1887

Chapter 8 : Mechanisms of Drug Resistance in Mycobacterium tuberculosis

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Mechanisms of Drug Resistance in Mycobacterium tuberculosis, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817657/9781555812959_Chap08-1.gif /docserver/preview/fulltext/10.1128/9781555817657/9781555812959_Chap08-2.gif

Abstract:

Drug resistance in tuberculosis (TB) is a particular problem because the lengthy therapy of at least 6 months makes patient compliance very difficult, which frequently creates drug-resistant strains of . This chapter provides an update on genes associated with drug resistance and the current understanding of mechanisms of drug resistance and drug action in . The emergence of drug resistance in bacteria is one of the easiest demonstrations of the "survival of the fittest" concept of Darwin's theory of evolution. Resistance is thus due to a change in the genotype resulting in a drug-resistant phenotype of a bacterium, which can be passed on to subsequent generations. This is in contrast to tolerance, or phenotypic resistance, another phenomenon that is common to and other bacterial species, in which changes in the metabolic or physiological status of the cell induce temporary drug resistance as seen in stationary-phase, starved, or dormant bacteria. Knowledge about the mutations conferring drug resistance not only leads to understanding of the mechanisms of drug resistance and drug action but also facilitates rapid detection of drug resistance by molecular means. Phenotypic resistance is a major problem for antibiotic therapy, especially for TB. Nongrowing bacteria can be divided roughly into two different types depending on whether they grow immediately on subculture into a defined fresh medium.

Citation: Zhang Y, Jacobs, Jr. W, Vilchèze C. 2005. Mechanisms of Drug Resistance in Mycobacterium tuberculosis, p 115-140. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch8
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Structures of first-line and some second-line TB drugs.

Citation: Zhang Y, Jacobs, Jr. W, Vilchèze C. 2005. Mechanisms of Drug Resistance in Mycobacterium tuberculosis, p 115-140. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Mode of action of INH. INH enters tubercle bacilli by passive diffusion and is activated by KatG to a range of reactive species. These reactive species or radicals, which include both reactive oxygen species (hydrogen peroxide, superoxide, peroxynitrite, and hydroxyl radical) and organic radicals attack multiple targets, e.g., mycolic acid synthesis, DNA damage, and NAD metabolism in the cell. The isonicotinoyl acyl radical reacts with NAD_ to form an INH-NAD adduct, which inhibits the enoyl-ACP reductase InhA of the FASII system. Inhibition of InhA results in mycolic acid biosynthesis inhibition and ultimately in cell lysis. Deficient efflux and insufficient antagonism of INH-derived radicals, such as a defective anti-oxidative defense, may underlie the unique susceptibility of to INH.

Citation: Zhang Y, Jacobs, Jr. W, Vilchèze C. 2005. Mechanisms of Drug Resistance in Mycobacterium tuberculosis, p 115-140. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Mode of action of PZA.

Citation: Zhang Y, Jacobs, Jr. W, Vilchèze C. 2005. Mechanisms of Drug Resistance in Mycobacterium tuberculosis, p 115-140. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817657.chap8
1. Abal, A. T.,, S. Ahmad,, and E. Mokaddas. 2002. Variations in the occurrence of the S315T mutation within the katG gene in isoniazid-resistant clinical Mycobacterium tuberculosis isolates from Kuwait. Microb. Drug Resist. 8: 99 105.
2. Abraham, E. P.,, and E. Chain. 1940. An enzyme from bacteria able to destroy penicillin. Nature 146: 837.
3. Agerton, T. B.,, S. E. Valway,, R. J. Blinkhorn,, K. L. Shilkret,, R. Reves,, W. W. Schluter,, B. Gore,, C. J. Pozsik,, B. B. Plikaytis,, C. Woodley,, and I. M. Onorato. 1999. Spread of strain W, a highly drug-resistant strain of Mycobacterium tuberculosis, across the United States. Clin. Infect. Dis. 29: 85 95.
4. Ahmad, S.,, E. Fares,, G. F. Araj,, T. D. Chugh,, and A. S. Mustafa. 2002. Prevalence of S315T mutation within the katG gene in isoniazid-resistant clinical Mycobacterium tuberculosis isolates from Dubai and Beirut. Int J. Tuberc. Lung Dis. 6: 920 926.
5. Ainsa, J. A.,, E. Perez,, V. Pelicic,, F. X. Berthet,, B. Gicquel,, and C. Martin. 1997. Aminoglycoside 2'- N-acetyltransferase genes are universally present in mycobacteria: characterization of the aac( 2')- Ic gene from Mycobacterium tuberculosis and the aac( 2')- Id gene from Mycobacterium smegmatis. Mol. Microbiol. 24: 431 441.
6. Alangaden, G. J.,, B. N. Kreiswirth,, A. Aouad,, M. Khetarpal,, F. R. Igno,, S. L. Moghazeh,, E. K. Manavathu,, and S. A. Lerner. 1998. Mechanism of resistance to amikacin and kanamycin in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 42: 1295 1297.
7. Alcaide, F.,, G. E. Pfyffer,, and A. Telenti. 1997. Role of embB in natural and acquired resistance to ethambutol in mycobacteria. Antimicrob. Agents Chemother. 41: 2270 2273.
8. Alland, D.,, I. Kramnik,, T. R. Weisbrod,, L. Otsubo,, R. Cerny,, L. P. Miller,, W. R. Jacobs, Jr., and B. R. Bloom. 1998. Identification of differentially expressed mRNA in prokaryotic organisms by customized amplification libraries (DECAL): the effect of isoniazid on gene expression in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 95: 13227 13232.
9. Anand, N.,, and B. D. Davis. 1960. Effect of streptomycin on Escherichia coli. Nature 185: 22 23.
10. Anh, D. D.,, M. W. Borgdorff,, L. N. Van,, N. T. Lan,, T. van Gorkom,, K. Kremer,, and D. van Soolingen. 2000. Mycobacterium tuberculosis Beijing genotype emerging in Vietnam. Emerg. Infect. Dis. 6: 302 305.
11. Bakonyte, D.,, A. Baranauskaite,, J. Cicenaite,, A. Sosnovskaja,, and P. Stakenas. 2003. Molecular characterization of isoniazid-resistant Mycobacterium tuberculosis clinical isolates in Lithuania. Antimicrob. Agents Chemother. 47: 2009 2011.
12. Banerjee, A.,, E. Dubnau,, A. Quemard,, V. Balasubramanian,, K. S. Um,, T. Wilson,, D. Collins,, G. de Lisle,, and W. R. Jacobs, Jr. 1994. inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 263: 227 230.
13. Bass, J. B., Jr.,, L. S. Farer,, P. C. Hopewell,, R. O’Brien,, R. F. Jacobs,, F. Ruben,, D. E. Snider, Jr.,, and G. Thornton. 1994. Treatment of tuberculosis and tuberculosis infection in adults and children. American Thoracic Society and The Centers for Disease Control and Prevention. Am. J. Respir. Crit. Care Med. 149: 1359 1374.
14. Basso, L. A.,, R. Zheng,, J. M. Musser,, W. R. Jacobs, Jr., and J. S. Blanchard. 1998. Mechanisms of isoniazid resistance in Mycobacterium tuberculosis: enzymatic characterization of enoyl reductase mutants identified in isoniazid-resistant clinical isolates. J. Infect. Dis. 178: 769 775.
15. Baulard, A. R.,, J. C. Betts,, J. Engohang-Ndong,, S. Quan,, R. A. McAdam,, P. J. Brennan,, C. Locht,, and G. S. Besra. 2000. Activation of the pro-drug ethionamide is regulated in mycobacteria. J. Biol. Chem. 275: 28326 28331.
16. Bekierkunst, A. 1966. Nicotinamide-adenine dinucleotide in tubercle bacilli exposed to isoniazid. Science 152: 525 526.
17. Belanger, A. E.,, G. S. Besra,, M. E. Ford,, K. Mikusova,, J. T. Belisle,, P. J. Brennan,, and J. M. Inamine. 1996. The embAB genes of Mycobacterium avium encode an arabinosyl transferase involved in cell wall arabinan biosynthesis that is the target for the antimycobacterial drug ethambutol. Proc. Natl. Acad. Sci. USA 93: 11919 11924.>
18. Bernstein, J. W.,, A. Lott,, B. A. Steinberg,, and H. L. Yale. 1952. Chemotherapy of experimental tuberculosis. Am. Rev. Tuberc. 65: 357 374.
19. Bifani, P. J.,, B. B. Plikaytis,, V. Kapur,, K. Stockbauer,, X. Pan,, M. L. Lutfey,, S. L. Moghazeh,, W. Eisner,, T. M. Daniel,, M. H. Kaplan,, J. T. Crawford,, J. M. Musser,, and B. N. Kreiswirth. 1996. Origin and interstate spread of a New York City multidrug-resistant Mycobacterium tuberculosis clone family. JAMA 275: 452 457.
20. Billington, O. J.,, T. D. McHugh,, and S. H. Gillespie. 1999. Physiological cost of rifampin resistance induced in vitro in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 43: 1866 1869.
21. Bloch, K. 1977. Control mechanisms for fatty acid synthesis in Mycobacterium smegmatis. Adv. Enzymol. Relat. Areas Mol. Biol. 45: 1 84.
22. Bodmer, T.,, G. Zurcher,, P. Imboden,, and A. Telenti. 1995. Mutation position and type of substitution in the beta-subunit of the RNA polymerase influence in-vitro activity of rifamycins in rifampicin-resistant Mycobacterium tuberculosis. J. Antimicrob. Chemother. 35: 345 348.
23. Boshoff, H. I.,, and V. Mizrahi. 1998. Purification, gene cloning, targeted knockout, overexpression, and biochemical characterization of the major pyrazinamidase from Mycobacterium smegmatis. J. Bacteriol. 180: 5809 5814.
24. Boshoff, H. I.,, V. Mizrahi,, and C. E. Barry, III. 2002. Effects of pyrazinamide on fatty acid synthesis by whole mycobacterial cells and purified fatty acid synthase I. J. Bacteriol. 184: 2167 2172.
25. Bottger, E. C. 1994. Resistance to drugs targeting protein synthesis in mycobacteria. Trends Microbiol. 2: 416 421.
26. Bottger, E. C.,, B. Springer,, M. Pletschette,, and P. Sander. 1998. Fitness of antibiotic-resistant microorganisms and compensatory mutations. Nat. Med. 4: 1343 1344.
27. Brennan, P. J.,, and H. Nikaido. 1995. The envelope of mycobacteria. Annu. Rev. Biochem. 64: 29 63.
28. Brindley, D. N.,, S. Matsumura,, and K. Bloch. 1969. Mycobacterium phlei fatty acid synthase—a bacterial multienzyme complex. Nature 224: 666 669.
29. Broussy, S.,, Y. Coppel,, M. Nguyen,, J. Bernadou,, and B. Meunier. 2003. 1H and 13C NMR characterization of hemiamidal isoniazid-NAD(H) adducts as possible inhibitors of InhA reductase of Mycobacterium tuberculosis. Chemistry 9: 2034 2038.
30. Bulatovic, V. M.,, N. L. Wengenack,, J. R. Uhl,, L. Hall,, G. D. Roberts,, F. R. Cockerill, III, and F. Rusnak. 2002. Oxidative stress increases susceptibility of Mycobacterium tuberculosis to isoniazid. Antimicrob. Agents Chemother. 46: 2765 2771.
31. Caceres, N. E.,, N. B. Harris,, J. F. Wellehan,, Z. Feng,, V. Kapur,, and R. G. Barletta. 1997. Overexpression of the D-alanine racemase gene confers resistance to D-cycloserine in Mycobacterium smegmatis. J. Bacteriol. 179: 5046 5055.
32. Cambau, E.,, W. Sougakoff,, M. Besson,, C. Truffot-Pernot,, J. Grosset,, and V. Jarlier. 1994. Selection of a gyrA mutant of Mycobacterium tuberculosis resistant to fluoroquinolones during treatment with ofloxacin. J. Infect. Dis. 170: 1351.
33. Chacon, O.,, Z. Feng,, N. B. Harris,, N. E. Caceres,, L. G. Adams,, and R. G. Barletta. 2002. Mycobacterium smegmatis D-alanine racemase mutants are not dependent on D-alanine for growth. Antimicrob. Agents Chemother. 46: 47 54.
34. Cheng, S. J.,, L. Thibert,, T. Sanchez,, L. Heifets,, and Y. Zhang. 2000. pncA mutations as a major mechanism of pyrazinamide resistance in Mycobacterium tuberculosis: spread of a monoresistant strain in Quebec, Canada. Antimicrob. Agents Chemother. 44: 528 532.
35. Chorine, V. 1945. Action de l’amide nicotinique sur les bacilles du genre Mycobacterium. C. R. Acad. Sci. (Paris) 220: 150 151.
36. Cohen, S. P.,, S. B. Levy,, J. Foulds,, and J. L. Rosner. 1993. Salicylate induction of antibiotic resistance in Escherichia coli: activation of the mar operon and a mar-independent pathway. J. Bacteriol. 175: 7856 7862.
37. Cole, S. T.,, R. Brosch,, J. Parkhill,, T. Garnier,, C. Churcher,, D. Harris,, S. V. Gordon,, K. Eiglmeier,, S. Gas,, C. E. Barry, III, F. Tekaia, K. Badcock, D. Basham, D. Brown, T. Chillingworth, R. Connor, R. Davies, K. Devlin, T. Feltwell, S. Gentles, N. Hamlin, S. Holroyd, T. Hornsby, K. Jagels, A. Krogh, J. McLean, S. Moule, L. Murphy, K. Oliver, J. Osborne, M. A. Quail, M.-A. Rajandream, J. Rogers, S. Rutter, K. Seeger, J. Skelton, R. Squares, S. Squares, J. E. Sulston, K. Taylor, S. Whitehead, and B. G. Barrell. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393: 537 544.
38. Cooksey, R. C.,, G. P. Morlock,, A. McQueen,, S. E. Glickman,, and J. T. Crawford. 1996. Characterization of streptomycin resistance mechanisms among Mycobacterium tuberculosis isolates from patients in New York City. Antimicrob. Agents Chemother. 40: 1186 1188.
39. Corbett, E. L.,, C. J. Watt,, N. Walker,, D. Maher,, B. G. Williams,, M. C. Raviglione,, and C. Dye. 2003. The growing burden of tuberculosis: global trends and interactions with the HIV epidemic. Arch. Intern. Med. 163: 1009 1021.
40. Dabbs, E. R.,, K. Yazawa,, Y. Mikami,, M. Miyaji,, N. Morisaki,, S. Iwasaki,, and K. Furihata. 1995. Ribosylation by mycobacterial strains as a new mechanism of rifampin inactivation. Antimicrob. Agents Chemother. 39: 1007 1009.
41. Davies, J.,, W. Gilbert,, and L. Gorini. 1964. Streptomycin, suppression, and the Code. Proc. Natl. Acad. Sci. USA 51: 883 890.
42. DeBarber, A. E.,, K. Mdluli,, M. Bosman,, L. G. Bekker,, and C. E. Barry, III. 2000. Ethionamide activation and sensitivity in multidrug-resistant Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 97: 9677 9682.
43. Delihas, N.,, and S. Forst. 2001. MicF: an antisense RNA gene involved in response of Escherichia coli to global stress factors. J. Mol. Biol. 313: 1 12.
44. Deretic, V.,, J. Song,, and E. Pagan-Ramos. 1997. Loss of oxyR in Mycobacterium tuberculosis. Trends Microbiol. 5: 367 372.
45. Dessen, A.,, A. Quemard,, J. S. Blanchard,, W. R. Jacobs, Jr.,, and J. C. Sacchettini. 1995. Crystal structure and function of the isoniazid target of Mycobacterium tuberculosis. Science 267: 1638 1641.
46. Du, X.,, W. Wang,, R. Kim,, H. Yakota,, H. Nguyen,, and S. H. Kim. 2001. Crystal structure and mechanism of catalysis of a pyrazinamidase from Pyrococcus horikoshii. Biochemistry 40: 14166 14172.
47. Dubnau, E.,, S. Soares,, T. J. Huang,, and W. R. Jacobs, Jr. 1996. Overproduction of mycobacterial ribosomal protein S13 induces catalase/peroxidase activity and hypersensitivity to isoniazid in Mycobacterium smegmatis. Gene 170: 17 22.
48. Falkow, S. 1975. Infectious Multiple Drug Resistance. Pion Ltd., London, United Kingdom.
49. Falkow, S. 1988. Molecular Koch’s postulates applied to microbial pathogenicity. Rev. Infect. Dis. 10( Suppl. 2): S274 S276.
50. Ferrero, L.,, B. Cameron,, and J. Crouzet. 1995. Analysis of gyrA and grlA mutations in stepwise-selected ciprofloxacinresistant mutants of Staphylococcus aureus. Antimicrob. Agents Chemother. 39: 1554 1558.
51. Finken, M.,, P. Kirschner,, A. Meier,, A. Wrede,, and E. C. Bottger. 1993. Molecular basis of streptomycin resistance in Mycobacterium tuberculosis: alterations of the ribosomal protein S12 gene and point mutations within a functional 16S ribosomal RNA pseudoknot. Mol. Microbiol. 9: 1239 1246.
52. Fox, H. H. 1952. The chemical approach to the control of tuberculosis. Science 116: 129 134.
53. Fraaije, M. W.,, N. M. Kamerbeek,, A. J. Heidekamp,, R. Fortin,, and D. B. Janssen. 2004. The prodrug activator EtaA from Mycobacterium tuberculosis is a Baeyer-Villiger monooxygenase. J. Biol. Chem. 279: 3354 3360.
54. Frothingham, R.,, P. L. Strickland,, G. Bretzel,, S. Ramaswamy,, J. M. Musser,, and D. L. Williams. 1999. Phenotypic and genotypic characterization of Mycobacterium africanum isolates from West Africa. J. Clin. Microbiol. 37: 1921 1926.
55. Gale, E. F.,, E. Cundliffe,, P. E. Reynolds,, M. Richmond,, and M. J. Waring. 1981. Antibiotic Inhibitors of Ribosome Function, 2nd ed. John Wiley & Sons, Ltd., London, United Kingdom.
56. Gangadharam, P. R. J.,, F. M. Harold,, and W. Schaefer. 1963. Selective inhibition of nucleic acid synthesis in Mycobacterium tuberculosis by isoniazid. Nature 198: 712 714.
57. Garvin, R. T.,, D. K. Biswas,, and L. Gorini. 1974. The effects of streptomycin or dihydrostreptomycin binding to 16S RNA or to 30S ribosomal subunits. Proc. Natl. Acad. Sci. USA 71: 3814 3818.
58. Gill, M. J.,, S. Simjee,, K. Al-Hattawi,, B. D. Robertson,, C. S. Easmon,, and C. A. Ison. 1998. Gonococcal resistance to beta-lactams and tetracycline involves mutation in loop 3 of the porin encoded at the penB locus. Antimicrob. Agents Chemother. 42: 2799 2803.
59. Gomez, J. E.,, and J. D. McKinney. 2004. M. tuberculosis persistence, latency, and drug tolerance. Tuberculosis (Edinburgh) 84: 29 44.
60. Goodwin, A.,, D. Kersulyte,, G. Sisson,, S. J. Veldhuyzen van Zanten,, D. E. Berg,, and P. S. Hoffman. 1998. Metronidazole resistance in Helicobacter pylori is due to null mutations in a gene ( rdxA) that encodes an oxygen-insensitive NADPH nitroreductase. Mol. Microbiol. 28: 383 393.
61. Guerrero, C.,, L. Stockman,, F. Marchesi,, T. Bodmer,, G. D. Roberts,, and A. Telenti. 1994. Evaluation of the rpoB gene in rifampicin-susceptible and -resistant Mycobacterium avium and Mycobacterium intracellulare. J. Antimicrob. Chemother. 33: 661 663.
62. Guillemin, I.,, V. Jarlier,, and E. Cambau. 1998. Correlation between quinolone susceptibility patterns and sequences in the A and B subunits of DNA gyrase in mycobacteria. Antimicrob. Agents Chemother. 42: 2084 2088.
63. Guo, M.,, Z. Sun,, and Y. Zhang. 2000. Mycobacterium smegmatis has two pyrazinamidase enzymes, PncA and PzaA. J. Bacteriol. 182: 3881 3884.
64. Gustafson, J. E.,, P. V. Candelaria,, S. A. Fisher,, J. P. Goodridge,, T. M. Lichocik,, T. M. McWilliams,, C. T. Price,, F. G. O’Brien,, and W. B. Grubb. 1999. Growth in the presence of salicylate increases fluoroquinolone resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 43: 990 992.
65. Haas, W. H.,, K. Schilke,, J. Brand,, B. Amthor,, K. Weyer,, P. B. Fourie,, G. Bretzel,, V. Sticht-Groh,, and H. J. Bremer. 1997. Molecular analysis of katG gene mutations in strains of Mycobacterium tuberculosis complex from Africa. Antimicrob. Agents Chemother. 41: 1601 1603.
66. Heifets, L. B.,, and P. J. Lindholm-Levy. 1990. Is pyrazinamide bactericidal against Mycobacterium tuberculosis? Am. Rev. Respir. Dis. 141: 250 252.
67. Helbecque, D. M.,, V. Handzel,, and L. Eidus. 1975. Simple amidase test for identification of mycobacteria. J. Clin. Microbiol. 1: 50 53.
68. Heym, B.,, P. M. Alzari,, N. Honore,, and S. T. Cole. 1995. Missense mutations in the catalase-peroxidase gene, katG, are associated with isoniazid resistance in Mycobacterium tuberculosis. Mol. Microbiol. 15: 235 245.
69. Heym, B.,, N. Honore,, C. Truffot-Pernot,, A. Banerjee,, C. Schurra,, W. R. Jacobs, Jr.,, J. D. van Embden,, J. H. Grosset,, and S. T. Cole. 1994. Implications of multidrug resistance for the future of short-course chemotherapy of tuberculosis: a molecular study. Lancet 344: 293 298.
70. Heym, B.,, E. Stavropoulos,, N. Honore,, P. Domenech,, B. Saint-Joanis,, T. M. Wilson,, D. M. Collins,, M. J. Colston,, and S. T. Cole. 1997. Effects of overexpression of the alkyl hydroperoxide reductase AhpC on the virulence and isoni- azid resistance of Mycobacterium tuberculosis. Infect. Immun. 65: 1395 1401.
71. Hirano, K.,, M. Takahashi,, Y. Kazumi,, Y. Fukasawa,, and C. Abe. 1997. Mutation in pncA is a major mechanism of pyrazinamide resistance in Mycobacterium tuberculosis. Tubercle Lung Dis. 78: 117 122.
72. Hoashi, S.,, H. Tai,, and M. Tamari. 1999. pncA gene mutations in clinical isolates of tubercle bacillus by polymerase chain reaction-direct sequencing method: in relationship to pyrazinamide resistance. Kekkaku 74: 441 445.
73. Hobby, G. L.,, K. Meyer,, and K. Chaffe. 1942. Observations on the mechanism of action of penicillin. Proc. Soc. Exp. Biol. Med. 50: 281.
74. Honore, N.,, and S. T. Cole. 1993. Molecular basis of rifampin resistance in Mycobacterium leprae. Antimicrob. Agents Chemother. 37: 414 418.
75. Honore, N.,, and S. T. Cole. 1994. Streptomycin resistance in mycobacteria. Antimicrob. Agents Chemother. 38: 238 242.
76. Honore, N.,, G. Marchal,, and S. T. Cole. 1995. Novel mutation in 16S rRNA associated with streptomycin dependence in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 39: 769 770.
77. Hou, L.,, D. Osei-Hyiaman,, Z. Zhang,, B. Wang,, A. Yang,, and K. Kano. 2000. Molecular characterization of pncA gene mutations in Mycobacterium tuberculosis clinical isolates from China. Epidemiol. Infect. 124: 227 232.
78. Huant, E. 1945. Notes sur l’action de tres fortes doses d’amide nicotinique dans les lesions bacillaires. Gaz. Hop. 118: 259 260.
79. Hui, J.,, N. Gordon,, and R. Kajioka. 1977. Permeability barrier to rifampin in mycobacteria. Antimicrob. Agents Chemother. 11: 773 779.
80. Jarlier, V.,, and H. Nikaido. 1990. Permeability barrier to hydrophilic solutes in Mycobacterium chelonei. J. Bacteriol. 172: 1418 1423.
81. Jin, D. J.,, and C. A. Gross. 1988. Mapping and sequencing of mutations in the Escherichia coli rpoB gene that lead to rifampicin resistance. J. Mol. Biol. 202: 45 58.
82. Johnsson, K.,, W. A. Froland,, and P. G. Schultz. 1997. Overexpression, purification, and characterization of the catalase- peroxidase KatG from Mycobacterium tuberculosis. J. Biol. Chem. 272: 2834 2840.
83. Johnsson, K.,, and P. G. Schultz. 1994. Mechanistic studies of the oxidation of isoniazid by the catalase peroxidase from Mycobacterium tuberculosis. J. Am. Chem. Soc. 116: 7425 7426.
84. Kenney, T. J.,, and G. Churchward. 1994. Cloning and sequence analysis of the rpsL and rpsG genes of Mycobacterium smegmatis and characterization of mutations causing resistance to streptomycin. J. Bacteriol. 176: 6153 6156.
85. Kiepiela, P.,, K. S. Bishop,, A. N. Smith,, L. Roux,, and D. F. York. 2000. Genomic mutations in the katG, inhA and aphC genes are useful for the prediction of isoniazid resistance in Mycobacterium tuberculosis isolates from Kwazulu Natal, South Africa. Tubercle Lung Dis. 80: 47 56.
86. Kim, S. Y.,, Y. J. Park,, W. I. Kim,, S. H. Lee,, C. Ludgerus Chang,, S. J. Kang,, and C. S. Kang. 2003. Molecular analysis of isoniazid resistance in Mycobacterium tuberculosis isolates recovered from South Korea. Diagn. Microbiol. Infect. Dis. 47: 497 502.
87. Kocagoz, T.,, C. J. Hackbarth,, I. Unsal,, E. Y. Rosenberg,, H. Nikaido,, and H. F. Chambers. 1996. Gyrase mutations in laboratory-selected, fluoroquinolone-resistant mutants of Mycobacterium tuberculosis H37Ra. Antimicrob. Agents Chemother. 40: 1768 1774.
88. Konno, K.,, F. M. Feldmann,, and W. McDermott. 1967. Pyrazinamide susceptibility and amidase activity of tubercle bacilli. Am. Rev. Respir. Dis. 95: 461 469.
89. Kremer, L.,, J. D. Douglas,, A. R. Baulard,, C. Morehouse,, M. R. Guy,, D. Alland,, L. G. Dover,, J. H. Lakey,, W. R. Jacobs, Jr.,, P. J. Brennan,, D. E. Minnikin,, and G. S. Besra. 2000. Thiolactomycin and related analogues as novel antimycobacterial agents targeting KasA and KasB condensing enzymes in Mycobacterium tuberculosis. J. Biol. Chem. 275: 16857 16864.
90. Kremer, L.,, L. G. Dover,, H. R. Morbidoni,, C. Vilchèze,, W. N. Maughan,, A. Baulard,, S. Tu,, N. Honore,, V. Deretic,, J. C. Sacchettini,, C. Locht,, W. R. J. Jacobs,, and G. Besra. 2003. Inhibition of InhA activity, but not KasA activity, induces formation of a KasA-containing complex in mycobacteria. J. Biol. Chem. 278: 20547 20554.
91. Kruuner, A.,, S. E. Hoffner,, H. Sillastu,, M. Danilovits,, K. Levina,, S. B. Svenson,, S. Ghebremichael,, T. Koivula,, and G. Kallenius. 2001. Spread of drug-resistant pulmonary tuberculosis in Estonia. J. Clin. Microbiol. 39: 3339 3345.
92. Kushner, S.,, H. Dalalian,, J. L. Sanjurjo,, F. L. Bach,, S. R. Safir,, V. K. J. Smith,, and J. H. Williams. 1952. Experimental chemotherapy of tuberculosis: the synthesis of pyrazinamides and related compounds. J. Am. Chem. Soc. 74: 3617 3621.
93. Kwon, D. H.,, M. Kato,, F. A. El-Zaatari,, M. S. Osato,, and D. Y. Graham. 2000. Frame-shift mutations in NAD(P)H flavin oxidoreductase encoding gene ( frxA) from metronidazole resistant Helicobacter pylori ATCC43504 and its involvement in metronidazole resistance. FEMS Microbiol. Lett. 188: 197 202.
94. Kwon, H. H.,, H. Tomioka,, and H. Saito. 1995. Distribution and characterization of β-lactamases of mycobacteria and related organisms. Tubercle Lung Dis. 76: 141 148.
95. Larsen, M. H.,, C. Vilchèze,, L. Kremer,, G. S. Besra,, L. Parsons,, M. Salfinger,, L. Heifets,, M. H. Hazbon,, D. Alland,, J. C. Sacchettini,, and W. R. Jacobs, Jr. 2002. Overexpression of inhA, but not kasA, confers resistance to isoniazid and ethionamide in Mycobacterium smegmatis, M. bovis BCG and M. tuberculosis. Mol. Microbiol. 46: 453 466.
96. Lederberg, J. 1952. Cell genetics and hereditary symbiosis. Physiol. Rev. 32: 403 430.
97. Lee, A. S.,, I. H. Lim,, L. L. Tang,, A. Telenti,, and S. Y. Wong. 1999. Contribution of kasA analysis to detection of isoniazid- resistant Mycobacterium tuberculosis in Singapore. Antimicrob. Agents Chemother. 43: 2087 2089.
98. Lee, A. S.,, A. S. Teo,, and S. Y. Wong. 2001. Novel mutations in ndh in isoniazid-resistant Mycobacterium tuberculosis isolates. Antimicrob. Agents Chemother. 45: 2157 2159.
99. Lee, K. W.,, J. M. Lee,, and K. S. Jung. 2001. Characterization of pncA mutations of pyrazinamide-resistant Mycobacterium tuberculosis in Korea. J. Korean Med. Sci. 16: 537 43.
100. Lee, R. E.,, K. Mikusova,, P. J. Brennan,, and G. S. Besra. 1995. Synthesis of the arabinose donor beta-D-arabinofuranosyl- 1-monophosphoryldecaprenol. Development of a basic arabinosyl-transferase assay, and identification of ethambutol as an arabinosyl transferase inhibitor. J. Am. Chem. Soc. 117: 11829 11832.
101. Lei, B.,, C. J. Wei,, and S. C. Tu. 2000. Action mechanism of antitubercular isoniazid. Activation by Mycobacterium tuberculosis KatG, isolation, and characterization of inhA inhibitor. J. Biol. Chem. 275: 2520 2526.
102. Lemaitre, N.,, W. Sougakoff,, C. Truffot-Pernot,, and V. Jarlier. 1999. Characterization of new mutations in pyrazinamide- resistant strains of Mycobacterium tuberculosis and identification of conserved regions important for the catalytic activity of the pyrazinamidase PncA. Antimicrob. Agents Chemother. 43: 1761 1763.
103. Lety, M. A.,, S. Nair,, P. Berche,, and V. Escuyer. 1997. A single point mutation in the embB gene is responsible for resistance to ethambutol in Mycobacterium smegmatis. Antimicrob. Agents Chemother. 41: 2629 2633.
104. Li, X. Z.,, and H. Nikaido. 2004. Efflux-mediated drug resistance in bacteria. Drugs 64: 159 204.
105. Li, Z.,, C. Kelley,, F. Collins,, D. Rouse,, and S. Morris. 1998. Expression of katG in Mycobacterium tuberculosis is associated with its growth and persistence in mice and guinea pigs. J. Infect. Dis. 177: 1030 1035.
106. Liu, J.,, H. E. Takiff,, and H. Nikaido. 1996. Active efflux of fluoroquinolones in Mycobacterium smegmatis mediated by LfrA, a multidrug efflux pump. J. Bacteriol. 178: 3791 3795.
107. Lukat-Rodgers, G. S.,, N. L. Wengenack,, F. Rusnak,, and K. R. Rodgers. 2001. Carbon monoxide adducts of KatG and KatG(S315T) as probes of the heme site and isoniazid binding. Biochemistry 40: 7149 7157.
108. Malone, L.,, A. Schurr,, H. Lindh,, D. McKenzie,, J. S. Kiser,, and J. H. Williams. 1952. The effect of pyrazinamide (Aldinamide) on experimental tuberculosis in mice. Am. Rev. Respir. Dis. 35: 511 518.
109. Marrakchi, H.,, G. Laneelle,, and A. Quemard. 2000. InhA, a target of the antituberculous drug isoniazid, is involved in a mycobacterial fatty acid elongation system, FAS-II. Microbiology 146: 289 296.
110. Martin, C.,, M. Ranes,, and B. Gicquel. 1990. Plasmids, Antibiotic Resistance, and Mobile Elements in Mycobacteria. Surrey University Press, Guildford, United Kingdom.
111. Martin, C.,, J. Timm,, J. Rauzier,, R. Gomez-Lus,, J. Davies,, and B. Gicquel. 1990. Transposition of an antibiotic resistance element in mycobacteria. Nature 345: 739 743.
112. Marttila, H. J.,, M. Marjamaki,, E. Vyshnevskaya,, B. I. Vyshnevskiy,, T. F. Otten,, A. V. Vasilyef,, and M. K. Viljanen. 1999. pncA mutations in pyrazinamide-resistant Mycobacterium tuberculosis isolates from northwestern Russia. Antimicrob. Agents Chemother. 43: 1764 1766.
113. Marttila, H. J.,, H. Soini,, E. Eerola,, E. Vyshnevskaya,, B. I. Vyshnevskiy,, T. F. Otten,, A. V. Vasilyef,, and M. K. Viljanen. 1998. A Ser315Thr substitution in KatG is predominant in genetically heterogeneous multidrug-resistant Mycobacterium tuberculosis isolates originating from the St. Petersburg area in Russia. Antimicrob. Agents Chemother. 42: 2443 2445.
114. McCalla, D. R.,, A. Reuvers,, and C. Kaiser. 1970. Mode of action of nitrofurazone. J. Bacteriol. 104: 1126 1134.
115. McClatchy, J. K.,, A. Y. Tsang,, and M. S. Cernich. 1981. Use of pyrazinamidase activity on Mycobacterium tuberculosis as a rapid method for determination of pyrazinamide susceptibility. Antimicrob. Agents Chemother. 20: 556 557.
116. McClure, W. R.,, and C. L. Cech. 1978. On the mechanism of rifampicin inhibition of RNA synthesis. J. Biol. Chem. 253: 8949 8956.
117. McCune, R. M., Jr., and R. Tompsett. 1956. Fate of Mycobacterium tuberculosis in mouse tissues as determined by the microbial enumeration technique. I. The persistence of drugsusceptible tubercle bacilli in the tissues despite prolonged antimicrobial therapy. J. Exp. Med. 104: 737 762.
118. McDermott, P. F.,, D. G. White,, I. Podglajen,, M. N. Alekshun,, and S. B. Levy. 1998. Multidrug resistance following expression of the Escherichia coli marA gene in Mycobacterium smegmatis. J. Bacteriol. 180: 2995 2998.
119. McDermott, W.,, and R. Tompsett. 1954. Activation of pyrazinamide and nicotinamide in acidic environments in vitro. Am. Rev. Tuberc. 70: 748 754.
120. McKenzie, D.,, L. Malone,, S. Kushner,, J. J. Oleson,, and Y. Subbarow. 1948. The effect of nicotinic acid amide on experimental tuberculosis of white mice. J. Lab. Clin. Med. 33: 1249 1253.
121. McMurry, L. M.,, and S. B. Levy,. 2000. Tetracycline resistance in gram-positive bacteria, p. 660 677. In V. A. Fischetti,, R. P. Novick,, J. J. Ferretti,, D. A. Portnoy,, and J. I. Rood (ed.), Gram-Positive Pathogens. ASM Press, Washington, D.C..
122. Mdluli, K.,, D. R. Sherman,, M. J. Hickey,, B. N. Kreiswirth,, S. Morris,, C. K. Stover,, and C. E. Barry, III. 1996. Biochemical and genetic data suggest that InhA is not the primary target for activated isoniazid in Mycobacterium tuberculosis. J. Infect. Dis. 174: 1085 1090.
123. Mdluli, K.,, R. A. Slayden,, Y. Zhu,, S. Ramaswamy,, X. Pan,, D. Mead,, D. D. Crane,, J. M. Musser,, and C. E. Barry, III. 1998. Inhibition of a Mycobacterium tuberculosis betaketoacyl ACP synthase by isoniazid. Science 280: 1607 1610.
124.Medical Research Council. 1950. Treatment of pulmonary tuberculosis with streptomycin and para-aminosalicylic acid. Br. Med. J. 2: 10371085.
125. Meier, A.,, P. Kirschner,, F. C. Bange,, U. Vogel,, and E. C. Bottger. 1994. Genetic alterations in streptomycin-resistant Mycobacterium tuberculosis: mapping of mutations conferring resistance. Antimicrob. Agents Chemother. 38: 228 233.
126. Meissner, G. 1964. The Bacteriology of the Tubercle Bacillus. Butterworths, London, United Kingdom.
127. Mestdagh, M.,, L. Realini,, P. A. Fonteyne,, R. Rossau,, G. Jannes,, W. Mijs,, D. E. S. KA,, F. Portaels,, and E. Van den Eeckhout. 2000. Correlation of pncA sequence with pyrazinamide resistance level in BACTEC for 21 Mycobacterium tuberculosis clinical isolates. Microb. Drug Resist. 6: 283 287.
128. Middlebrook, G. 1954. Isoniazid resistance and catalase activity of tubercle bacilli. Am. Rev. Tuberc. 69: 471 472.
129. Middlebrook, G. 1952. Sterilization of tubercle bacilli by isonicotinic acid hydrazide and the incidence of variants resistant to the drug in vitro. Am. Rev. Tuberc. 65: 765 767.
130. Miesel, L.,, T. R. Weisbrod,, J. A. Marcinkeviciene,, R. Bittman,, and W. R. Jacobs, Jr. 1998. NADH dehydrogenase defects confer isoniazid resistance and conditional lethality in Mycobacterium smegmatis. J. Bacteriol. 180: 2459 2467.
131. Mikusova, K.,, R. A. Slayden,, G. S. Besra,, and P. J. Brennan. 1995. Biogenesis of the mycobacterial cell wall and the site of action of ethambutol. Antimicrob. Agents Chemother. 39: 2484 2489.
132. Miller, L. P.,, J. T. Crawford,, and T. M. Shinnick. 1994. The rpoB gene of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 38: 805 811.
133. Miller, M. A.,, L. Thibert,, F. Desjardins,, S. H. Siddiqi,, and A. Dascal. 1995. Testing of susceptibility of Mycobacterium tuberculosis to pyrazinamide: comparison of Bactec method with pyrazinamidase assay. J. Clin. Microbiol. 33: 2468 2470.
134. Mitchison, D. A. 1985. The action of antituberculosis drugs in short-course chemotherapy. Tubercle 66: 219 225.
135. Mitchison, D. A.,, and J. B. Selkon. 1956. The bactericidal activities of antituberculous drugs. Am. Rev. Tuberc. 74: 109 123.
136. Moazed, D.,, and H. F. Noller. 1987. Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature 327: 389 394.
137. Moghazeh, S. L.,, X. Pan,, T. Arain,, C. K. Stover,, J. M. Musser,, and B. N. Kreiswirth. 1996. Comparative antimycobacterial activities of rifampin, rifapentine, and KRM- 1648 against a collection of rifampin-resistant Mycobacterium tuberculosis isolates with known rpoB mutations. Antimicrob. Agents Chemother. 40: 2655 2657.
138. Mokrousov, I.,, O. Narvskaya,, T. Otten,, E. Limeschenko,, L. Steklova,, and B. Vyshnevskiy. 2002. High prevalence of KatG Ser315Thr substitution among isoniazid-resistant Mycobacterium tuberculosis clinical isolates from northwestern Russia, 1996 to 2001. Antimicrob. Agents Chemother. 46: 1417 1424.
139. Mokrousov, I.,, T. Otten,, B. Vyshnevskiy,, and O. Narvskaya. 2002. Detection of embB306 mutations in ethambutol-susceptible clinical isolates of Mycobacterium tuberculosis from Northwestern Russia: implications for genotypic resistance testing. J. Clin. Microbiol. 40: 3810 3813.
140. Molenaar, D.,, M. E. van der Rest,, A. Drysch,, and R. Yucel. 2000. Functions of the membrane-associated and cytoplasmic malate dehydrogenases in the citric acid cycle of Corynebacterium glutamicum. J. Bacteriol. 182: 6884 6891.
141. Morlock, G. P.,, J. T. Crawford,, W. R. Butler,, S. E. Brim,, D. Sikes,, G. H. Mazurek,, C. L. Woodley,, and R. C. Cooksey. 2000. Phenotypic characterization of pncA mutants of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 44: 2291 2295.
142. Morlock, G. P.,, B. Metchock,, D. Sikes,, J. T. Crawford,, and R. C. Cooksey. 2003. ethA, inhA, and katG loci of ethionamide- resistant clinical Mycobacterium tuberculosis isolates. Antimicrob. Agents Chemother. 47: 3799 3805.
143. Morris, S.,, G. H. Bai,, P. Suffys,, L. Portillo-Gomez,, M. Fairchok,, and D. Rouse. 1995. Molecular mechanisms of multiple drug resistance in clinical isolates of Mycobacterium tuberculosis. J. Infect. Dis. 171: 954 960.
144. Musser, J. M. 1995. Antimicrobial agent resistance in mycobacteria: molecular genetic insights. Clin. Microbiol. Rev. 8: 496 514.
145. Musser, J. M.,, V. Kapur,, D. L. Williams,, B. N. Kreiswirth,, D. van Soolingen,, and J. D. van Embden. 1996. Characterization of the catalase-peroxidase gene ( katG) and inhA locus in isoniazid-resistant and -susceptible strains of Mycobacterium tuberculosis by automated DNA sequencing: restricted array of mutations associated with drug resistance. J. Infect. Dis. 173: 196 202.
146. Mustaev, A.,, E. Zaychikov,, K. Severinov,, M. Kashlev,, A. Polyakov,, V. Nikiforov,, and A. Goldfarb. 1994. Topology of the RNA polymerase active center probed by chimeric rifampicin-nucleotide compounds. Proc. Natl. Acad. Sci. USA 91: 12036 12040.
147. Nachamkin, I.,, C. Kang,, and M. P. Weinstein. 1997. Detection of resistance to isoniazid, rifampin, and streptomycin in clinical isolates of Mycobacterium tuberculosis by molecular methods. Clin. Infect. Dis. 24: 894 900.
148. Nair, J.,, D. A. Rouse,, G. H. Bai,, and S. L. Morris. 1993. The rpsL gene and streptomycin resistance in single and multiple drug-resistant strains of Mycobacterium tuberculosis. Mol. Microbiol. 10: 521 527.
149. Nguyen, M.,, A. Quemard,, S. Broussy,, J. Bernadou,, and B. Meunier. 2002. Mn(III) pyrophosphate as an efficient tool for studying the mode of action of isoniazid on the InhA protein of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 46: 2137 2144.
150. Niederweis, M. 2003. Mycobacterial porins—new channel proteins in unique outer membranes. Mol. Microbiol. 49: 1167 1177.
151. Offe, H. A.,, W. Siefken,, and G. Domagk. 1952. The tuberculostatic activity of hydrazine derivatives from pyridine carboxylic acids and carbonyl compounds. Z. Naturforsch . 7B: 462 468.
152. Okusu, H.,, D. Ma,, and H. Nikaido. 1996. AcrAB efflux pump plays a major role in the antibiotic resistance phenotype of Escherichia coli multiple-antibiotic-resistance (Mar) mutants. J. Bacteriol. 178: 306 308.
153. Pagan-Ramos, E.,, J. Song,, M. McFalone,, M. H. Mudd,, and V. Deretic. 1998. Oxidative stress response and characterization of the oxyR-ahpC and furA-katG loci in Mycobacterium marinum. J. Bacteriol. 180: 4856 4864.
154. Park, S. K.,, J. Y. Lee,, C. L. Chang,, M. K. Lee,, H. C. Son,, C. M. Kim,, H. J. Jang,, H. K. Park,, and S. H. Jeong. 2001. pncA mutations in clinical Mycobacterium tuberculosis isolates from Korea. BMC Infect. Dis. 1: 4.
155. Payton, M.,, R. Auty,, R. Delgoda,, M. Everett,, and E. Sim. 1999. Cloning and characterization of arylamine N-acetyltransferase genes from Mycobacterium smegmatis and Mycobacterium tuberculosis: increased expression results in isoniazid resistance. J. Bacteriol. 181: 1343 1347.
156. Payton, M.,, C. Gifford,, P. Schartau,, C. Hagemeier,, A. Mushtaq,, S. Lucas,, K. Pinter,, and E. Sim. 2001. Evidence towards the role of arylamine N-acetyltransferase in Mycobacterium smegmatis and development of a specific antiserum against the homologous enzyme of Mycobacterium tuberculosis. Microbiology 147: 3295 3302.
157. Peteroy, M.,, A. Severin,, F. Zhao,, D. Rosner,, U. Lopatin,, H. Scherman,, A. Belanger,, B. Harvey,, G. F. Hatfull,, P. J. Brennan,, and N. D. Connell. 2000. Characterization of a Mycobacterium smegmatis mutant that is simultaneously resistant to D-cycloserine and vancomycin. Antimicrob. Agents Chemother. 44: 1701 1704.
158. Piatek, A. S.,, A. Telenti,, M. R. Murray,, H. El-Hajj,, W. R. Jacobs, Jr.,, F. R. Kramer,, and D. Alland. 2000. Genotypic analysis of Mycobacterium tuberculosis in two distinct populations using molecular beacons: implications for rapid susceptibility testing. Antimicrob. Agents Chemother. 44: 103 110.
159. Plotz, P. H. 1985. Textbook of Rheumatology, vol. 2. The W. B. Saunders Co., Philadelphia, Pa..
160. Poole, K. 2001. Overcoming antimicrobial resistance by targeting resistance mechanisms. J. Pharm. Pharmacol. 53: 283 294.
161. Price, C. T.,, I. R. Lee,, and J. E. Gustafson. 2000. The effects of salicylate on bacteria. Int. J. Biochem. Cell Biol. 32: 1029 1043.
162. Pym, A. S.,, B. Saint-Joanis,, and S. T. Cole. 2002. Effect of katG mutations on the virulence of Mycobacterium tuberculosis and the implication for transmission in humans. Infect. Immun. 70: 4955 4960.
163. Quan, S.,, H. Venter,, and E. R. Dabbs. 1997. Ribosylative inactivation of rifampin by Mycobacterium smegmatis is a principal contributor to its low susceptibility to this antibiotic. Antimicrob. Agents Chemother. 41: 2456 2460.
164. Quemard, A.,, A. Dessen,, M. Sugantino,, W. R. Jacobs, Jr.,, J. C. Sacchettini,, and J. S. Blanchard. 1996. Binding of catalase- peroxidase-activated isoniazid to wild-type and mutant Mycobacterium tuberculosis enoyl-ACP reductases. J. Am. Chem. Soc. 118: 1561 1562.
165. Quemard, A.,, J. C. Sacchettini,, A. Dessen,, C. Vilchèze,, R. Bittman,, W. R. Jacobs, Jr., and J. S. Blanchard. 1995. Enzymatic characterization of the target for isoniazid in Mycobacterium tuberculosis. Biochemistry 34: 8235 8241.
166. Rad, M. E.,, P. Bifani,, C. Martin,, K. Kremer,, S. Samper,, J. Rauzier,, B. Kreiswirth,, J. Blazquez,, M. Jouan,, D. van Soolingen,, and B. Gicquel. 2003. Mutations in putative mutator genes of Mycobacterium tuberculosis strains of the W-Beijing family. Emerg. Infect. Dis. 9: 838 845.
167. Ramaswamy, S. V.,, A. G. Amin,, S. Goksel,, C. E. Stager,, S. J. Dou,, H. El Sahly,, S. L. Moghazeh,, B. N. Kreiswirth,, and J. M. Musser. 2000. Molecular genetic analysis of nucleotide polymorphisms associated with ethambutol resistance in human isolates of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 44: 326 336.
168. Ramaswamy, S. V.,, R. Reich,, S. J. Dou,, L. Jasperse,, X. Pan,, A. Wanger,, T. Quitugua,, and E. A. Graviss. 2003. Single nucleotide polymorphisms in genes associated with isoniazid resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 47: 1241 1250.
169. Riska, P. F.,, W. R. Jacobs, Jr.,, and D. Alland. 2000. Molecular determinants of drug resistance in tuberculosis. Int. J. Tuberc. Lung Dis. 4: S4 S10.
170. Rosner, J. L. 1985. Nonheritable resistance to chloramphenicol and other antibiotics induced by salicylates and other chemotactic repellents in Escherichia coli K-12. Proc. Natl. Acad. Sci. USA 82: 8771 8774.
171. Rouse, D. A.,, Z. Li,, G. H. Bai,, and S. L. Morris. 1995. Characterization of the katG and inhA genes of isoniazid-resistant clinical isolates of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 39: 2472 2477.
172. Rozwarski, D. A.,, G. A. Grant,, D. H. Barton,, W. R. Jacobs, Jr., and J. C. Sacchettini. 1998. Modification of the NADH of the isoniazid target (InhA) from Mycobacterium tuberculosis. Science 279: 98 102.
173. Sachais, B. S.,, I. I. Nachamkindagger,, J. K. Mills,, and D. G. Leonard. 1998. Novel pncA mutations in pyrazinamideresistant isolates of Mycobacterium tuberculosis. Mol. Diagn. 3: 229 231.
174. Saint-Joanis, B.,, H. Souchon,, M. Wilming,, K. Johnsson,, P. M. Alzari,, and S. T. Cole. 1999. Use of site-directed mutagenesis to probe the structure, function and isoniazid activation of the catalase/peroxidase, KatG, from Mycobacterium tuberculosis. Biochem. J. 338: 753 760.
175. Salfinger, M.,, and L. B. Heifets. 1988. Determination of pyrazinamide MICs for Mycobacterium tuberculosis at different pHs by the radiometric method. Antimicrob. Agents Chemother. 32: 1002 1004.
176. Schaefer, W. B. 1954. The effect of isoniazid on growing and resting tubercle bacilli. Am. Rev. Tuberc. 69: 125 127.
177. Schaller, A.,, Z. Sun,, Y. Yang,, A. Somoskovi,, and Y. Zhang. 2002. Salicylate reduces susceptibility of Mycobacterium tuberculosis to multiple antituberculosis drugs. Antimicrob. Agents Chemother. 46: 2636 2639.
178. Schatz, A.,, and S. A. Waksman. 1944. Effect of streptomycin upon Mycobacterium tuberculosis and related organisms. Proc. Soc. Exp. Biol. Med. 67: 244 248.
179. Scorpio, A.,, D. Collins,, D. Whipple,, D. Cave,, J. Bates,, and Y. Zhang. 1997. Rapid differentiation of bovine and human tubercle bacilli based on a characteristic mutation in the bovine pyrazinamidase gene. J. Clin. Microbiol. 35: 106 110.
180. Scorpio, A.,, P. Lindholm-Levy,, L. Heifets,, R. Gilman,, S. Siddiqi,, M. Cynamon,, and Y. Zhang. 1997. Characterization of pncA mutations in pyrazinamide-resistant Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 41: 540 543.
181. Scorpio, A.,, and Y. Zhang. 1996. Mutations in pncA, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacillus. Nat. Med. 2: 662 667.
182. Sechi, L. A.,, S. Zanetti,, M. Sanguinetti,, P. Molicotti,, L. Romano,, G. Leori,, G. Delogu,, S. Boccia,, M. La Sorda,, and G. Fadda. 2001. Molecular basis of rifampin and isoniazid resistance in Mycobacterium bovis strains isolated in Sardinia, Italy. Antimicrob. Agents Chemother. 45: 1645 1648.
183. Severinov, K.,, M. Soushko,, A. Goldfarb,, and V. Nikiforov. 1994. RifR mutations in the beginning of the Escherichia coli rpoB gene. Mol. Gen. Genet. 244: 120 126.
184. Siddiqui, S. H. 1992. Antimicrobial Susceptibility Testing: Radiometric (BACTEC) Tests for Slowly Growing Mycobacteria. ASM Press, Washington, D.C..
185. Slayden, R. A.,, and C. E. Barry. 2002. The role of KasA and KasB in the biosynthesis of meromycolic acids and isoniazid resistance in Mycobacterium tuberculosis. Tuberculosis (Edinburgh) 82: 149 160.
186. Solotorovsky, M.,, G. F.J., E. J. Ironson, E. J. Bugie, R. C. O’Neill, and K. Pfister III. 1952. Pyrazinoic acid amide—an agent active against experimental murine tuberculosis. Soc. Exp. Biol. Med. Proc. 79: 563 565.
187. Somoskovi, A.,, M. M. Wade,, Z. Sun,, and Y. Zhang. 2004. Iron enhances the antituberculous activity of pyrazinamide. J. Antimicrob. Chemother. 53: 192 196.
188. Sreevatsan, S.,, X. Pan,, K. E. Stockbauer,, D. L. Williams,, B. N. Kreiswirth,, and J. M. Musser. 1996. Characterization of rpsL and rrs mutations in streptomycin-resistant Mycobacterium tuberculosis isolates from diverse geographic localities. Antimicrob. Agents Chemother. 40: 1024 1026.
189. Sreevatsan, S.,, X. Pan,, Y. Zhang,, B. N. Kreiswirth,, and J. M. Musser. 1997. Mutations associated with pyrazinamide resistance in pncA of Mycobacterium tuberculosis complex organisms. Antimicrob. Agents Chemother. 41: 636 640.
190. Sreevatsan, S.,, K. E. Stockbauer,, X. Pan,, B. N. Kreiswirth,, S. L. Moghazeh,, W. R. Jacobs, Jr., A. Telenti, and J. M. Musser. 1997. Ethambutol resistance in Mycobacterium tuberculosis: critical role of embB mutations. Antimicrob. Agents Chemother. 41: 1677 1681.
191. Sriprakash, K. S.,, and T. Ramakrishnan. 1969. Isoniazid and nicotinamide adenine dinucleotide synthesis in M. tuberculosis. Indian J. Biochem. 6: 49 50.
192. Steele, M. A.,, and R. M. Des Prez. 1988. The role of pyrazinamide in tuberculosis chemotherapy. Chest 94: 845 850.
193. Sun, Z.,, and Y. Zhang. 1999. Reduced pyrazinamidase activity and the natural resistance of Mycobacterium kansasii to the antituberculosis drug pyrazinamide. Antimicrob. Agents Chemother. 43: 537 542.
194. Suzuki, Y.,, C. Katsukawa,, A. Tamaru,, C. Abe,, M. Makino,, Y. Mizuguchi,, and H. Taniguchi. 1998. Detection of kanamycin-resistant Mycobacterium tuberculosis by identifying mutations in the 16S rRNA gene. J. Clin. Microbiol. 36: 1220 1225.
195. Takayama, K.,, and J. O. Kilburn. 1989. Inhibition of synthesis of arabinogalactan by ethambutol in Mycobacterium smegmatis. Antimicrob. Agents Chemother. 33: 1493 1499.
196. Takayama, K.,, H. K. Schnoes,, E. L. Armstrong,, and R. W. Boyle. 1975. Site of inhibitory action of isoniazid in the synthesis of mycolic acids in Mycobacterium tuberculosis. J. Lipid Res. 16: 308 317.
197. Takayama, K.,, L. Wang,, and H. L. David. 1972. Effect of isoniazid on the in vivo mycolic acid synthesis, cell growth, and viability of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2: 29 35.
198. Takayama, K.,, L. Wang,, and R. S. Merkal. 1973. Scanning electron microscopy of the H37Ra strain of Mycobacterium tuberculosis exposed to isoniazid. Antimicrob. Agents Chemother. 4: 62 65.
199. Takiff, H. E.,, M. Cimino,, M. C. Musso,, T. Weisbrod,, R. Martinez,, M. B. Delgado,, L. Salazar,, B. R. Bloom,, and W. R. Jacobs, Jr. 1996. Efflux pump of the proton antiporter family confers low-level fluoroquinolone resistance in Mycobacterium smegmatis. Proc. Natl. Acad. Sci. USA 93: 362 366.
200. Takiff, H. E.,, L. Salazar,, C. Guerrero,, W. Philipp,, W. M. Huang,, B. Kreiswirth,, S. T. Cole,, W. R. Jacobs, Jr.,, and A. Telenti. 1994. Cloning and nucleotide sequence of Mycobacterium tuberculosis gyrA and gyrB genes and detection of quinolone resistance mutations. Antimicrob. Agents Chemother. 38: 773 780.
201. Taniguchi, H.,, B. Chang,, C. Abe,, Y. Nikaido,, Y. Mizuguchi,, and S. I. Yoshida. 1997. Molecular analysis of kanamycin and viomycin resistance in Mycobacterium smegmatis by use of the conjugation system. J. Bacteriol. 179: 4795 4801.
202. Tarshis, M. S.,, and W. A. Weed, Jr. 1953. Lack of significant in vitro sensitivity of Mycobacterium tuberculosis to pyrazinamide on three different solid media. Am. Rev. Tuberc. 67: 391 395.
203. Telenti, A.,, N. Honore,, C. Bernasconi,, J. March,, A. Ortega,, B. Heym,, H. E. Takiff,, and S. T. Cole. 1997. Genotypic assessment of isoniazid and rifampin resistance in Mycobacterium tuberculosis: a blind study at reference laboratory level. J. Clin. Microbiol. 35: 719 723.
204. Telenti, A.,, P. Imboden,, F. Marchesi,, D. Lowrie,, S. Cole,, M. J. Colston,, L. Matter,, K. Schopfer,, and T. Bodmer. 1993. Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet 341: 647 650.
205. Telenti, A.,, W. J. Philipp,, S. Sreevatsan,, C. Bernasconi,, K. E. Stockbauer,, B. Wieles,, J. M. Musser,, and W. R. Jacobs, Jr. 1997. The emb operon, a gene cluster of Mycobacterium tuberculosis involved in resistance to ethambutol. Nat. Med. 3: 567 570.
206. Trivedi, S. S.,, and S. G. Desai. 1987. Pyrazinamidase activity of Mycobacterium tuberculosis—a test of sensitivity to pyrazinamide. Tubercle 68: 221 224.
207. Upton, A. M.,, A. Mushtaq,, T. C. Victor,, S. L. Sampson,, J. Sandy,, D. M. Smith,, P. V. van Helden,, and E. Sim. 2001. Arylamine N-acetyltransferase of Mycobacterium tuberculosis is a polymorphic enzyme and a site of isoniazid metabolism. Mol. Microbiol. 42: 309 317.
208. Vannelli, T. A.,, A. Dykman,, and P. R. Ortiz de Montellano. 2002. The antituberculosis drug ethionamide is activated by a flavoprotein monooxygenase. J. Biol. Chem. 277: 12824 12829.
209. van Soolingen, D.,, P. E. de Haas,, H. R. van Doorn,, E. Kuijper,, H. Rinder,, and M. W. Borgdorff. 2000. Mutations at amino acid position 315 of the katG gene are associated with high-level resistance to isoniazid, other drug resistance, and successful transmission of Mycobacterium tuberculosis in the Netherlands. J. Infect. Dis. 182: 1788 1790.
210. Victor, T. C.,, A. van Rie,, A. M. Jordaan,, M. Richardson,, G. D. van Der Spuy,, N. Beyers,, P. D. van Helden,, and R. Warren. 2001. Sequence polymorphism in the rrs gene of Mycobacterium tuberculosis is deeply rooted within an evolutionary clade and is not associated with streptomycin resistance. J. Clin. Microbiol. 39: 4184 4186.
211. Vilchèze, C.,, H. R. Morbidoni,, T. R. Weisbrod,, H. Iwamoto,, M. Kuo,, J. C. Sacchettini,, and W. R. Jacobs, Jr. 2000. Inactivation of the inhA-encoded fatty acid synthase II (FASII) enoyl-acyl carrier protein reductase induces accumulation of the FASI end products and cell lysis of Mycobacterium smegmatis. J. Bacteriol. 182: 4059 4067.
212. Viveiros, M.,, I. Portugal,, R. Bettencourt,, T. C. Victor,, A. M. Jordaan,, C. Leandro,, D. Ordway,, and L. Amaral. 2002. Isoniazid- induced transient high-level resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 46: 2804 2810.
212.a. Wade, M. M.,, and Y. Zhang. 2004. Anaerobic incubation conditions enhance pyrazinamide activity against Mycobacterium tuberculosis. J. Med. Microbiol. 53: 769 773.
213. Walsh, C. 2000. Molecular mechanisms that confer antibacterial drug resistance. Nature 406: 775 781.
214. Wang, J. Y.,, R. M. Burger,, and K. Drlica. 1998. Role of superoxide in catalase-peroxidase-mediated isoniazid action against mycobacteria. Antimicrob. Agents Chemother. 42: 709 711.
215. Watanabe, T. 1963. Infective heredity of multiple drug resistance in bacteria. Bacteriol. Rev. 27: 87 115.
216. Wei, C. J.,, B. Lei,, J. M. Musser,, and S. C. Tu. 2003. Isoniazid activation defects in recombinant Mycobacterium tuberculosis catalase-peroxidase (KatG) mutants evident in InhA inhibitor production. Antimicrob. Agents Chemother. 47: 670 675.
217. Wengenack, N. L.,, S. Todorovic,, L. Yu,, and F. Rusnak. 1998. Evidence for differential binding of isoniazid by Mycobacterium tuberculosis KatG and the isoniazid-resistant mutant KatG(S315T). Biochemistry 37: 15825 15834.
218. Wengenack, N. L.,, J. R. Uhl,, A. L. St Amand,, A. J. Tomlinson,, L. M. Benson,, S. Naylor,, B. C. Kline,, F. R. Cockerill III,, and F. Rusnak. 1997. Recombinant Mycobacterium tuberculosis KatG(S315T) is a competent catalase-peroxidase with reduced activity toward isoniazid. J. Infect. Dis. 176: 722 727.
219. Werngren, J.,, and S. E. Hoffner. 2003. Drug-susceptible Mycobacterium tuberculosis Beijing genotype does not develop mutation-conferred resistance to rifampin at an elevated rate. J. Clin. Microbiol. 41: 1520 1524.
220. Whiteway, J.,, P. Koziarz,, J. Veall,, N. Sandhu,, P. Kumar,, B. Hoecher,, and I. B. Lambert. 1998. Oxygen-insensitive nitroreductases: analysis of the roles of nfsA and nfsB in development of resistance to 5-nitrofuran derivatives in Escherichia coli. J. Bacteriol. 180: 5529 5539.
221. Williams, D. L.,, L. Spring,, L. Collins,, L. P. Miller,, L. B. Heifets,, P. R. Gangadharam,, and T. P. Gillis. 1998. Contribution of rpoB mutations to development of rifamycin crossresistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 42: 1853 1857.
222. Williams, D. L.,, C. Waguespack,, K. Eisenach,, J. T. Crawford,, F. Portaels,, M. Salfinger,, C. M. Nolan,, C. Abe,, V. Sticht-Groh,, and T. P. Gillis. 1994. Characterization of rifampin-resistance in pathogenic mycobacteria. Antimicrob. Agents Chemother. 38: 2380 2386.
223. Wilming, M.,, and K. Johnsson. 1999. Spontaneous formation of the bioactive form of the tuberculosis drug isoniazid. Angew Chem. Int. Ed. Engl. 38: 2588 2590.
224. Wilson, M.,, J. DeRisi,, H. H. Kristensen,, P. Imboden,, S. Rane,, P. O. Brown,, and G. K. Schoolnik. 1999. Exploring drug-induced alterations in gene expression in Mycobacterium tuberculosis by microarray hybridization. Proc. Natl. Acad. Sci. USA 96: 12833 12838.
225. Wilson, T.,, G. W. de Lisle,, J. A. Marcinkeviciene,, J. S. Blanchard,, and D. M. Collins. 1998. Antisense RNA to ahpC, an oxidative stress defence gene involved in isoniazid resistance, indicates that AhpC of Mycobacterium bovis has virulence properties. Microbiology 144: 2687 2695.
226. Wilson, T. M.,, G. W. de Lisle,, and D. M. Collins. 1995. Effect of inhA and katG on isoniazid resistance and virulence of Mycobacterium bovis. Mol. Microbiol. 15: 1009 1015.
227. Winder, F. G. 1982. Mode of Action of the Antimycobacterial Agents and Associated Aspects of the Molecular Biology of the Mycobacteria. Academic Press Inc., New York, N.Y..
228. Winder, F. G.,, P. Collins,, and S. A. Rooney. 1970. Effects of isoniazid on mycolic acid synthesis in Mycobacterium tuberculosis and on its cell envelope. Biochem. J. 117: 27P.d>
229. Wolucka, B. A.,, M. R. McNeil,, E. de Hoffmann,, T. Chojnacki,, and P. J. Brennan. 1994. Recognition of the lipid intermediate for arabinogalactan/arabinomannan biosynthe- sis and its relation to the mode of action of ethambutol on mycobacteria. J. Biol. Chem. 269: 23328 23335.
230.WorldHealthOrganization. 2000. Anti-Tuberculosis Drug Resistance in the World. Report no. 2. Prevalence and Trends. The WHO/IUATLD Global Project on Anti-Tuberculosis Drug Resistance Surveillance. Geneva, Switzerland.
231. Yu, S.,, S. Girotto,, C. Lee,, and R. S. Magliozzo. 2003. Reduced affinity for isoniazid in the S315T mutant of Mycobacterium tuberculosis KatG is a key factor in antibiotic resistance. J. Biol. Chem. 278: 14769 14775.
232. Zahrt, T. C.,, J. Song,, J. Siple,, and V. Deretic. 2001. Mycobacterial FurA is a negative regulator of catalase-peroxidase gene katG. Mol. Microbiol. 39: 1174 1185.
233. Zatman, L. J.,, N. O. Kaplan,, S. P. Colowick,, and M. M. Ciotti. 1954. Effect of isonicotinic acid hydrazide on diphosphopyridine nucleotidases. J. Biol. Chem. 209: 453 466.
234. Zhang, Y.,, T. Garbe,, and D. Young. 1993. Transformation with katG restores isoniazid-sensitivity in Mycobacterium tuberculosis isolates resistant to a range of drug concentrations. Mol. Microbiol. 8: 521 524.
235. Zhang, Y.,, B. Heym,, B. Allen,, D. Young,, and S. Cole. 1992. The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature 358: 591 593.
236. Zhang, Y.,, and D. Mitchison. 2003. The curious characteristics of pyrazinamide: a review. Int. J. Tuberc. Lung Dis. 7: 6 21.
237. Zhang, Y.,, S. Permar,, and Z. Sun. 2002. Conditions that may affect the results of susceptibility testing of Mycobacterium tuberculosis to pyrazinamide. J. Med. Microbiol. 51: 42 49.
238. Zhang, Y.,, A. Scorpio,, H. Nikaido,, and Z. Sun. 1999. Role of acid pH and deficient efflux of pyrazinoic acid in unique susceptibility of Mycobacterium tuberculosis to pyrazinamide. J. Bacteriol. 181: 2044 2049.
239. Zhang, Y.,, and A. Telenti. 2000. Genetics of Drug Resistance in Mycobacterium tuberculosis. ASM Press, Washington, D.C..
240. Zhang, Y.,, M. M. Wade,, A. Scorpio,, H. Zhang,, and Z. Sun. 2003. Mode of action of pyrazinamide: disruption of Mycobacterium tuberculosis membrane transport and energetics by pyrazinoic acid. J. Antimicrob. Chemother. 52: 790 795.
241. Zhang, Y.,, and D. Young. 1994. Strain variation in the katG region of Mycobacterium tuberculosis. Mol. Microbiol. 14: 301 308.
242. Zhang, Y.,, H. Zhang,, and Z. Sun. 2003. Susceptibility of Mycobacterium tuberculosis to weak acids. J. Antimicrob. Chemother. 52: 56 60.
243. Zimhony, O.,, J. S. Cox,, J. T. Welch,, C. Vilchèze,, and W. R. Jacobs, Jr. 2000. Pyrazinamide inhibits the eukaryotic-like fatty acid synthetase I (FASI) of Mycobacterium tuberculosis. Nat. Med. 6: 1043 1047.

Tables

Generic image for table
Table 1

Mechanisms of drug action and resistance in mycobacteria

Citation: Zhang Y, Jacobs, Jr. W, Vilchèze C. 2005. Mechanisms of Drug Resistance in Mycobacterium tuberculosis, p 115-140. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch8