1887

Chapter 34 : and Fish and Frog Models of Infection

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

and Fish and Frog Models of Infection, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817657/9781555812959_Chap34-1.gif /docserver/preview/fulltext/10.1128/9781555817657/9781555812959_Chap34-2.gif

Abstract:

is a natural pathogen of poikilothermic organisms including fish and frogs. In addition to , and subsp. can cause natural infection of poikilothermic animals including fish. From the viewpoint of the host, infection in its natural hosts displays the characteristic immune hallmarks of giant-cell formation and granuloma formation that are seen in human tuberculosis. The development of two animal models, the goldfish, , and the leopard frog, , has provided the first natural-infection models for the study of mycobacterial pathogenesis. A relevant observation about the fish model is the similarity of the fish host response to infection and the human host response to infection. Natural infection of reptiles and amphibians with has not been systematically studied. Tadpoles, the developmental stage of the frog, were also susceptible to infection. Thus, the frog model has been used to dissect the complex pattern of gene expression in the granuloma, the site most likely to harbor during the latent stage of infection. In summary, the fish and frog models of mycobacterial infection offer an opportunity to examine the interaction of a species, , with its host in natural infection models. The advantages in using the fish and the frog are that these models reflect a natural-infection model and, in comparison to other animal models, have a low cost.

Citation: Trucksis M, Pritchett C, Reimschuessel R. 2005. and Fish and Frog Models of Infection, p 529-536. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch34

Key Concept Ranking

Infectious Diseases
0.44600943
16s rRNA Sequencing
0.43143317
Chronic Granulomatous Disease
0.4285854
Mycobacterium marinum
0.42032102
Mycobacterium tuberculosis
0.4089611
0.44600943
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

The goldfish, Carassius auratus.

Citation: Trucksis M, Pritchett C, Reimschuessel R. 2005. and Fish and Frog Models of Infection, p 529-536. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch34
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Histopathology of the kidney of a fish infected 8 weeks earlier with M. marinum ATCC 927. The kidney is replaced by granulomas of different morphologies located in the interstitium.

Citation: Trucksis M, Pritchett C, Reimschuessel R. 2005. and Fish and Frog Models of Infection, p 529-536. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch34
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Sagittal section of a whole zebrafish with mycobacteriosis. G, granulomas in the kidney and viscera due to the bacterial infection. Reprinted from M. L. Kent, J. M. Spitsbergen, J. M. Matthews, J. W. Fournie, and M. Westerfield, 2002, Diseases of Zebrafish in Research Facilities (http://www.zfin.org) with permission.

Citation: Trucksis M, Pritchett C, Reimschuessel R. 2005. and Fish and Frog Models of Infection, p 529-536. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch34
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

The leopard frog, Rana pipiens. Courtesy of Robert N. Fischer, U.S. Geological Survey, San Diego, Calif. (http://www.werc.usgs.gov/fieldguide/).

Citation: Trucksis M, Pritchett C, Reimschuessel R. 2005. and Fish and Frog Models of Infection, p 529-536. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch34
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Lesions produced in M. marinum-infected frogs. Sections from livers 8 weeks postinfection show typical granulomas during infection with M. marinum. The sections were stained with hematoxylin and eosin. Magnification, ×400. Reprinted from reference .

Citation: Trucksis M, Pritchett C, Reimschuessel R. 2005. and Fish and Frog Models of Infection, p 529-536. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch34
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817657.chap34
1. Arakawa, C. K.,, and J. L. Fryer. 1984. Isolation and characterization of a new subspecies of Mycobacterium chelonei from salmonid fish. Helgol. Meersunters. 37: 329 342.
2. Aronson, J. D. 1926. Spontaneous tuberculosis in salt water fish. J. Infect. Dis. 39: 315 320.
3. Astrofsky, K. M.,, M. D. Schrenzel,, R. A. Bullis,, R. M. Smolowitz,, and J. G. Fox. 2000. Diagnosis and management of atypical Mycobacterium spp. infections in established laboratory zebrafish ( Brachydanio rerio) facilities. Comp. Med. 50: 666 672.
4. Barker, L. P.,, K. M. George,, S. Falkow,, and P. L. C. Small. 1997. Differential trafficking of live and dead Mycobacterium marinum organisms in macrophages. Infect. Immun. 65: 1497 1504.
5. Bataillon, E.,, L. Dubard,, and L. Terre. 1897. Un noveau type de tuberculose. C. R. Seances Soc. Biol. Fil. 4: 446 449.
6. Belas, R.,, P. Faloon,, and A. Hannaford. 1995. Potential applications of molecular biology to the study of fish mycobacteriosis. Annu. Rev. Fish Dis. 5: 133 173.
7. Bragg, R. R.,, H. F. Huchzermeyer,, and M. A. Hanisch. 1990. Mycobacterium fortuitum isolated from three species of fish in South Africa. Onderstepoort J. Vet. Res. 57: 101 102.
8. Bruno, D. W.,, J. Griffiths,, C. G. Mitchell,, B. P. Wood,, Z. J. Fletcher,, F. A. Drobniewski,, and T. S. Hastings. 1998. Pathology attributed to Mycobacterium chelonae infection among farmed and laboratory-infected Atlantic salmon Salmo salar. Dis. Aquat. Org. 33: 101 109.
9. Chan, K.,, T. Knaak,, L. Satkamp,, O. Humbert,, S. Falkow,, and L. Ramakrishnan. 2002. Complex pattern of Mycobacterium marinum gene expression during long-term granulomatous infection. Proc. Natl. Acad. Sci. USA 99: 3920 3925.
10. Clark, H. F.,, and C. C. Shepard. 1963. Effect of environmental temperatures on infection with Mycobacterium marinum (Balnei) of mice and a number of poikilothermic species. J. Bacteriol. 86: 1057 1069.
11. Colorni, A.,, M. Ankaous,, A. Diamant,, and W. Knibb. 1993. Detection of mycobacteriosis in fish using the polymerase chain reaction technique. Bull. Eur. Assoc. Fish Pathol. 13: 195 198.
12. Davis, J. M.,, H. Clay,, J. L. Lewis,, N. Ghori,, P. Herbomel,, and L. Ramakrishnan. 2002. Real-time visualization of Mycobacterium- macrophage interactions leading to initiation of granuloma formation in zebrafish embryos. Immunity 17: 693 702.
13. El-Etr, S. H.,, L. Yan,, and J. D. Cirillo. 2001. Fish monocytes as a model for mycobacterial host-pathogen interaction. Infect. Immun. 69: 7310 7317.
14. Hedrick, R. P.,, T. McDowell,, and J. Groff. 1987. Mycobacteriosis in cultured striped bass from California. J. Wild. Dis. 23: 391 395.
15. Nigrelli, R. F.,, and H. Vogel. 1963. Spontaneous tuberculosis in fishes and in other cold-blooded vertebrates with special reference to Mycobacterium fortuitum Cruz from fish and human lesions. Zoologica 48: 131 144.
16. Ramakrishnan, L.,, and S. Falkow. 1994. Mycobacterium marinum persists in cultured mammalian cells in a temperaturerestricted fashion. Infect. Immun. 62: 3222 3229.
17. Ramakrishnan, L.,, N. A. Federspiel,, and S. Falkow. 2000. Granuloma-specific expression of Mycobacterium virulence proteins from the glycine-rich PE-PGRS family. Science 288: 1436 1439.
18. Ramakrishnan, L.,, R. H. Valdivia,, J. H. McKerrow,, and S. Falkow. 1997. Mycobacterium marinum causes both longterm subclinical infection and acute disease in the leopard frog ( Rana pipiens). Infect. Immun. 65: 767 773.
19. Reichenbach-Klinke, H.,, and E. Elkan,. 1965. Infectious diseases, p. 220 233, In H. Reichenbach-Klinke, and E. Elkan (ed.), The Principal Diseases of Lower Vertebrates. Academic Press, Inc., New York, N.Y.
20. Ross, A. J.,, and H. E. Johnson. 1962. Studies on transmission of mycobacterial infections in chinook salmon. Prog. Fish-Cult. 24: 147 149.
21. Ruley, K. M.,, R. Reimschuessel,, and M. Trucksis. 2002. Goldfish as an animal model system for mycobacterial infection. Methods Enzymol. 358: 29 39.
22. Russell, D. G. 2001. Mycobacterium tuberculosis: here today, and here tomorrow. Nat. Rev. Mol. Cell Biol. 2: 569 577.
23. Sakanari, J. A.,, C. A. Reilly,, and M. Moser. 1983. Tubercular lesions in Pacific Coast populations of striped bass. Trans. Am. Fish. Soc. 112: 565 566.
23.a. Siegmund, O. H. 1973. The Merck Veterinary Manual. Merck & Co., Rahway, N.J.
24. Sprague, J.,, E. Doerry,, S. Douglas,, and M. Westerfield. 2001. The Zebrafish Information Network (ZFIN): a resource for genetic, genomic, and developmental research. Nucleic Acids Res. 29: 87 90.
25. Talaat, A.,, R. Reimschuessel,, S. S. Wasserman,, and M. Trucksis. 1998. Goldfish, Carassius auratus, a novel animal model for the study of Mycobacterium marinum pathogenesis. Infect. Immun. 66: 2938 2942.
26. Talaat, A. M.,, M. Trucksis,, A. S. Kane,, and R. Reimschuessel. 1999. Pathogenicity of Mycobacterium fortuitum and Mycobacterium smegmatis to goldfish, Carassius auratus. Vet. Microbiol. 66: 151 164.
27. Teska, J. D.,, L. E. Twerdok,, J. Beaman,, M. Curry,, and R. A. Finch. 1997. Isolation of Mycobacterium abscessus from Japanese Medaka. J. Aquat. Anim. Health 9: 234 238.
28. Tonjum, T.,, D. B. Welty,, E. Jantzen,, and P. L. Small. 1998. Differentiation of Mycobacterium ulcerans, M. marinum, and M. haemophilum: mapping of their relationships to M. tuberculosis by fatty acid profile analysis, DNA-DNA hybridization, and 16S rRNA gene sequence analysis. J. Clin. Microbiol. 36: 918 925.
29. Travis, W. D.,, L. B. Travis,, G. D. Roberts,, D. W. Su,, and L. W. Weiland. 1985. The histological spectrum in Mycobacterium marinum infection. Arch. Pathol. Lab. Med. 109: 1109 1113.
30. van Duijn, C. 1981. Tuberculosis in fishes. J. Small Anim. Pract. 22: 391 411.
31. Walker, C., 2000. Fish diseases, p. 1.12 1.14. In M. Westerfield (ed.), The Zebrafish Book. A Guide for the Laboratory Use of Zebrafish (Danio rerio), 4th ed. University of Oregon Press, Eugene.
32. Woods, G. L.,, and J. A. Washington. 1987. Mycobacteria other than Mycobacterium tuberculosis: review of microbiologic and clinical aspects. J. Infect. Dis. 9: 275 294.

Tables

Generic image for table
Table 1

Minimal infectious dose of M. marinum

Citation: Trucksis M, Pritchett C, Reimschuessel R. 2005. and Fish and Frog Models of Infection, p 529-536. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch34

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error