1887

Chapter 35 : Experimental Infection Models of Tuberculosis in Domestic and Wild Animals

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Experimental Infection Models of Tuberculosis in Domestic and Wild Animals, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817657/9781555812959_Chap35-1.gif /docserver/preview/fulltext/10.1128/9781555817657/9781555812959_Chap35-2.gif

Abstract:

This chapter focuses principally on experimental infection of cattle since this model has many features that make it appealing as a model for the human disease. The experimental infection models of deer, possums, ferrets and badgers add to one’s understanding of tuberculosis and are compared to those in cattle. Models of bovine tuberculosis in cattle have been established to provide essential information for the development of new strategies of disease control, including improved methods for diagnosis and vaccination. In common with the human disease, it has been found that cell-mediated immune responses predominate in early bovine tuberculosis and that the development of an antibody response is often associated with advanced stages of infection. Use of an effective tuberculosis vaccine for cattle would be highly desirable in the countries that cannot control bovine tuberculosis by using the conventional “test and slaughter” strategy, whereby animals giving a positive skin reaction to tuberculin are identified as infected and slaughtered. The kinetics of immune responses to vaccination and subsequent challenge can be readily measured in cattle and provides insights into possible correlates of protection and disease. BCG vaccination sensitizes animals to tuberculin PPD-based diagnostic tests. Therefore, the development of differential diagnostic assays has concentrated on antigens whose genes are deleted or underexpressed in BCG but strongly expressed in virulent . The study of experimentally induced tuberculosis models in animals other than laboratory animals (mice, guinea pigs, and rabbits) can greatly expand one’s knowledge of tuberculosis.

Citation: Buddle B, Pollock J, Hewinson R. 2005. Experimental Infection Models of Tuberculosis in Domestic and Wild Animals, p 537-545. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch35

Key Concept Ranking

Immune Systems
0.55222017
Cell-Mediated Immune Response
0.51216906
0.55222017
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Effect of route of infection on lesion distribution in bovine tuberculosis. Data represent percentages of animals with tuberculous lesions detected in the major lymph nodes of the lower respiratory tract (LRT) (bronchial/mediastinal), of the upper respiratory tract (URT) (retropharyngeal/submaxillary), and of both of these regions (LRT and URT) following field infection (= 2,886) ( ) and experimental infection by the intranasal or intratracheal route (= 9 for both).

Citation: Buddle B, Pollock J, Hewinson R. 2005. Experimental Infection Models of Tuberculosis in Domestic and Wild Animals, p 537-545. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch35
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Effect of BCG vaccination and subsequent challenge of calves with on IFN-γ released from whole-blood cultures stimulated with bovine PPD. All calves were challenged with 10 CFU of intratracheally at 8 weeks after vaccination. The tuberculous-lesion status of calves after challenge is as follows: ?, nonvaccinated calves that developed lesions (= 10);○, nonvaccinated calves with no lesions (= 6); ?, BCG-vaccinated calves that developed lesions (= 6); ?, BCG-vaccinated calves with no lesions (= 24). IFN-γ levels are presented as mean concentration; error bars represents standard error of the mean.

Citation: Buddle B, Pollock J, Hewinson R. 2005. Experimental Infection Models of Tuberculosis in Domestic and Wild Animals, p 537-545. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch35
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Positive correlation between ESAT-6-specific IFN-γ and disease severity. IFN-γ was released from whole-blood cultures stimulated with ESAT-6 at 11 weeks after infection. Responses of individual cattle are shown in relation to the severity of disease observed at the postmortem examination: ?, BCG vaccinated calves; ○, nonvaccinated calves. OD450, optical density at 450 nm. Reprinted from reference 41, with permission

Citation: Buddle B, Pollock J, Hewinson R. 2005. Experimental Infection Models of Tuberculosis in Domestic and Wild Animals, p 537-545. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch35
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817657.chap35
1. Aldwell, F. E.,, D. Keen,, N. Parlane,, M. A. Skinner,, G. W. de Lisle,, and B. M. Buddle. 2003. Oral vaccination with Mycobacterium bovis BCG in a lipid formulation induces resistance to pulmonary tuberculosis in possums. Vaccine 22:7076.
2. Buddle, B. M.,, G. W. de Lisle,, A. Pfeffer,, and F. E. Aldwell. 1995. Immunological responses and protection against Mycobacterium bovis in calves vaccinated with a low dose of BCG. Vaccine 13:11231130.
3. Buddle, B. M.,, N. A. Parlane,, D. L. Keen,, F. E. Aldwell,, J. M. Pollock,, K. Lightbody,, and P. Andersen. 1999. Differentiation between Mycobacterium bovis BCG-vaccinated and M. bovisinfected cattle by using recombinant mycobacterial antigens. Clin. Diagn. Lab. Immunol. 6:15.
4. Buddle, B. M.,, M. A. Skinner,, D. N. Wedlock,, D. M. Collins,, and G. W. de Lisle. 2002. New generation vaccines and delivery systems for control of bovine tuberculosis in cattle and wildlife. Vet. Immunol. Immunopathol. 87:177185.
5. Buddle, B. M.,, B. J. Wards,, F. E. Aldwell,, D. M. Collins,, and G. W. de Lisle. 2002. Influence of sensitisation to environmental mycobacteria on subsequent vaccination against bovine tuberculosis. Vaccine 20:11261133.
6. Buddle, B. M.,, D. N. Wedlock,, N. A. Parlane,, L. A. L. Corner,, G. W. de Lisle,, and M. A. Skinner. 2003. Revaccination of neonatal calves with Mycobacterium bovis BCG reduced the level of protection against tuberculosis induced by a single vaccination. Infect. Immun. 71: 64116419.
7. Cassidy, J. P.,, D. G. Bryson,, M. M. Gutiérrez Cancela,, F. Forster,, J. M. Pollock,, and S. D. Neill. 2001. Lymphocyte subtypes in experimentally induced early stage bovine tuberculosis lesions. J. Comp. Pathol. 124:4651.
8. Cassidy, J. P.,, D. G. Bryson,, J. M. Pollock,, R. T. Evans,, F. Forster,, and S. D. Neill. 1999. Lesions in cattle exposed to Mycobacterium bovis-inoculated calves. J. Comp. Pathol. 121:321337.
9. Cockle, P. J.,, S. V. Gordon,, A. Lalvani,, B. M. Buddle,, R. G. Hewinson,, and H. M. Vordermeier. 2002. Identification of novel Mycobacterium tuberculosis antigens with potential as diagnostic reagents or subunit vaccine candidates by comparative genomics. Infect. Immun. 70:69967003.
10. Corner, L. A.,, S. Norton,, B. M. Buddle,, and R. S. Morris. 2002. The efficacy of bacilli Calmette-Guérin vaccine in wild brushtail possums (Trichosurus vulpecula). Res. Vet. Sci. 73:145152.
11. de Lisle, G. W.,, C. G. Mackintosh,, and R. G. Bengis. 2001. Mycobacterium bovis in free-living and captive wildlife, including farmed deer. Rev. Sci. Tech. Off. Int. Epizool. 20:86111.
12. Doherty, T. M.,, A. Demissie,, J. Olobo,, D. Wolday,, S. Britton,, T. Eguale,, P. Ravn,, and P. Andersen. 2002. Immune responses to the Mycobacterium tuberculosis-specific antigen ESAT-6 signal subclinical infection among contacts of tuberculosis patients. J. Clin. Microbiol. 40:704706.
13. Fine, P. E. M. 1995. Variation in protection by BCG: implications of and for heterologous immunity. Lancet 346:13391345.
14. Griffin, J. F. T.,, C. G. Mackintosh,, and G. S. Buchan. 1995. Animals models of protective immunity in tuberculosis to evaluate candidate vaccines. Trends Microbiol. 3:418424.
15. Griffin, J. F. T.,, C. G. Mackintosh,, L. Slobbe,, A. J. Thomson,, and G. S. Buchan. 1999. Vaccine protocols to optimise the protective efficacy of BCG. Tubercle Lung Dis. 79:135143.
16. Howard, C. J.,, L. S. Kwong,, B. Villarreal-Ramos,, P. Sopp,, and J. C. Hope. 2002. Exposure to Mycobacterium avium primes the immune system of calves for vaccination with Mycobacterium bovis BCG. Clin. Exp. Immunol. 130:190195.
17. Lenzini, L.,, P. Rottoli,, and L. Rottoli. 1977. The spectrum of human tuberculosis. Clin. Exp. Immunol. 27:230237.
18. Lyashchenko, K. P.,, J. M. Pollock,, R. Colangeli,, and M. L. Gennaro. 1998. Diversity of antigen recognition by serum antibodies in experimental bovine tuberculosis. Infect. Immun. 66:53445349.
19. Mackintosh, C. G.,, T. Qureshi,, K. Waldrup,, R. E. Labes,, K. G. Dodds,, and J. F. T. Griffin. 2000. Genetic resistance to experimental infection with Mycobacterium bovis in red deer (Cervus elaphus). Infect. Immun. 68:16201625.
20. Mustafa, A. S.,, P. J. Cockle,, F. Shaban,, R. G. Hewinson,, and H. M. Vordermeier. 2002. Immunogenicity of Mycobacterium tuberculosis RD1 region gene products in infected cattle. Clin. Exp. Immunol. 130:3742.
21. Neill, S. D.,, D. G. Bryson,, and J. M. Pollock. 2001. Pathogenesis of tuberculosis in cattle. Tuberculosis 81:7986.
22. Neill, S. D.,, J. Hanna,, J. J. O’Brien,, and R. M. McCracken. 1988. Excretion of Mycobacterium bovis by experimentally infected cattle. Vet. Rec.123:340343.
23. Neill, S. D.,, J. J. O’Brien,, and J. Hanna. 1991. A mathematical model for Mycobacterium bovis excretion from tuberculous cattle. Vet. Microbiol. 28:103109.
24. Neill, S. D.,, J. M. Pollock,, D. B. Bryson,, and J. Hanna. 1994. Pathogenesis of Mycobacterium bovis infection in cattle. Vet. Microbiol. 40:4152.
25. Palmer, M. V.,, W. R. Waters,, and D. L. Whipple. 2002. Aerosol delivery of virulent Mycobacterium bovis to cattle. Tuberculosis 82:275282.
26. Palmer, M. V.,, W. R. Waters,, and D. L. Whipple. 2002. Lesion development in white-tailed deer (Odocoileus virginianus) experimentally infected with Mycobacterium bovis. Vet. Pathol. 39:334340.
27. Palmer, M. V.,, D. L. Whipple,, J. C. Rhyan,, C. A. Bolin,, and D. A. Saari. 1999. Granuloma development in cattle after intratonsilar inoculation with Mycobacterium bovis. Am. J. Vet. Res. 60:310315.
28. Pfeffer, A.,, B. M. Buddle,, and F. E. Aldwell. 1994. Tuberculosis in the brushtail possum (Trichosurus vulpecula) after intratracheal inoculation with low dose of Mycobacterium bovis. J. Comp. Pathol. 111: 353363.
29. Pollock, J. M.,, and P. Andersen. 1997. The potential of the ESAT-6 antigen secreted by virulent mycobacteria for specific diagnosis of tuberculosis. J. Infect. Dis. 175:12511254.
30. Pollock, J. M.,, B. M. Buddle,, and P. Andersen. 2001. Towards more accurate diagnosis of bovine tuberculosis using defined antigens. Tuberculosis 81:6569.
31. Pollock, J. M.,, and S. D. Neill. 2002. Mycobacterium bovis infection and tuberculosis in cattle. Vet. J. 163:115127.
32. Pollock, J. M.,, D. A. Pollock,, D. G. Campbell,, R. M. Girvin,, A. D. Crockard,, S. D. Neill,, and D. P. Mackie. 1996. Dynamic changes in circulating and antigen responsive T-cell subpopulations post-Mycobacterium bovis infection in cattle. Immunology 87:236241.
33. Pollock, J. M.,, and M. D. Welsh. 2002. The WC1+ γδ T-cell population in cattle: a possible role in resistance to intracellular infection. Vet. Immunol. Immunopathol. 89:105114.
34. Qureshi, T.,, R. E. Labes,, M. L. Cross,, J. F. T. Griffin,, and C. G. Mackintosh. 1999. Partial protection against oral challenge with Mycobaterium bovis in ferrets (Mustela furo) following oral vaccination with BCG. Int. J. Tuberc. Lung Dis. 3:10251033.
35. Rhodes, S. G.,, R. G. Hewinson,, and H. M. Vordermeier. 2001. Antigen recognition and immunomodulation by γδ T cells in bovine tuberculosis. J. Immunol. 166: 56045610.
36. Skinner, M. A.,, B. M. Buddle,, D. N. Wedlock,, D. L. Keen,, G. W. de Lisle,, R. E. Tascon,, J. C. Ferraz,, D. B. Lowrie,, P. J. Cockle,, H. M. Vordermeier,, and R. G. Hewinson. 2003. A DNA prime-BCG boost vaccination strategy in cattle induces protection against bovine tuberculosis. Infect. Immun. 71:49014907.
37. Skinner, M. A.,, D. L. Keen,, N. A. Parlane,, G. F. Yates,, and B. M. Buddle. 2002. Increased protection against bovine tuberculosis in the brushtail possum (Trichosurus vulpecula) when BCG is administered with killed Mycobacterium vaccae. Tuberculosis 82:1522.
38. Stuart, F. A.,, K. H. Mahmood,, J. L. Stanford,, and D. G. Pritchard. 1988. Development of diagnostic tests for, and vaccination against, tuberculosis in badgers. Mammal Rev. 18:7475.
39. Thoen, C. O., 1994. Tuberculosis in wild and domestic animals, p. 157162. In B. R. Bloom, (ed.), Tuberculosis: Pathogenesis, Protection, and Control. ASM Press, Washington, D.C.
40. van Pinxteren, L. A.,, P. Ravn,, E. M. Agger,, J. Pollock,, and P. Andersen. 2000. Diagnosis of tuberculosis based on the two specific antigens ESAT-6 and CFP10. Clin. Diagn. Lab. Immunol. 7:155160.
41. Vordermeier, H. M.,, M. A. Chambers,, P. J. Cockle,, A. O. Whelan,, J. Simmons,, and R. G. Hewinson. 2002. Correlation of ESAT-6-specific gamma interferon production with pathology in cattle following Mycobacterium bovis BCG vaccination against experimental bovine tuberculosis. Infect. Immun. 70:30263032.
42. Vordermeier, H. M.,, P. J. Cockle,, A. O. Whelan,, S. Rhodes,, M. A. Chambers,, D. Clifford,, K. Huygen,, R. Tascon,, D. Lowrie,, M. J. Colston,, and R. G. Hewinson. 2000. Effective DNA vaccination of cattle with the mycobacterial antigens MPB83 and MPB70 does not compromise the specificity of the comparative intradermal tuberculin skin test. Vaccine 19:12461255.
43. Vordermeier, H. M.,, P. J. Cockle,, A. O. Whelan,, S. Rhodes,, and R. G. Hewinson. 2000. Toward the development of diagnostic assays to discriminate between Mycobacterium bovis infection and bacille Calmette-Guérin vaccination in cattle. Clin. Infect. Dis. 30(Suppl. 3):S291298.
44. Vordermeier, H. M.,, A. Whelan,, P. J. Cockle,, L. Farrant,, N. Palmer,, and R. G. Hewinson. 2001. Use of synthetic peptides derived from the antigens ESAT-6 and CFP-10 for differential diagnosis of bovine tuberculosis in cattle. Clin. Diagn. Lab. Immunol. 8:571578.
45. Vordermeier, M.,, A. O. Whelan,, and R. G. Hewinson. 2003. Recognition of mycobacterial epitopes by T cells across mammalian species and use of a program that predicts human HLA-DR binding peptides to predict bovine epitopes. Infect. Immun. 71:19801987.
46. Waters, W. R.,, T. E. Rahner,, M. V. Palmer,, D. Cheng,, B. J. Nonnecke,, and D. L. Whipple. 2003. Expression of L-selectin (CD62L), CD44, and CD25 on activated bovine T cells. Infect. Immun. 71:317326.
47. Wedlock, D. N.,, B. Vesosky,, M. A. Skinner,, G. W. de Lisle,, I. M. Orme,, and B. M. Buddle. 2000. Vaccination of cattle with Mycobacterium bovis culture filtrate proteins and interleukin- 2 against bovine tuberculosis. Infect. Immun. 68:58095815.
48. Wedlock, D. N.,, D. L. Keen,, F. E. Aldwell,, P. Andersen,, and B. M. Buddle. 2002. Effect of adjuvants on immune responses of cattle vaccinated with culture filtrate proteins from Mycobacterium tuberculosis. Vet. Immunol. Immunopathol 86:7988.
49. Wedlock, D. N.,, M. A. Skinner,, N. A. Parlane,, H. M. Vordermeier,, R. G. Hewinson,, G. W. de Lisle,, and B. M. Buddle. 2003. Vaccination of cattle with DNA vaccines encoding the mycobacterial antigens MPB70 and MPB83: protein boosting induces antibody and does not enhance vaccine efficacy. Tuberculosis 83:339349.

Tables

Generic image for table
Table 1.

Use of cattle as a model for tuberculosis of humans

Citation: Buddle B, Pollock J, Hewinson R. 2005. Experimental Infection Models of Tuberculosis in Domestic and Wild Animals, p 537-545. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch35

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error