PE-PGRS proteins of Mycobacterium tuberculosis variable surface antigens? Mol. Microbiol. 44:919.
5. Betts, J. C.,, P. T. Lukey,, L. C. Robb,, R. A. McAdam,, and K. Duncan. 2002. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol. Microbiol. 43:717731.
6. Behr, M. A.,, M. A. Wilson,, W. P. Gill,, H. Salamon,, G. K. Schoolnik,, S. Rane,, and P. M. Small. 1999. Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science 284:15201523.
7. Brennan, M. J.,, and G. Delogu. 2002. The PE multigene family: a “molecular mantra” for mycobacteria. Trends Microbiol. 10:246249.
8. Brennan, M. J.,, G. Delogu,, Y. Chen,, S. Bardarov,, J. Kriakov,, M. Alavi,, and W. R. Jacobs, Jr. 2001. Evidence that mycobacterial PE_PGRS proteins are cell surface constituents that influence interactions with other cells. Infect. Immun. 69:73267333.
9. Brosch, R.,, A. S. Pym,, S. V. Gordon,, and S. T. Cole. 2001.The evolution of mycobacterial pathogenicity: clues from comparative genomics. Trends Microbiol. 9:452458.
10. Brusasca, P. N.,, R. Colangeli,, K. P. Lyashchenko,, X. Zhao,, M. Vogelstein,, J. S. Spencer,, D. N. McMurray,, and M. L. Gennaro. 2001. Immunological characterization of antigens encoded by the RD1 region of the Mycobacterium tuberculosis genome. Scand. J. Immunol. 54:448452.
11. Camacho, L. R.,, D. Ensergueix,, E. Perez,, B. Gicquel,, and C. Guilhot. 1999. Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol. Microbiol. 34:257267.
12. Camus, J. C.,, M. J. Pryor,, C. Medigue,, and S. Cole. 2002. Reannotation of the genome sequence of Mycobacterium tuberculosis H37Rv. Microbiology 148:29672973.
13. Cockle, P. J.,, S. V. Gordon,, A. Lalvani,, B. M. Buddle,, R. G. Hewinson,, and M. Vordermeier. 2002. Identification of novel Mycobacterium tuberculosis antigens with potential as diagnostic reagents or subunit vaccine candidates by comparative genomics. Infect. Immun. 70:69967003.
14. Cole, S. T. 1998. Comparative mycobacterial genomics. Curr. Opin. Microbiol. 1:567571
15. Cole, S. T. 1999. Learning from the genome sequence of Mycobacterium tuberculosis H37Rv. FEBS Lett. 452:710.
16. Cole, S. T. 2002. Comparative and functional genomics of the Mycobacterium tuberculosis complex. Microbiology 148:29292928.
17. Cole, S. T.,, and B. G. Barrell. 1998. Analysis of the genome of Mycobacterium tuberculosis H37Rv. Novartis. Found. Symp. 217:160172
18. Cole, S. T.,, R. Brosch,, J. Parkhill,, T. Garnier,, C. Churcher,, D. Harris,, S. V. Gordon,, K. Eiglmeier,, S. Gas,, C. E. Barry III,, F. Tekaia,, K. Badcock,, D. Basham,, D. Brown,, T. Chillingworth,, R. Connor,, R. Davies,, K. Devlin,, T. Feltwell,, S. Gentles,, N. Hamlin,, S. Holroyd,, T. Hornsby,, K. Jagels,, A. Krosh,, J. McLean,, S. Moule,, L. Murphy,, K. Oliver,, J. Osborne,, M. A. Quail,, M.-A. Rajandream,, J. Rogers,, S. Rutter,, K. Seager,, J. Skelton,, R. Squares,, S. Squares,, J. E. Sulston,, K. Taylor,, S. Whitehead,, and B. G. Barrell. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537544.
19. Cole, S. T.,, K. Eiglmeier,, J. Parkhill,, K. D. James,, N. R. Thomson,, P. R. Wheeler,, N. Honore,, T. Garnier,, C. Churcher,, D. Harris,, K. Mungall,, D. Basham,, D. Brown , T., Chillingworth,, R. Connor,, R. M. Davies,, K. Devlin,, S. Duthoy,, T. Feltwell,, A. Fraser,, N. Hamlin,, S. Holroyd,, T. Hornsby,, K. Jagels,, C. Lacroix,, J. Maclean,, S. Moule,, L. Murphy,, K. Oliver,, M. A. Quail,, M.-A. Rajandream,, K. M. Rutherford,, S. Rutter,, K. Seeger,, S. Simon,, M. Simmonds,, J. Skelton,, R. Squares,, S. Squares,, K. Stevens,, K. Taylor,, S. Whitehead,, J. R. Woodward,, and B. G. Barrell. 2001. Massive gene decay in the leprosy bacillus. Nature 409:10071011.
20. Collins, F. M. 1993. Tuberculosis: the return of an old enemy. Crit. Rev. Microbiol. 19:116.
21. Colston, M. J.,, and E. O. Davis,. 1994. Homologous recombination, DNA repair, and mycobacterial recA genes, p. 217226. In B. R. Bloom (ed.), Tuberculosis: Pathogenesis, Protection and Control. ASM Press, Washington, DC.
22. Cousins, D.,, S. Williams,, E. Liebana,, A. Aranaz,, A. Bunschoten,, J. Van Embden,, and T. Ellis. 1998. Evaluation of four DNA typing techniques in epidemiological investigations of bovine tuberculosis. J. Clin. Microbiol. 36:68178.
23. Decatur, A. L.,, and D. A. Portnoy. 2000. A PEST-like sequence in listeriolysin O essential for Listeria monocytogenes pathogenicity. Science 290:992995.
24. Delogu, G.,, and M. J. Brennan. 2001. Comparative immune response to PE and PE_PGRS antigens of Mycobacterium tuberculosis. Infect. Immun. 69:56065611.
25. Delogu, G.,, C. Pusceddu,, A. Bua,, G. Fadda,, M. J. Brennan,, and S. Zanetti. 2004. Rv1818c-encoded PE_PGRS protein of Mycobacterium tuberculosis is surface exposed and influences bacterial cell structure. Mol. Microbiol. 52:725733.
26. Demangel, C.,, P. Brodin,, P. J. Cockle,, R. Brosch,, L. Majlessi,, C. Leclerc,, and S. T. Cole. 2004. Cell envelope protein PPE68 contributes to Mycobacterium tuberculosis RD1 immunogenecity independently of a 10-kilodalton culture filtrate protein and ESAT-6. Infect. Immun. 72:21702176.
27. Dillner, J.,, L. Sternas,, B. Kallin,, H. Alexander,, B. Ehlin- Henriksson,, H. Jornvall,, G. Klein,, and R. Lerner. 1984. Antibodies against a synthetic peptide identify the Epstein-Barr virus-determined nuclear antigen. Proc. Natl. Acad. Sci. USA 81:46524656.
28. Dillon, D. C.,, M. R. Alderson,, C. H. Day,, D. M. Lewinsohn,, R. Coler,, T. Bement,, A. Campos-Neto,, Y. A. Skeiky,, I. M. Orme,, A. Roberts,, S. Steen,, W. Dalemans,, R. Badaro,, and S. G. Reed. 1999. Molecular characterization and human T-cell responses to a member of a novel Mycobacterium tuberculosis mtb39 gene family. Infect. Immun. 67:29412950.
29. Espitia, C.,, J. P. Laclette,, M. Mondragon-Palomino,, A. Amador,, J. Campuzano,, A. Martens,, M. Singh,, R. Cicero,, Y. Zhang,, and C. Moreno. 1999. The PE-PGRS glycine-rich proteins of Mycobacterium tuberculosis: a new family of fibronectin-binding proteins? Microbiology 145:34873495.
30. Fisher, M. A.,, B. B. Plikaytis,, and T. M. Shinnick. 2002. Microarray analysis of the Mycobacterium tuberculosis transcriptional response to the acidic conditions found in phagosomes. J. Bacteriol. 184:40254032.
31. Fleischmann, R. D.,, D. Alland,, J. A. Eisen,, L. Carpenter,, O. White,, J. Peterson,, R. DeBoy,, R. Dodson,, M. Gwinn,, D. Haft,, E. Hickey,, J. F. Kolonay,, W. C. Nelson,, L. A. Umayam,, M. Ermolaeva,, S.L. Salzberg,, A. Delcher,, T. Utterback,, J. Weidman,, H. Khouri , J. Gill,, A. Mikula,, W. Bishai,, W. R. Jacobs, Jr.,, J. C. Venter,, and C. M. Fraser. 2002. Wholegenome comparison of Mycobacterium tuberculosis clinical and laboratory strains. J. Bacteriol. 184:54795490.
32. Flores, J.,, and C. Espitia. 2003. Differential expression of PE and PE-PGRS genes in Mycobacterium tuberculosis strains. Gene 318:7581.
33. Gordon, J. E.,, R. B. Brosch,, A. Billault,, T. Farnier,, K. Eiglmeier,, and S. T. Cole. 1999. Identification of variable regions in the genomes of tubercle bacilli using bacterial artificial chromosome arrays. Mol. Microbiol. 32:643655.
34. Gordon, S. V.,, K. Eiglmeier,, R. Brosch,, T. Garnier,, N. Honore,, B. Barrell,, and S. T. Cole,. 1999. Genomics of Mycobacterium tuberculosis and Mycobacterium leprae, p. 93109. In C. Ratledge, and J. Dale (ed.), Mycobacteria: Molecular Biology and Virulence. Blackwell Science Ltd., Oxford, United Kingdom.
35. Gordon, S. V.,, K. Eiglmeier,, T. Garnier,, R. Brosch,, J. Parkhill,, B. Barrell,, S. T. Cole,, and R. G. Hewinson. 2001. Genomics of Mycobacterium bovis. Tuberculosis 81:157163.
36. Hayashi, C. Y.,, and R. V. Lewis. 2000. Molecular architecture and evolution of a modular spider silk protein gene. Science 287:14771479.
37. Hermans, P. W. M.,, D. van Soolingen,, and J. D. A. van Embden. 1992. Characterization of a major polymorphic tandem repeat in Mycobacterium tuberculosis and its potential use in the epidemiology of Mycobacterium kansasii and Mycobacterium gordonae. J. Bacteriol. 174:41574165.
38. Hou, J. Y.,, J. E. Graham,, and J. E. Clark-Curtiss. 2002. Mycobacterium avium genes expressed during growth in human macrophages detected by selective capture of transcribed sequences (SCOTS). Infect. Immun. 70:37143726.
39. Kremer, K.,, D. van Soolingen,, R. Frothingham,, W. H. Haas,, P. W. Hermans,, C. Martin,, P. Palittapongarnpim,, B. B. Plikaytis,, L. W. Riley,, M. A. Yakrus,, J. M. Musser,, and J. D. van Embden. 1999. Comparison of methods based on different molecular epidemiological markers for typing of Mycobacterium tuberculosis complex strains: interlaboratory study of discriminatory power and reproducibility. J. Clin. Microbiol. 37:26072618.
40. Levitskaya, J.,, M. Coram,, V. Levitsky,, S. Imreh,, P. M. Steigerwald- Mullen,, G. Klein,, M. G. Kurilla,, and M. G. Masucci. 1995. Inhibition of antigen processing by the internal repeat region of the Epstein-Barr virus nuclear antigen-1. Nature 375:685688.
41. Levitskaya, J.,, A. Sharipo,, A. Leonchiks,, A. Ciechanover,, and M. G. Masucci. 1997. Inhibition of ubiquitin/proteasomedependent protein degradation by the Gly-Ala repeat domain of the Epstein-Barr virus nuclear antigen 1. Proc. Natl. Acad. Sci. USA 94:1261612621.
42. Lewis, K. N.,, R. Liao,, K. M. Guinn,, M. J. Hickey,, S. Smith,, M.-A. Behr,, and D. R. Sherman. 2003. Deletion of RD1 from Mycobacterium tuberculosis mimics Bacille Calmette-Guérin attenuation. J. Infect. Dis. 187:117123.
43. McKnew, D. L.,, F. Lynn,, J. M. Zenilman,, and M. C. Bash. 2003. Porin variation among clinical isolates of Neisseria gonorrhoeae over a 10-year period, as determined by Por variable region typing. J. Infect. Dis. 187:12131222.
44. O’Brien, R.,, O. Flynn,, E. Costello,, D. O’Grady,, and M. Rogers. 2000. Identification of a novel DNA probe for strain typing Mycobacterium bovis by restriction fragment length polymorphism analysis. J. Clin. Microbiol. 38:17231730.
45. Okkels, L. M.,, I. Brock,, F. Follmann,, E. M. Agger,, S. M. Anend,, T. H. M. Ottenhoff,, F. Oftung,, I. Rosenkrands,, and P. Anderson. 2003. PPE protein (Rv3873) from DNA segment RD1 of Mycobacterium tuberculosis: strong recognition of both specific T-cell epitopes and epitopes conserved within the PPE family. Infect. Immun. 71:61166123.
46. Poulet, S.,, and S. T. Cole. 1995. Characterization of the highly abundant polymorphic GC-rich-repetitive sequence (PGRS) present in Mycobacterium tuberculosis. Arch. Microbiol. 163:8795.
47. Ramakrishnan, L.,, N. A. Federspiel,, and S. Falkow. 2000. Granuloma-specific expression of mycobacterium virulence proteins from the glycine-rich PE-PGRS family. Science 288:14361439.
48. Rechsteiner, M.,, and S. W. Rogers. 1996. PEST sequences and regulation by proteolysis. Trends Biochem. Sci. 267:267271.
49. Reed, S. G.,, M. R. Alderson,, W. Dalemans,, Y. Lobet,, and Y. A. W. Skeiky. 2003. Prospects for a better vaccine against tuberculosis. Tuberculosis 83:213219.
50. Rindi, L.,, N. Lari,, and C. Garzelli. 1999. Search for genes potentially involved in Mycobacterium tuberculosis virulence by mRNA differential display. Biochem. Biophys. Res. Commun. 258:94101.
51. Rivera-Marrero, C. A.,, M. A. Burroughs,, R. A. Masse,, F. O. Vannberg,, D. L. Leimbach,, J. Roman,, and J. J. Murtagh, Jr. 1998. Identification of genes differentially expressed in Mycobacterium tuberculosis by differential display PCR. Microb. Pathog. 25:307316.
52. Rodriguez, G. M.,, B. Gold,, M. Gomez,, O. Dussurget,, and I. Smith. 1999. Identification and characterization of two divergently transcribed iron regulated genes in Mycobacterium tuberculosis. Tubercle Lung Dis. 79:287298.
53. Rodriguez, G. M.,, M. I. Voskuil,, B. Gold,, G. K. Schoolnik,, and I. Smith. 2002. ideR, an essential gene in Mycobacterium tuberculosis: role of IdeR in iron-dependent gene expression, iron metabolism, and oxidative stress response. Infect. Immun. 70:33713381.
54. Rogers, S.,, R. Wells,, and M. Rechsteiner. 1986. Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 234:364368.
55. Ross, B. C.,, K. Raios,, K. Jackson,, and B. Dwyer. 1992. Molecular cloning of a highly repeated DNA element from Mycobacterium tuberculosis and its use as an epidemiological tool. J. Clin. Microbiol. 30:942946.
56. Sampson, S. L.,, P. Lukey,, R. M. Warren,, P. D. van Helden,, M. Richardson,, and M. J. Everett. 2001. Expression, characterization and subcellular localization of the Mycobacterium tuberculosis PPE gene Rv1917c. Tuberculosis 81:305317.
57. Sassetti, C. M.,, D. H. Boyd,, and E. J. Rubin. 2003. Genes required for mycobacterial growth defined by high density mutagenesis. Mol. Microbiol. 48:7784.
58. Saviola, B.,, S. C. Woolwine,, and W. R. Bishai. 2003. Isolation of acid-inducible genes of Mycobacterium tuberculosis with the use of recombinase-based in vivo expression technology. Infect. Immun. 71:13791388.
59. Singh, K. K.,, X. Zhang,, A. S. Patibandla,, P. Chien, Jr.,, and S. Laal. 2001. Antigens of Mycobacterium tuberculosis expressed during preclinical tuberculosis: serological immunodominance of proteins with repetitive amino acid sequences. Infect. Immun. 69:41854191.
60. Skeiky, Y. A.,, P. J. Ovendale,, S. Jen,, M. R. Alderson,, D. C. Dillon,, S. Smith,, C. B. Wilson,, I. M. Orme,, S. G. Reed,, and A. Campos-Neto. 2000. T cell expression cloning of a Mycobacterium tuberculosis gene encoding a protective antigen associated with the early control of infection. J. Immunol. 165:71407149.
61. Stewart, G. R.,, L. Wernisch,, R. Stabler,, J. A. Mangan,, J. Hinds,, K. G. Laing,, D. B. Young,, and P. D. Butcher. 2002. Dissection of the heat-shock response in Mycobacterium tuberculosis using mutants and microarrays. Microbiology 148:31293138.
62. Tekaia, F.,, S. V. Gordon,, T. Garnier,, R. Brosch,, B. G. Barrell,, and S. T. Cole. 1999. Analysis of the proteome of Mycobacterium tuberculosis in silico. Tubercle Lung Dis. 79:329342.
63. Triccas, J. A.,, F. X. Berthet,, V. Pelicic,, and B. Gicquel. 1999. Use of fluorescence induction and sucrose counterselection to identify Mycobacterium tuberculosis genes expressed within host cells. Microbiology 145:29232930.
64. Vega-Lopez, F.,, L. A. Brooks,, H. M. Dockrell,, K. A. De Smet,, J. K. Thompson,, R. Hussain,, and N. G. Stoker. 1993. Sequence and immunological characterization of a serine-rich antigen from Mycobacterium leprae. Infect. Immun. 61:21452153.
65. Ye, Z. H.,, Y. R. Song,, A. Marcus,, and J. E. Varner. 1991. Comparative localization of three classes of cell wall proteins. Plant J. 1:175183.

Tables

Generic image for table
Table 1

PE, PE_PGRS, and PPE genes present in strains H37Rv and CDC 1551

Citation: Brennan M, Gey van Pittius N, Espitia C. 2005. The PE and PPE Multigene Families of Mycobacteria, p 513-526. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch33
Generic image for table
Table 2

Evidence for expression of PE, PE_PGRS, and PPE genes

Citation: Brennan M, Gey van Pittius N, Espitia C. 2005. The PE and PPE Multigene Families of Mycobacteria, p 513-526. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch33

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error