1887

Chapter 37 : Tuberculosis Vaccine Preclinical Screening and Development

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Tuberculosis Vaccine Preclinical Screening and Development, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817657/9781555812959_Chap37-1.gif /docserver/preview/fulltext/10.1128/9781555817657/9781555812959_Chap37-2.gif

Abstract:

Experimental-animal models of tuberculosis began to emerge shortly after the discovery of the bacterium itself. If one is an optimist, one can argue that the animal models are fully validated because they predict that the only vaccine fully tested in humans, BCG, will have a positive effect and that this will be mediated via CD4 Th1 T-cell responses. The primary models that are currently used in the preclinical screening program for vaccine candidates are (i) the low-dose aerosol mouse model and (ii) the low-dose aerosol guinea pig model. The National Institutes of Health preclinical tuberculosis vaccine screening program was established to identify novel vaccines that will eventually be used throughout the world to combat tuberculosis. The presence of the infection in the lung tissues sets up a local inflammation, creating chemokine gradients and blood vessel adhesion molecule expression, which facilitate the influx of granulocytes (which are short-lived and therefore not sustained) and monocytes from the bloodstream. The purpose of vaccination is to establish a long-lived state of heightened resistance to challenge infection, which in practical terms means many recirculating memory T cells capable of rapidly entering sites of inflammation in the lungs. With the current enthusiasm for attenuated live vaccines based on BCG or itself, this is a serious issue that needs to be resolved. Fortunately, such environmental mycobacteria (EM) effects may be less important in interfering with other classes of vaccines including DNAs and subunit nonliving vaccines.

Citation: Orme I, Izzo A. 2005. Tuberculosis Vaccine Preclinical Screening and Development, p 561-571. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch37
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

The BHRB building at Colorado State University (top left) is a biosafety level 3 facility in which much of our vaccine testing is performed. Mouse aerosol exposures are performed using a Middlebrook apparatus (top right), whereas guinea pigs are infected using an instrument manufactured by the University of Wisconsin at Madison (bottom).

Citation: Orme I, Izzo A. 2005. Tuberculosis Vaccine Preclinical Screening and Development, p 561-571. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch37
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Survival of guinea pigs following low-dose (ca. 20 bacilli) aerosol exposure. Animals injected with saline live about 25 weeks (♦), whereas those vaccinated with BCG live about a year on average (▄).

Citation: Orme I, Izzo A. 2005. Tuberculosis Vaccine Preclinical Screening and Development, p 561-571. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch37
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Some explanations of why certain mouse strains, such as CBA/J, are prone to reactivation or regrowth of pulmonary infection about 150 days after aerosol exposure. These include bronchial epithelial degeneration (top left), failure to upregulate the expression of adhesion molecules such as ICAM-1 on responding T cells (top right; open trace, CBA/J; filled trace, C57BL/6), and accumulation of large amounts of interleukin-10 (IL-10) in macrophages in lung lesions. C57BL/6 mice rendered transgenic (Tg) overexpressors of IL-10 behave like reactivation-prone strains in terms of the course of the infection (bottom).

Citation: Orme I, Izzo A. 2005. Tuberculosis Vaccine Preclinical Screening and Development, p 561-571. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch37
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

CD4 cells in the lungs express an activated/effector phenotype even well into the chronic stage of the disease process.

Citation: Orme I, Izzo A. 2005. Tuberculosis Vaccine Preclinical Screening and Development, p 561-571. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch37
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5.
Figure 5.

The possible fates of antigen-specific T cells may be different for chronic infectious diseases such as tuberculosis in comparison to T cells induced into individual protein antigens.

Citation: Orme I, Izzo A. 2005. Tuberculosis Vaccine Preclinical Screening and Development, p 561-571. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch37
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6.
Figure 6.

Low-power (A, C, E, and G) and high-power (B, D, F, and H) photomicrographs of lung lesions in guinea pigs 10 (A and B), 20 (C and D), 30 (E and F), and 90 (G and H) days after aerosol exposure to . As described in the text, a “classical” granuloma develops over the first 30 days and then degenerates into a highly mineralized mass that erodes out through adjacent vessels. Reprinted from reference 72a.

Citation: Orme I, Izzo A. 2005. Tuberculosis Vaccine Preclinical Screening and Development, p 561-571. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch37
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817657.chap37
1. Baldwin, S. L.,, C. D’Souza,, A. D. Roberts,, B. P. Kelly,, A. A. Frank,, M. A. Lui,, J. B. Ulmer,, K. Huygen,, D. M. McMurray,, and I. M. Orme. 1998. Evaluation of new vaccines in the mouse and guinea pig model of tuberculosis. Infect. Immun. 66: 2951 2959.
2. Bevan, M. J. 2002. Immunology: remembrance of things past. Nature 420: 748 749.
3. Bishai, W. R.,, A. M. Dannenberg, Jr.,, N. Parrish,, R. Ruiz,, P. Chen,, B. C. Zook,, W. Johnson,, J. W. Boles,, and M. L. Pitt. 1999. Virulence of Mycobacterium tuberculosis CDC1551 and H37Rv in rabbits evaluated by Lurie’s pulmonary Tubercle count method. Infect. Immun. 67: 4931 4934.
4. Bodnar, K. A.,, N. V. Serbina,, and J. L. Flynn. 2001. Fate of Mycobacterium tuberculosis within murine dendritic cells. Infect. Immun. 69: 800 809.
5. Brandt, L.,, J. Feino Cunha,, A. Weinreich Olsen,, B. Chilima,, P. Hirsch,, R. Appelberg,, and P. Andersen. 2002. Failure of the Mycobacterium bovis BCG vaccine: some species of environmental mycobacteria block multiplication of BCG and induction of protective immunity to tuberculosis. Infect. Immun. 70: 672 678.
6. Brandt, L.,, and I. Orme. 2002. Prospects for new vaccines against tuberculosis. BioTechniques 33: 1098, 1100, 1102.
7. Brooks, J. V.,, A. A. Frank,, M. A. Keen,, J. T. Bellisle,, and I. M. Orme. 2001. Boosting vaccine for tuberculosis. Infect. Immun. 69: 2714 2717.
8. Caruso, A. M.,, N. Serbina,, E. Klein,, K. Triebold,, B. R. Bloom,, and J. L. Flynn. 1999. Mice deficient in CD4 T cells have only transiently diminished levels of IFN-gamma, yet succumb to tuberculosis. J. Immunol. 162: 5407 5416.
9. Converse, P. J.,, A. M. Dannenberg, Jr.,, J. E. Estep,, K. Sugisaki,, Y. Abe,, B. H. Schofield,, and M. L. Pitt. 1996. Cavitary tuberculosis produced in rabbits by aerosolized virulent Tubercle bacilli. Infect. Immun. 64: 4776 4787.
10. Converse, P. J.,, A. M. Dannenberg, Jr.,, T. Shigenaga,, D. N. Mc-Murray,, S. W. Phalen,, J. L. Stanford,, G. A. Rook,, T. Koru-Sengul,, H. Abbey,, J. E. Estep,, and M. L. Pitt. 1998. Pulmonary bovine-type tuberculosis in rabbits: bacillary virulence, inhaled dose effects, tuberculin sensitivity, and Mycobacterium vaccae immunotherapy. Clin. Diagn. Lab. Immunol. 5: 871 881.
11. Cooper, A. M.,, J. E. Callahan,, M. Keen,, J. T. Belisle,, and I. M. Orme. 1997. Expression of memory immunity in the lung following re-exposure to Mycobacterium tuberculosis. Tubercle Lung Dis. 78: 67 73.
12. Cooper, A. M.,, D. K. Dalton,, T. A. Stewart,, J. P. Griffin,, D. G. Russell,, and I. M. Orme. 1993. Disseminated tuberculosis in interferon gamma gene-disrupted mice. J. Exp. Med. 178: 2243 2247.
13. Cooper, A. M.,, A. Kipnis,, J. Turner,, J. Magram,, J. Ferrante,, and I. M. Orme. 2002. Mice lacking bioactive IL-12 can generate protective, antigen-specific cellular responses to mycobacterial infection only if the IL-12 p40 subunit is present. J. Immunol. 168: 1322 1327.
14. Cooper, A. M.,, J. Magram,, J. Ferrante,, and I. M. Orme. 1997. Interleukin 12 (IL-12) is crucial to the development of protective immunity in mice intravenously infected with Mycobacterium tuberculosis. J. Exp. Med. 186: 39 45.
15. Cooper, A. M.,, A. D. Roberts,, E. R. Rhoades,, J. E. Callahan,, D. M. Getzy,, and I. M. Orme. 1995. The role of interleukin-12 in acquired immunity to Mycobacterium tuberculosis infection. Immunology 84: 423 432.
16. Corbett, E. L. 2003. HIV and tuberculosis: surveillance revisited. Int. J. Tuberc. Lung Dis. 7: 709.
17. Dannenberg, A. M.,, W. R. Bishai,, N. Parrish,, R. Ruiz,, W. Johnson,, B. C. Zook,, J. W. Boles,, and L. M. Pitt. 2000. Efficacies of BCG and vole bacillus ( Mycobacterium microti) vaccines in preventing clinically apparent pulmonary tuberculosis in rabbits: a preliminary report. Vaccine 19: 796 800.
18. Dannenberg, A. M., Jr. 1994. Roles of cytotoxic delayed-type hypersensitivity and macrophage-activating cell-mediated immunity in the pathogenesis of tuberculosis. Immunobiology 191: 461 473.
19. Davies, P. D. 2003. The world-wide increase in tuberculosis: how demographic changes, HIV infection and increasing numbers in poverty are increasing tuberculosis. Ann. Med. 35: 235 243.
20. Flynn, J. L.,, and B. R. Bloom. 1996. Role of T1 and T2 cytokines in the response to Mycobacterium tuberculosis. Ann. N.Y. Acad. Sci. 795: 137 146.
21. Flynn, J. L.,, and J. Chan. 2003. Immune evasion by Mycobacterium tuberculosis: living with the enemy. Curr. Opin. Immunol. 15: 450 455.
22. Flynn, J. L.,, and J. Chan. 2001. Immunology of tuberculosis. Annu. Rev. Immunol. 19: 93 129.
23. Flynn, J. L.,, and J. Chan. 2001. Tuberculosis: latency and reactivation. Infect. Immun. 69: 4195 4201.
24. Flynn, J. L.,, J. Chan,, K. J. Triebold,, D. K. Dalton,, T. A. Stewart,, and B. R. Bloom. 1993. An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J. Exp. Med. 178: 2249 2254.
25. Flynn, J. L.,, M. M. Goldstein,, K. J. Triebold,, J. Sypek,, S. Wolf,, and B. R. Bloom. 1995. IL-12 increases resistance of BALB/c mice to Mycobacterium tuberculosis infection. J. Immunol. 155: 2515 2524.
26. Frucht, D. M.,, and S. M. Holland. 1996. Defective monocyte costimulation for IFN-gamma production in familial disseminated Mycobacterium avium complex infection: abnormal IL-12 regulation. J. Immunol. 157: 411 416.
27. Frucht, D. M.,, D. I. Sandberg,, M. R. Brown,, S. M. Gerstberger,, and S. M. Holland. 1999. IL-12-independent costimulation pathways for interferon-gamma production in familial disseminated Mycobacterium avium complex infection. Clin. Immunol. 91: 234 241.
28. Gonzalez-Juarrero, M.,, and I. M. Orme. 2001. Characterization of murine lung dendritic cells infected with Mycobacterium tuberculosis. Infect. Immun. 69: 1127 1133.
29. Gonzalez-Juarrero, M.,, T. S. Shim,, A. Kipnis,, A. P. Junqueira- Kipnis,, and I. M. Orme. 2003. Dynamics of macrophage cell populations during murine pulmonary tuberculosis. J. Immunol. 171: 3128 3135.
30. Gonzalez-Juarrero, M.,, O. C. Turner,, J. Turner,, P. Marietta,, J. V. Brooks,, and I. M. Orme. 2001. Temporal and spatial arrangement of lymphocytes within lung granulomas induced by aerosol infection with Mycobacterium tuberculosis. Infect. Immun. 69: 1722 1728.
31. Gruppo, V.,, O. C. Turner,, I. M. Orme,, and J. Turner. 2002. Reduced up-regulation of memory and adhesion/integrin molecules in susceptible mice and poor expression of immunity to pulmonary tuberculosis. Microbiology 148: 2959 2966.
32. Gumperz, J. E.,, and M. B. Brenner. 2001. CD1-specific T cells in microbial immunity. Curr. Opin. Immunol. 13: 471 478.
33. Heldwein, K. A.,, and M. J. Fenton. 2002. The role of Tolllike receptors in immunity against mycobacterial infection. Microbes Infect. 4: 937 944.
34. Henderson, R. A.,, S. C. Watkins,, and J. L. Flynn. 1997. Activation of human dendritic cells following infection with Mycobacterium tuberculosis. J. Immunol. 159: 635 643.
35. Hernandez-Pando, R.,, L. Pavon,, K. Arriaga,, H. Orozco,, V. Madrid-Marina,, and G. Rook. 1997. Pathogenesis of tuberculosis in mice exposed to low and high doses of an environmental mycobacterial saprophyte before infection. Infect. Immun. 65: 3317 3327.
36. Huygen, K.,, J. Content,, O. Denis,, D. L. Montgomery,, A. M. Yawman,, R. R. Deck,, C. M. DeWitt,, I. M. Orme,, S. Baldwin,, C. D’Souza,, A. Drowart,, E. Lozes,, P. Vandenbussche,, J. P. Van Vooren,, M. A. Liu,, and J. B. Ulmer. 1996. Immunogenicity and protective efficacy of a tuberculosis DNA vaccine. Nat. Med. 2: 893 898.
37. Jungueira-Kipnis, A.,, P. J., Turner,, M. Gonzalez-Juarrero,, O. C. Turner,, and I. M. Orme. 2004. Stable T-cell population expressing an effector cell surface phenotype in the lungs of mice chronically infected with Mycobacterium tuberculosis. Infect. Immun. 72: 570 575.
38. Manabe, Y. C.,, A. M. Dannenberg, Jr.,, S. K. Tyagi,, C. L. Hatem,, M. Yoder,, S. C. Woolwine,, B. C. Zook,, M. L. Pitt,, and W. R. Bishai. 2003. Different strains of Mycobacterium tuberculosis cause various spectrums of disease in the rabbit model of tuberculosis. Infect. Immun. 71: 6004 6011.
39. McMurray, D. N. 2000. A nonhuman primate model for preclinical testing of new tuberculosis vaccines. Clin. Infect. Dis. 30( Suppl 3): S210 S212.
40. McMurray, D. N.,, F. M. Collins,, A. M. Dannenberg, Jr.,, and D. W. Smith. 1996. Pathogenesis of experimental tuberculosis in animal models. Curr. Top. Microbiol. Immunol. 215: 157 179.
41. McMurray, D. N.,, G. Dai,, and S. Phalen. 1999. Mechanisms of vaccine-induced resistance in a guinea pig model of pulmonary tuberculosis. Tubercle Lung Dis. 79: 261 266.
42. Medina, E.,, and R. J. North. 1996. Evidence inconsistent with a role for the Bcg gene (Nramp1) in resistance of mice to infection with virulent Mycobacterium tuberculosis. J. Exp. Med. 183: 1045 1051.
43. Medina, E.,, and R. J. North. 1998. Resistance ranking of some common inbred mouse strains to Mycobacterium tuberculosis and relationship to major histocompatibility complex haplotype and Nramp1 genotype. Immunology 93: 270 274.
44. Moody, D. B.,, M. Sugita,, P. J. Peters,, M. B. Brenner,, and S. A. Porcelli. 1996. The CD1-restricted T-cell response to mycobacteria. Res. Immunol. 147: 550 559.
45. Orme, I. M. 1999. Beyond BCG: the potential for a more effective TB vaccine. Mol. Med. Today 5: 487 492.
46. Orme, I. M. 1998. The immunopathogenesis of tuberculosis: a new working hypothesis. Trends Microbiol. 6: 94 97.
47. Orme, I. M. 1987. The kinetics of emergence and loss of mediator T lymphocytes acquired in response to infection with Mycobacterium tuberculosis. J. Immunol. 138: 293 298.
48. Orme, I. M. 2003. The mouse as a useful model of tuberculosis. Tuberculosis 83: 112 115.
49. Orme, I. M. 1999. New vaccines against tuberculosis. The status of current research. Infect. Dis. Clin. North Am. 13: 169 185, vii-viii.
50. Orme, I. M. 1997. Progress in the development of new vaccines against tuberculosis. Int. J. Tuberc. Lung Dis. 1: 95 100.
51. Orme, I. M. 1995. Prospects for new vaccines against tuberculosis. Trends Microbiol. 3: 401 404.
52. Orme, I. M. 2001. The search for new vaccines against tuberculosis. J. Leukoc. Biol. 70: 1 10.
53. Orme, I. M. 2000. Tuberculosis: recent progress in basic immunity and vaccine development. Kekkaku 75: 97 101.
54. Orme, I. M. 1999. Vaccination against tuberculosis: recent progress. Adv. Vet. Med. 41: 135 143.
55. Orme, I. M.,, P. Andersen,, and W. H. Boom. 1993. T cell response to Mycobacterium tuberculosis. J. Infect. Dis. 167: 1481 1497.
56. Orme, I. M.,, and J. T. Belisle. 1999. TB vaccine development: after the flood. Trends Microbiol. 7: 394 395.
57. Orme, I. M.,, and F. M. Collins. 1986. Crossprotection against nontuberculous mycobacterial infections by Mycobacterium tuberculosis memory immune T lymphocytes. J. Exp. Med. 163: 203 208.
58. Orme, I. M.,, and F. M. Collins. 1984. Efficacy of Mycobacterium bovis BCG vaccination in mice undergoing prior pulmonary infection with atypical mycobacteria. Infect. Immun. 44: 28 32.
59. Orme, I. M.,, and F. M. Collins. 1983. Infection with Mycobacterium kansasii and efficacy of vaccination against tuberculosis. Immunology 50: 581 586.
60. Orme, I. M.,, and A. M. Cooper. 1999. Cytokine/chemokine cascades in immunity to tuberculosis. Immunol. Today 20: 307 312.
61. Orme, I. M.,, D. N. McMurray,, and J. T. Belisle. 2001. Tuberculosis vaccine development: recent progress. Trends Microbiol. 9: 115 118.
62. Porcelli, S. A.,, and R. L. Modlin. 1999. The CD1 system: antigen-presenting molecules for T cell recognition of lipids and glycolipids. Annu. Rev. Immunol. 17: 297 329.
63. Repique, C. J.,, A. Li,, F. M. Collins,, and S. L. Morris. 2002. DNA immunization in a mouse model of latent tuberculosis: effect of DNA vaccination on reactivation of disease and on reinfection with a secondary challenge. Infect. Immun. 70: 3318 3323.
64. Rhoades, E. R.,, A. A. Frank,, and I. M. Orme. 1997. Progression of chronic pulmonary tuberculosis in mice aerogenically infected with virulent Mycobacterium tuberculosis. Tubercle Lung Dis. 78: 57 66.
65. Scanga, C. A.,, V. P. Mohan,, H. Joseph,, K. Yu,, J. Chan,, and J. L. Flynn. 1999. Reactivation of latent tuberculosis: variations on the Cornell murine model. Infect. Immun. 67: 4531 4538.
66. Sieling, P. A.,, D. Chatterjee,, S. A. Porcelli,, T. I. Prigozy,, R. J. Mazzaccaro,, T. Soriano,, B. R. Bloom,, M. B. Brenner,, M. Kronenberg,, P. J. Brennan,, and R. L. Modlin. 1995. CD1-restricted T cell recognition of microbial lipoglycan antigens. Science 269: 227 230.
67. Smith, D. W.,, V. Balasubramanian,, and E. Wiegeshaus. 1991. A guinea pig model of experimental airborne tuberculosis for evaluation of the response to chemotherapy: the effect on bacilli in the initial phase of treatment. Tubercle 72: 223 231.
68. Smith, D. W.,, and G. E. Harding. 1977. Animal model of human disease. Pulmonary tuberculosis. Animal model: experimental airborne tuberculosis in the guinea pig. Am. J. Pathol. 89: 273 276.
69. Stanford, J. L.,, M. J. Shield,, and G. A. Rook. 1981. How environmental mycobacteria may predetermine the protective efficacy of BCG. Tubercle 62: 55 62.
70. Stenger, S.,, and R. L. Modlin. 2002. Control of Mycobacterium tuberculosis through mammalian Toll-like receptors. Curr. Opin. Immunol. 14: 452 457.
71. Taylor, J. L.,, O. C. Turner,, R. J. Basaraba,, J. T. Belisle,, K. Huygen,, and I. M. Orme. 2003. Pulmonary necrosis resulting from DNA vaccination against tuberculosis. Infect. Immun. 71: 2192 2198.
72. Tsenova, L.,, A. Bergtold,, V. H. Freedman,, R. A. Young,, and G. Kaplan. 1999. Tumor necrosis factor alpha is a determinant of pathogenesis and disease progression in mycobacterial infection in the central nervous system. Proc. Natl. Acad. Sci. USA 96: 5657 5662.
72.a. Turner, O. C.,, R. J. Basaraba,, A. A. Frank,, I. M. Orme,. 2003. Granuloma formation in mouse and guinea pig models of experimental tuberculosis, p. 65 84. In D. L. Boros (ed.), Granulomatous Infections and Inflammations. ASM Press, Washington, D.C.
73. Turner, J.,, M. Gonzalez-Juarrero,, B. M. Saunders,, J. V. Brooks,, P. Marietta,, D. L. Ellis,, A. A. Frank,, A. M. Cooper,, and I. M. Orme. 2001. Immunological basis for reactivation of tuberculosis in mice. Infect. Immun. 69: 3264 3270.
74. Turner, J.,, E. R. Rhoades,, M. Keen,, J. T. Belisle,, A. A. Frank,, and I. M. Orme. 2000. Effective preexposure tuberculosis vaccines fail to protect when they are given in an immunotherapeutic mode. Infect. Immun. 68: 1706 1709.
75. Turner, O. C.,, R. J. Basaraba,, and I. M. Orme. 2003. Immunopathogenesis of pulmonary granulomas in the guinea pig after infection with Mycobacterium tuberculosis. Infect. Immun. 71: 864 871.
76. Ulmer, J. B.,, D. L. Montgomery,, A. Tang,, L. Zhu,, R. R. Deck,, C. DeWitt,, O. Denis,, I. Orme,, J. Content,, and K. Huygen. 1998. DNA vaccines against tuberculosis. Novartis Found. Symp. 217: 239 253.
77. Wolday, D.,, B. Hailu,, M. Girma,, E. Hailu,, E. Sanders,, and A. L. Fontanet. 2003. Low CD4+ T-cell count and high HIV viral load precede the development of tuberculosis disease in a cohort of HIV-positive ethiopians. Int. J. Tuberc. Lung Dis. 7: 110 116.
78. Wu, C. Y.,, J. R. Kirman,, M. J. Rotte,, D. F. Davey,, S. P. Perfetto,, E. G. Rhee,, B. L. Freidag,, B. J. Hill,, D. C. Douek,, and R. A. Seder. 2002. Distinct lineages of T(H)1 cells have differential capacities for memory cell generation in vivo. Nat. Immunol. 3: 852 858.
79. Yun, H. J.,, C. C. Whalen,, A. Okwera,, R. D. Mugerwa,, and J. J. Ellner. 2003. HIV disease progression and effects of tuberculosis preventive therapy in HIV-infected adults. Ann. Epidemiol. 13: 577 578.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error