1887

Chapter 1 : Evolutionary Emergence and Interactions among Elements of the Innate and Combinatorial Responses

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Evolutionary Emergence and Interactions among Elements of the Innate and Combinatorial Responses, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817671/9781555812911_Chap01-1.gif /docserver/preview/fulltext/10.1128/9781555817671/9781555812911_Chap01-2.gif

Abstract:

This chapter discusses evolutionary factors regarding the emergence and phylogenetic distribution of the innate immune system and the combinatorial or adaptive immune system, as well as the interactions between the two. Naturally occurring IgM antibodies, as well as induced antibodies, can recognize lipopolysaccharide (LPS) epitopes and feed into the NF-κB activation and differentiation cascade with one result being production of immunoglobulin (Ig) by B lymphocytes. The mannose-binding lectins (C lectins) are effective in complement fixation even in lower chordates, including tunicates, and occur in groups as ancient as Cnidarians. Ancestral deuterostomes branched off from the ancestral protostomes before the two major branches of protostomes, namely, iophotrochozoans (annelids, platyhelminths, and mollusks) and ecdysozoans (arthropods and nematodes), emerged. The chapter talks about interplay between innate and combinatorial immunity, molecules of innate immunity, and the adaptive or combinatorial immune response of jawed vertebrates. With the exception of the molecules defining the combinatorial or adaptive system, cyclostomes have molecules appropriate for their phylogenetic position with the percentage of sequence identity expected from the rates of divergence with the jawed vertebrates. It is likely that in each individual species where co-option occurred, it was followed by a coevolution dependent on the stringency of the selective environment.

Citation: Marchalonis J, Schluter S, Whitfield G. 2004. Evolutionary Emergence and Interactions among Elements of the Innate and Combinatorial Responses, p 1-30. In Kaufmann S, Medzhitov R, Gordon S (ed), The Innate Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555817671.ch1

Key Concept Ranking

Complement System
0.59432584
Innate Immune System
0.52992445
Adaptive Immune System
0.5013429
Amino Acids
0.47153464
MHC Class I
0.44884458
0.59432584
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Overview of mechanisms of recognition and activation used in defense and differentiation by organisms ranging from insects to vertebrates. (A) Pathways of cell activation that are mediated by NF-κB. Signal pathways are activated by receptors anchored at the cell surface by transmembrane domains. NF-κB in the cytoplasm is induced to enter the nucleus and activate gene expression. The Toll and Toll-related receptors (Toll/TLR) and the B-cell receptor (BCR) recognize LPS on the surface of gram-negative bacteria (Gram-). IL-1R, which contains IgG C2-type domains, is activated by the cytokine IL-1.Toll/TLR and IL-1R have signaling domains in the cytoplasm termed TIR domains. The recognition unit of BCR is Ig and contains V and C1 domains. (B) Humoral defense pathways that rely on the activation of complement for the effector phase. C-reactive protein (CRP) and antibody recognize PC on gram-positive bacteria (Gram+).

Citation: Marchalonis J, Schluter S, Whitfield G. 2004. Evolutionary Emergence and Interactions among Elements of the Innate and Combinatorial Responses, p 1-30. In Kaufmann S, Medzhitov R, Gordon S (ed), The Innate Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555817671.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Summary of metazoan phylogeny. This scheme is based on recent molecular and morphological data.

Citation: Marchalonis J, Schluter S, Whitfield G. 2004. Evolutionary Emergence and Interactions among Elements of the Innate and Combinatorial Responses, p 1-30. In Kaufmann S, Medzhitov R, Gordon S (ed), The Innate Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555817671.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Birth and death scheme for the evolution of multigene families. Gene families are formed by gene duplication and mutation. Gene death occurs by mutation leading to pseudogenes (ψ) or by deletion from the genome. *, derived from pervious precursor.

Citation: Marchalonis J, Schluter S, Whitfield G. 2004. Evolutionary Emergence and Interactions among Elements of the Innate and Combinatorial Responses, p 1-30. In Kaufmann S, Medzhitov R, Gordon S (ed), The Innate Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555817671.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Formation and evolution of the IgSF domains. This scheme proposes that the I-type domain was the ancestral Ig domain type.

Citation: Marchalonis J, Schluter S, Whitfield G. 2004. Evolutionary Emergence and Interactions among Elements of the Innate and Combinatorial Responses, p 1-30. In Kaufmann S, Medzhitov R, Gordon S (ed), The Innate Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555817671.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Comparative alignments of sequences around the crucial cysteine (C) and tryptophan (W) residues of Ig C1 domains (Igs, TCR, and MHC) and C2 domains of the NCAM group.The positions of the β strands and intervening loop are shown above the alignment. The number of residues identical with the sandbar shark λ light-chain sequence are shown on the right. Sandbar shark (SbS), human (Hu), bullfrog, goldfish, chicken (chick), nurse shark (NuShark), moth, and tunicate (Ciona) sequences were obtained from the databases at http://www.ncbi.nlm.nih.gov. The shark TCR and β2M sequences are from I. Jensen, S. F. Schluter, and J. J. Marchalonis (unpublished data).

Citation: Marchalonis J, Schluter S, Whitfield G. 2004. Evolutionary Emergence and Interactions among Elements of the Innate and Combinatorial Responses, p 1-30. In Kaufmann S, Medzhitov R, Gordon S (ed), The Innate Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555817671.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Phylogenetic tree of deuterostomes based on molecular data and paleontological considerations.

Citation: Marchalonis J, Schluter S, Whitfield G. 2004. Evolutionary Emergence and Interactions among Elements of the Innate and Combinatorial Responses, p 1-30. In Kaufmann S, Medzhitov R, Gordon S (ed), The Innate Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555817671.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

Cladogram of putative VDR orthologs. Chordate receptors were aligned, and percent identities with human VDR were computed with the BLAST alignment tool at http://www.ncbi.nlm.nih. gov/gorf/bl2.html. Alignment for fruit fly and nematode receptors was further refined in Clustal W. The lamprey sequence (lampVDR) is from . Pufferfish and tunicate sequences are available from http://genome.jgi-psf.org/cgi-bin/searchGM2. cgi?db=ciona4 and from http://scrappy.fugu-sg. org/Fugu_rubripes. Other sequences were obtained from the databases at http://www.ncbi.nlm.nih.gov. Frog, ; pufferfish, ; tunicate, ; fruit fly, ecdysone receptor (EcR); daf-12, nematode () daf-12 protein. The latter two are the best matches for VDR in the fruit fly and nematode genomes.

Citation: Marchalonis J, Schluter S, Whitfield G. 2004. Evolutionary Emergence and Interactions among Elements of the Innate and Combinatorial Responses, p 1-30. In Kaufmann S, Medzhitov R, Gordon S (ed), The Innate Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555817671.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 8
FIGURE 8

Representation of Ig recognition elements found in the combinatorial immune system of jawed vertebrates. Examples shown here are the IgM isotype and the α/β TCR.The membrane receptor on B lymphocytes consists of membrane-associated IgM monomer (IgM). The circulating form shown here is the pentamer. The antigen receptor on T lymphocytes is the α/β heterodimer depicted here recognizing peptide antigen presented by an MHC class I molecule on an antigen-presenting cell. All the variable (V) regions and constant (C) domains as well as the MHC C1 and the associated β2M are Ig C1 domains. The α1 and α2 MHC domains presenting peptides are unrelated to Igs. Adapted from with permission.

Citation: Marchalonis J, Schluter S, Whitfield G. 2004. Evolutionary Emergence and Interactions among Elements of the Innate and Combinatorial Responses, p 1-30. In Kaufmann S, Medzhitov R, Gordon S (ed), The Innate Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555817671.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 9
FIGURE 9

Schematic diagram summarizing the evolution and properties of the RAG genes. The genomic organization is shown in the boxes and line diagram, with the direction of transcription indicated by the arrows on the boxes. Domains identified in the proteins are indicated.“ RING” is the ring zinc finger domain; NBD is the nonamer-binding domain. Adapted from with permission.

Citation: Marchalonis J, Schluter S, Whitfield G. 2004. Evolutionary Emergence and Interactions among Elements of the Innate and Combinatorial Responses, p 1-30. In Kaufmann S, Medzhitov R, Gordon S (ed), The Innate Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555817671.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 10
FIGURE 10

Phylogenetic distribution of the ring finger motif found in RAG1. Sequences were obtained from the databases at; http://www.ncbi.nlm.nih.gov. Human (Hu); mouse (Mu); chicken (Ch); trout (Tr); tunicate (); (Ara); RAD, nucleotide excision repair protein; EP, C3HC4-type ring finger; BRCA, breast cancer.

Citation: Marchalonis J, Schluter S, Whitfield G. 2004. Evolutionary Emergence and Interactions among Elements of the Innate and Combinatorial Responses, p 1-30. In Kaufmann S, Medzhitov R, Gordon S (ed), The Innate Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555817671.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 11
FIGURE 11

Phylogenetic distribution of the RAG1 NBD.

Citation: Marchalonis J, Schluter S, Whitfield G. 2004. Evolutionary Emergence and Interactions among Elements of the Innate and Combinatorial Responses, p 1-30. In Kaufmann S, Medzhitov R, Gordon S (ed), The Innate Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555817671.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 12
FIGURE 12

Comparative alignment of sandbar shark λ (cDNA clone 5.1) ( ) sequence with human λ light-chain Mcg (Vλ5) ( ).The structural features depicted, including extended chain (β band), reverse turn, and other structures, are those of human λ light chain as determined by X-ray crystallography. Shortened structures are indicated by gaps and insertions are designated by placement of the residues above the corresponding segment. Identities between sequences are shaded. Residues conserved in all light chains are indicated by stars above the sequence. Adapted from with permission.

Citation: Marchalonis J, Schluter S, Whitfield G. 2004. Evolutionary Emergence and Interactions among Elements of the Innate and Combinatorial Responses, p 1-30. In Kaufmann S, Medzhitov R, Gordon S (ed), The Innate Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555817671.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 13
FIGURE 13

Comparative alignment of two sandbar shark Vµ ( ) sequences with that of a human VH3 (HuV3) monoclonal IgM autoantibody ( ).The CDR segments shown are those defined by for human sequences. Residues shared with the human sequence are shaded. Universally conserved residues are denoted by a star. Adapted from with permission.

Citation: Marchalonis J, Schluter S, Whitfield G. 2004. Evolutionary Emergence and Interactions among Elements of the Innate and Combinatorial Responses, p 1-30. In Kaufmann S, Medzhitov R, Gordon S (ed), The Innate Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555817671.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 14
FIGURE 14

Comparative alignments of human VJλ (Mcg),TCR VDJβ ( ), and TCR VJλ ( ) and sandbar shark VJλ,TCR VDJβ, TCR VJλ.The shark TCR sequences are from Jensen, Schluter, and Marchalonis (unpublished data).The shading indicates positions with at least four matches. Adapted from with permission.

Citation: Marchalonis J, Schluter S, Whitfield G. 2004. Evolutionary Emergence and Interactions among Elements of the Innate and Combinatorial Responses, p 1-30. In Kaufmann S, Medzhitov R, Gordon S (ed), The Innate Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555817671.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817671.chap1
1. Adema, C. M.,, L. A. Hertel,, R. D. Miller,, and E. S. Loker. 1997. A family of fibrinogen-related proteins that precipitate parasite-derived molecules is produced by an invertebrate after infection. Proc. Natl. Acad. Sci. USA 94:86918696.
2. Adoutte, A.,, G. Balavoine,, N. Lartillot,, O. Lespinet,, B. Prud'homme,, and R. De Rosa. 2000. The new animal phylogeny: reliability and implications. Proc. Natl. Acad. Sci. USA 97:44534456.
3. Altschul, S. F.,, T. L. Madden,, A. A. Schaffer,, J. Zhang,, Z. Zhang,, W. Miller,, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:33893402.
4. Andersen, A. S.,, P. H. Hansen,, L. Schaffer,, and C. Kristensen. 2000. A new secreted insect protein belonging to the immunoglobulin superfamily binds insulin and related peptides and inhibits their activities. J. Biol. Chem. 275:1694816953.
5. Anderson, M. K.,, X. Sun,, A. L. Miracle,, G. W. Litman,, and E.V. Rothenberg. 2001. Evolution of hematopoiesis: three members of the PU.1 transcription factor family in a cartilaginous fish, Raja eglanteria. Proc. Natl. Acad. Sci. USA 98:553558.
6. Bartl, S.,, M. A. Baish,, M. J. Flajnik,, and Y. Ohta. 1997. Identification of Class I genes in cartilaginous fish: the most ancient group of vertebrates displaying an adaptive immune response. J. Immunol. 159:60976104.
7. Basu, S.,, K. R. Rosenzweig,, M. Youmell,, and B. D. Price. 1998.The DNA dependent protein kinase participates in the activation of NFκB following DNA damage. Biochem. Biophys. Res. Commun. 247:7983.
8. Baumgarth, N.,, O. Herman,, G. Jager,, L. Brown,, L. Herzenberg,, and J. Chen. 2000. B-1 and B-2 cell-derived immunoglobulin M antibodies are nonredundant components of the protective response to influenza virus infection. J. Exp. Med. 192:271280.
9. Beck, G.,, T.W. Ellis,, G. S. Habicht,, S. F. Schluter,, and J. J. Marchalonis. 2002. Evolution of the acute phase response: iron release by echinoderm (Asteria forbesi) coelomocytes. Dev. Comp. Immunol. 26:1126.
10. Bernstein, R. M.,, S. F. Schluter,, H. Bernstein,, and J. J. Marchalonis. 1996. Primordial emergence of the recombination activating gene 1 (RAG1): sequence of the complete shark gene indicates homology to microbial integrases. Proc. Natl. Acad. Sci. USA 93:94549459.
11. Blumbach, B.,, B. Diehl-Seifer,, J. Seack,, R. Steffen,, I. M. Muller,, and W. E. G. Muller. 1999. Cloning and expression of new receptors belonging to the immunoglobulin superfamily from the marine sponge Geodia cydonium. Immunogenetics 49:751763.
12. Boes, M.,, A. P. Prodeus,, T. Schmidt,, M. C. Carroll,, and J. Chen. 1998. A critical role of natural immunoglobulin M in immediate defense against systemic bacterial infection. J. Exp. Med. 188:23812386.
13. Bowie, A.,, and L. A. O'Neill. 2000. The interleukin- 1 receptor/Toll-like receptor superfamily: signal generators for pro-inflammatory interleukins and microbial products. J. Leukoc. Biol. 67:508514.
14. Brooks, D. W.,, R. H. Robertson,, C. L. Lutze- Wallace,, and W. Pfahler. 2002. Monoclonal antibodies specific for Campylobacter fetus lipopolysaccharides. Vet. Microbiol. 87:3749.
15. Buck, L.,, and R. Axel. 1991. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175187.
16. Cannon, J. P.,, R. N. Haire,, and G. W. Litman. 2002. Identification of diversified genes that contain immunoglobulin-like variable regions in a protochordate. Nat. Immunol. 12:12001207.
17. Chiller, J. M.,, and W. O. Weigle. 1973.Termination of tolerance to human gamma globulin in mice by antigen and bacterial lipopolysaccharide (endotoxin). J. Exp. Med. 137:740750.
18. Colonna, M.,, and J. Samaridis. 1995. Cloning of immunoglobulin superfamily members associated with HLA-C and HLA-B recognition by human natural killer cells. Science 269:405408.
19. Coutinho, A.,, M. Kazatchkine,, and A. Avrameas. 1995. Natural autoantibodies. Curr. Opin. Immunol. 7:812818.
20. Davidson, B.,, and B. J. Swalla. 2002. A molecular analysis of ascidian metamorphosis reveals activation of an innate immune response. Development 129:47394742.
21. Davidson, E. H.,, K. J. Peterson,, and R. A. Camerson. 1995. Origin of bilaterian body plans: evolution of development regulatory mechanisms. Science 270:13191325.
22. Dehal, P.,, Y. Satou,, R. K. Campbell,, J. Chapman,, B. Degnan,, A. De Tamaso,, B. Davidson,, A. Di Gregorio,, M. Gelpke,, D. M. Goodstein,, N. Harafuji,, K. E. M. Hastings,, I. Ho,, K. Hotta,, W. Huang,, T. Kawashima,, P. Lemaire,, D. Martinez,, I. A. Meinertzhagen,, S. Necula,, M. Nonaka,, N. Putnam,, S. Rash,, H. Saiga,, M. Satake,, A. Terry, et al. 2002. The draft genome of Ciona intestinalis: insights to chordate and vertebrate origins. Science 298:21572167.
23. Dodds, A.,, S. Smith,, R. Levine,, and A. Willis. 1998. Isolation and initial characterization of complement components C3 and C4 of the nurse shark and the channel catfish. Dev. Comp. Immunol. 22:207216.
24. Doolittle, R. F. 1995.The multiplicity of domains in proteins. Annu. Rev. Biochem. 64:287314.
25. DuPasquier, L.,, and M. Flajnik,. 1999. Origin and evolution of the vertebrate immune system, p. 605650. In W. E. Paul (ed.), Fundamental Immunology. Lippincott-Raven, Philadelphia, Pa.
26. DuPasquier, L.,, M. Courtet,, and I. Chretien. 1999. Duplication and MHC linkage of the CTX family of genes in Xenopus and in mammals. Eur. J. Immunol. 29:17291739.
27. Edelman, G. 1987. CAMs and Igs: cell adhesion and the evolutionary origins of immunity. Immunol. Rev. 100:1145.
28. Edmundson, A. B.,, R. R. Ely,, E. E. Abola,, M. Schiffer,, and N. Pagniotopoulos. 1975. Rotational allomerision and divergent evolution of domains in immunoglobulin light chains. Biochemistry 14:39333936.
29. Ehrlich, P. 1900. On immunity with special references to cell life. Proc. R. Soc. London 66:424448.
30. Ellison, J.,, and L. Hood. 1983. Human antibody genes: evolutionary and molecular genetic perspectives. Adv. Hum. Genet. 13:113147.
31. Fett, J.W.,, and H. F. Deutsch. 1974. Primary structure of the Mcg lambda chain. Biochemistry 13:41024114.
32. Fink, R. C.,, and J. G. Scandalios. 2002. Molecular evolution and structure-function relationships of the superoxide dismutase gene families in angiosperms and their relationship to other eucaryotic and procaryotic superoxide dismutases. Arch. Biochem. Biophys. 399:1936.
33. Flajnik, M. F.,, and M. Kasahara. 2001. Comparative genomics of the MHC: glimpses into the evolution of the adaptive immune system. Immunity 15: 351356.
34. Flajnik, M.,, Y. Ohta,, C. Namikawa-Yamada,, and M. Nonaka. 1999. Insight into the primordial MHC from studies in ectothermic vertebrates. Immunol. Rev. 167:5967.
35. Forey, P.,, and P. Janvier. 1994. Evolution of the early vertebrates. Am. Sci. 82:554565.
36. Friedman, R.,, and A. Hughes. 2002. Molecular evolution of the NFκB signaling system. EMBO J. 11:829837.
37. Gearing, D. P.,, C. J. Thut,, T. Vandenbos,, S. D. Gimpel,, P. B. Delaney,, J. King,, V. Price,, D. Cosman,, and M. P. Beckman. 1991. Leukemia inhibitory factor receptor is structurally related to the IL-6 signal transducer, gp130.EMBO J. 10:28392848.
38. Gelbart, W. M. 2003. The FlyBase database of the Drosophila genome projects and community literature. Nucleic Acids Res. 30:106108.
39. Gewurz, H.,, S. C. Ying,, H. Jiang,, and T. F. Lint. 1993. Nonimmune activation of the classical complement pathway. Behring Inst. Mitt. 93:138147.
40. Ghosh, G.,, G. Van Duyne,, S. Ghosh,, and P. Sigler. 1995. Structure of NFκB p50 homodimer bound to a κB site. Nature 373:303310.
41. Ghosh, S.,, M. J. May,, and E. B. Kopp. 1998. NFκB and REL proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 16:225260.
42. Giribet, G. 2002. Current advances in the phylogenetic reconstruction of metazoan evolution. A new paradigm for the Cambrian explosion? Mol. Phylogenet. Evol. 24:345357.
43. Good, R. A.,, and B. W. Papermaster. 1964. Ontogeny and phylogeny of adaptive immunity. Adv. Immunol. 4:1115.
44. Goodwin, B.,, E. Hodgson,, and C. Liddle. 1999. The orphan human pregnane X receptor mediates the transcriptional activation of CYP3A4 by rifampicin through a distal enhancer module. Mol. Pharmacol. 56:13291339.
45. Greenberg, A. S.,, A. L. Hughes,, J. Guo,, D. Avila,, E. C. McKinney,, and M. F. Flajnik. 1996. A novel “chimeric” antibody class in cartilagenous fish: IgM may not be the primordial immunoglobulin. Eur. J. Immunol. 26:11231129.
46. Griffin, M. D.,, W. Lutz,, V. A. Phan,, L. A. Bachman,, D. J. McKean,, and R. Kumar. 2001. Dendritic cell modulation by 1alpha,25 dihydroxyvitamin D3 and its analogs: a vitamin D receptor dependent pathway that promotes a persistent state of immaturity in vitro and in vivo. Proc. Natl. Acad. Sci. USA 98:68006805.
47. Halaby, D. M.,, and J. P. E. Mornon. 1997. The immunoglobulin superfamily: an insight on its tissular, species and functional diversity. J. Mol. Evol. 46:389400.
48. Hanley, P.,, J.W. Hook,, D.A. Raftos,, A.A. Gooley,, R. Trent,, and R. L. Raison. 1992. Hagfish humoral defense protein exhibits structural and functional homology with mammalian complement components. Proc. Natl. Acad. Sci. USA 89:79107914.
49. Hansen, J. D.,, and S. L. Kaatari. 1995.The recombination activation gene 1 (RAG1) of rainbow trout (Oncorhynchus mykiss): cloning, expression and phylogenetic analysis. Immunogenetics 42:188195.
50. Hansen, J. D.,, and J. F. McBlane. 2000. Recombination- activating genes, transposition, and the lymphoid- specific combinatorial immune system: a common evolutionary connection. Curr. Top. Microbiol. Immunol. 248:111135.
51. Haralambieva, I. H.,, I. D. Iankov,, D. P. Petrov,, I. V. Miadenov,, and I. G. Mitov. 2002. Monoclonal antibody of IgG isotype against a cross-reactive lipopolysaccharide epitope of Chlamydia and Salmonella Re chemotype enhances infectivity in L-929 fibroblast cells. FEMS Immunol. Med. Microbiol. 33:7176.
52. Harindranath, N.,, I. Goldfarb,, H. Ikematsu,, S. Burastero,, R. Wilder,, A. Notkins,, and P. Casali. 1991. Complete sequence of the genes encoding the VH and VL regions of low- and high-affinity monoclonal IgM and IgA1 rheumatoid factors produced by CD5+ B cells from a rheumatoid arthritis patient. Int. Immunol. 3:865875.
53. Harindranath, N.,, H. Ikematsu,, A. L. Notkins,, and P. Casali. 1993. Structure of the VH and VL segments of polyreactive and monoreactive human natural antibodies to HIV-1 and Escherichia coli β-galactosidase. Int. Immunol. 5:15231533.
54. Harnett, W.,, and M. Harnett. 1999. Phosphorylcholine: friend or foe of the immune system. Immunol.Today 20:125129.
55. Haussler, M. R.,, G. K. Whitfield,, C. A. Haussler,, J.-C. Hsieh,, P. D. Thompson,, S. H. Selznick,, D. C. Encinas,, and P. W. Jurutka. 1998. The nuclear vitamin D receptor: biological and molecular regulatory properties revealed. J. Bone Miner. Res. 13:325349.
56. Hochstenbach, F.,, C. Parker,, J. McLean,, V. Gieselmann,, H. Band,, I. Bank,, L. Chess,, H. Spits,, J. L. Strominger,, J. G. Seidman, et al. 1988. Characterization of a third form of the human T cell receptor gamma/delta. J. Exp. Med. 168:761776.
57. Hoek, R. M.,, A. B. Smit,, J. M. Vink,, M. de Jong- Brink,, and W. P. M. Geraerts. 1996. A new Ig-superfamily member, molluscan defence molecule (MDM) from Lymnaea stagnalis is down-regulated during parasitosis. Eur. J. Immunol. 26:939944.
58. Hohman, V. S.,, S. F. Schluter,, and J. J. Marchalonis. 1992. Complete sequence of a cDNA clone specifying sandbar shark immunoglobulin light chain: gene organization and implications for the evolution of light chains. Proc. Natl. Acad. Sci. USA 89: 276280.
59. Hughes, A. L. 1994. Phylogeny of the C3/C4/C5 complement-component gene family indicates that C5 diverged first. Mol. Biol. Evol. 11:417425.
60. Hughes, A. L. 1998. Protein phylogenies provide evidence of a radical discontinuity between arthropod and vertebrate immune system. Immunogenetics 47: 283296.
61. Imler, J.,, and J. Hoffman. 2002. Toll receptors in Drosophila: a family of molecules regulating development and immunity. Curr. Top. Microbiol. Immunol. 270: 6379.
62. Ishiguro, H.,, K. Kobayashi,, M. Suzuki,, K. Titani,, S. Tomonoaga,, and Y. Kurosawa. 1992. Isolation of a hagfish gene that encodes a complement component. EMBO J. 11:829837.
63. Izui, S.,, R. Eisenberg,, and F. Dixon. 1979. IgM rheumatoid factors in mice injected with bacterial lipopolysaccharides. J. Immunol. 122:20962102.
64. Jennings, C. G.,, S. M. Dyer,, and S. J. Burden. 1993. Muscle-specific trk-related receptor with a kringle domain defines a distinct class of receptor tyrosine kinases. Proc. Natl. Acad. Sci. USA 90:28952899.
65. Kabat, E.,, T. Wu,, and H. Perry. 1991. Sequences of Proteins of Immunological Interest. NIH Pub. 91-3242. National Institutes of Health, Bethesda, Md.
66. Kay, M. 1981. Isolation of the phagocytosis-inducating IgG binding antigen on senescent somatic cells. Nature 289:491494.
67. Kay, M. M. B.,, C. Cover,, S. F. Schluter,, R. M. Bernstein,, and J. J. Marchalonis. 1995. Band 3, the anion transporter, is conserved during evolution: implications for aging and vertebrate evolution. Cell Mol. Biol. 41:833842.
68. Klein, J. 1998. In an immunological twilight zone. Proc. Natl. Acad. Sci. USA 95:1150411505.
69. Kubagawa, H.,, P.D. Burrows,, and M.D. Cooper. 1997. A novel pair of immunoglobulin-like receptors expressed by B cells and myeloid cells. Proc. Natl.Acad. Sci. USA 94:52615266.
70. Kulski, J.,, T. Shiina,, T. Anzai,, S. Kohara,, and H. Inoko. 2002. Comparative genomic analysis of the MHC: the evolution of class I duplication blocks, diversity and complexity from shark to man. Immunol. Rev. 190:95122.
71. Laird, D.,, A. De Tomaso,, M. D. Cooper,, and I. Weissman. 2000. 50 million years of chordate evolution: seeking the origins of adaptive immunity. Proc. Natl. Acad. Sci. USA 97:69246926.
72. Lemaitre, B.,, M. Meister,, S. Govind,, P. Georgel,, R. Steward,, J. Reichhart,, and J. Hoffman. 1995. Functional analysis and regulation of nuclear import of dorsal during the immune response in Drosophila. EMBO J. 14:536545.
73. Lemire, J. 2000. 1,25-Dihydroxyvitamin D hormone with immunomodulatory properties. Z. Rheumatol. 59:2427.
74. Levin, J.,, and F. Bang. 1968. Clottable protein in Limulus: its localization and kinetics of its coagulation by endotoxin. Thromb. Diath. Haemorrh. 31:186197.
75. Litman, G.W.,, M. K. Anderson,, and J. P. Rast. 1999. Evolution of antigen binding receptors. Annu. Rev. Immunol. 17:109147.
76. Makishima, M.,, T.T. Lu,, W. Xie,, G. K. Whitfield,, H. Domoto,, R.M. Evans,, M. R. Haussler,, and D. J. Mangelsdorf. 2002. Vitamin D receptor as an intestinal bile acid sensor. Science 296:13131316.
77. Manfruelli, P.,, J. Reichhart,, R. Steward,, J. Hoffman,, and B. Lemaitre. 1999. A mosaic analysis in Drosophila fat body cells of the control of antimicrobial peptide genes by the Rel proteins Dorsal and DIF. EMBO J. 18:33803391.
78. Marchalonis, J. J. 1974. Antibodies and surface immunoglobulins of immunized congenitally athymic (nu/nu) mice. Aust. J. Exp. Biol. Med. Sci. 52:535547.
79. Marchalonis, J. J. 1977. Immunity in Evolution. Harvard University Press, Cambridge, Mass.
80. Marchalonis, J. J.,, and G. M. Edelman. 1965. Phylogenetic origins of antibody structure. I. Multichain structure of immunoglobulins in the smooth dogfish, Mustelus canis. J. Exp. Med. 122:601618.
81. Marchalonis, J. J.,, and G. Edelman. 1968. Isolation and characterization of a natural hemagglutinin from Limulus polyphemus. J. Mol. Biol. 32:453465.
82. Marchalonis, J. J.,, and S. F. Schluter. 1998. A stochastic model for the rapid emergence of specific vertebrate immunity incorporating horizontal transfer of systems enabling duplication and combinatorial diversification. J.Theor. Biol. 193:429444.
83. Marchalonis, J. J.,, S. F. Schluter,, R.M. Bernstein,, and V. S. Hohman. 1998a. Antibodies of sharks: revolution and evolution. Immunol. Rev. 166:103122.
84. Marchalonis, J. J.,, S. F. Schluter,, R.M. Bernstein,, and A. B. Edmundson. 1998b. Phylogenetic emergence and molecular evolution of the immunoglobulin family. Adv. Immunol. 70:417506.
85. Marchalonis, J. J.,, M. K. Adelman,, B. J. Zeitler,, P. M. Sarazin,, M. Jaqua,, and S. F. Schluter. 2001. Evolutionary factors in the emergence of the combinatorial germline antibody repertoire. Adv. Exp. Med. Biol. 484:1330.
86. Marchalonis, J. J.,, S. V. Kaveri,, L. D. Lacroix- Desmazes,, and M.D. Kazatchkine. 2002a. Natural recognition repertoire and the evolutionary emergence of the combinatorial immune system. FASEB J. 16:842848.
87. Marchalonis, J. J.,, I. Jensen,, and S. F. Schluter. 2002b. Structural, antigenic and evolutionary analyses of immunoglobulins and T cell receptors. J. Mol. Recognit. 15:260271.
88. Marchalonis, J. J.,, G. K. Whitfield,, and S. F. Schluter. 2003. Rapid evolutionary emergence of the combinatorial recognition repertoire. Integrat. Comp. Biol. 43:347359.
89. Marino, R.,, Y. Kimura,, R. De Santis,, J. Lambris,, and M. Pinto. 2002. Complement in urochordates: cloning and characterization of two C3-like genes in the ascidian Ciona intestinalis. Immunogenetics 53: 10551064.
90. Martin, A.,, and T. Burg. 2002. Perils of paralogy: using HSP70 genes for inferring organismal phylogenies. Syst. Biol. 51:570587.
91. Masiakowski, P.,, and R. Carroll. 1992. A novel family of cell surface receptors with tyrosine kinase-like domain. J. Biol. Chem. 267:2618126190.
92. Mayer, W. E.,, T. Uinuk-Ool,, H. Tichy,, L. Gartland,, J. Klein,, and M. D. Cooper. 2002. Isolation and characterization of lymphocyte like cells from a lamprey. Proc. Natl. Acad. Sci. USA 99:1435014355.
93. Means, T.,, D. Golenbock,, and M. Fenton. 2000. Structure and function of Toll-like receptor proteins. Life Sci. 68:241258.
94. Medzhitov, R.,, and C. J. Janeway. 2000. The Toll receptor family and microbial recognition. Trends Microbiol. 8:452456.
95. Medzhitov, R.,, P. Preston-Hurlburt,, and C. J. Janeway. 1997. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388:394397.
96. Mendoza, H.,, and I. Faye. 1999. Phsyiological aspects of the immunoglobulin superfamily in invertebrates. Dev. Comp. Immunol. 23:359374.
97. Metchnikoff, E. 1905. Immunity in Infective Diseases. Cambridge University Press, Cambridge, United Kingdom.
98. Mold, C.,, P. Rodic-Polic,, and T. Du Clos. 2002. Protection from Streptococcus pneumoniae infection by C-reactive protein and natural antibody requires complement but not Fc gamma receptors. J. Immunol. 168:63756381.
99. Moretta, L.,, R. Biassoni,, C. Bottino,, C. Cantoni,, D. Pende,, M. C. Mingari,, and A. Moretta. 2002. Human NK cells and their receptors. Microbes Infect. 4:15391544.
100. Najakshin, A.,, L. Mechetine,, B. Alabyev,, and A. Taranin. 1999. Identification of an IL-8 homology in lamprey (Lampetra fluviatilis): early evolutionary divergence of chemokines. Eur. J. Immunol. 29:373389.
101. Ochsenbein, A.,, and R. M. Zinkernagel. 2000. Natural antibodies and complement link innate and acquired immunity. Immunol.Today 21:624630.
102. Oettinger, M. A.,, D. G. Schatz,, C. Gorka,, and D. Baltimore. 1990. RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science 248:15171523.
103. Owen, G.,, and A. Zelent. 2000. Origins and evolutionary diversification of the nuclear receptor superfamily. Cell. Mol. Life Sci. 57:809827.
104. Pancer, Z.,, M. Kruse,, H. Schacke,, U. Scheffer,, R. Steffen,, P. Kovacs,, and W. E. G. Muller. 1996. Polymorphism in the immunoglobulin-like domains of the receptor tyrosine kinase from the sponge Geodia cydonium. Cell. Adhes. Commun. 4:327339.
105. Popovici, C.,, D. Isnardon,, D. Birnbaum,, and R. Roubin. 2002. Caenorhabditis elegans receptors related to mammalian vascular endothelial growth factor receptors are expressed in neural cells. Neurosci. Lett. 329:116120.
106. Ramsland, P.,, A. Kaushik,, J. J. Marchalonis,, and A. Edmundson. 2001. On the incorporation of long CDR3s into V domains: implications for the structural evolution of the antibody combining site. Exp. Clin. Immunogenetics 18:179191.
107. Rast, J. P.,, M. K. Anderson,, T. Ota,, R.T. Litman,, M. Margittal,, M. J. Shamblott,, and G.W. Litman. 1994. Immunoglobulin light chain class multiplicity and alternative organizational forms in early vertebrate phylogeny. Immunogenetics 40:8399.
108. Rast, J. P.,, M. K. Anderson,, S. J. Strong,, C. Luer,, R.T. Litman,, and G.W. Litman. 1997. α, β, γ, and δ T cell antigen receptor genes arose early in vertebrate phylogeny. Immunity 6:111.
109. Rehli, M. 2002. Of mice and men: species variations of Toll-like receptor expression. Trends Immunol. 23:375378.
110. Reidl, L. S.,, C. M. Kinoshita,, and L. A. Steiner. 1992.Wild mice express an Ig Vλ gene that differs from any Vλ in Balb/c but resembles a human Vλ subgroup. J. Immunol. 149:471480.
111. Reidling, J.,, M. A. Miller,, and R. E. Stelle. 2000. Sweet Tooth, a novel receptor protein-tyrosine kinase with C-type lectin-like extracellular domains. J. Biol. Chem. 275:1032310330.
112. Richards, M. H.,, and J. L. Nelson. 2000.The evolution of vertebrate antigen receptors: a phylogenetic approach. Mol. Biol. Evol. 17:146155.
113. Rinkevich, B.,, I. Weissman,, and A. DeTomaso. 1998.Transplantation of Fu-HC incompatible zooids in Botryllus schlosseri results in chimerism. Biol. Bull. 195:98106.
114. Robey, F. A.,, and T.Y. Liu. 1981. Limulin: a C-reactive protein from Limulus polyphemus. J. Biol. Chem. 256:969974.
115. Robey, F. A.,, T. Tanaka,, and T. Y. Liu. 1983. Isolation and characterization of two major serum proteins from the dogfish, Mustelus canis, C-reactive protein and amyloid P component. J. Biol. Chem. 258: 38893894.
116. Robey, I. F.,, S. F. Schluter,, D. E. Yocum,, and J. J. Marchalonis. 2000. Production and characterization of monoclonal IgM autoantibodies specific for the T cell receptor. J. Protein Chem. 19:921.
117. Robey, I. F.,, A. B. Edmundson,, S. F. Schluter,, D. E. Yocum,, and J. J. Marchalonis. 2002. Specificity mapping of human anti-T cell receptor monoclonal natural antibodies: defining the properties of epitope recognition promiscuity. FASEB J. 16:16421652.
118. Rock, F.,, G. T. Hardiman,, J. C. Timons,, R. Kastelein,, and J. Bazan. 1998. A family of human receptors structurally related to Drosophila Toll. Proc. Natl. Acad. Sci. USA 95:588593.
119. Rodman, T. C.,, J. D. Lutton,, S. Jiang,, H. B. Al- Kouatly,, and R. Winston. 2001. Circulating natural IgM antibodies and their corresponding human cord blood cell-derived Mabs specifically combat the Tat protein of HIV. Exp. Hematol. 29:10041009.
120. Rutschmann, S.,, A. Jung,, C. Hetru,, J. Reichhart,, J. Hoffman,, and D. Ferrandon. 2000.The Rel protein DIF mediates the antifungal but not the antibacterial host defense in Drosophila. Immunity 12:569580.
121. Saito, Y.,, E. Hirose,, and H. Watanabe. 1994. Allorecognition in compound ascidians. Int. J. Dev. Biol. 38:237247.
122. Schacke, H.,, B. Rinkevich,, V. Gamulin,, I. M. Muller,, and W. E. G. Muller. 1994. Immunoglobulin- like domain is present in the extracellular part of the receptor tyrosine kinase from the marine sponge Geodia cydonium. J. Mol. Recognit. 7:273276.
123. Schatz, D.,, M. Oettinger,, and D. Baltimore. 1989.The V(D)J recombination activating gene, RAG- 1. Cell 59:10351048.
124. Schluter, S. F.,, and J. J. Marchalonis 1986. Antibodies to synthetic joining segment peptide of the T-cell receptor β chain: serological cross-reaction between products of T-cell receptor genes, antigen binding T-cell receptors and immunoglobulins. Proc. Natl. Acad. Sci. USA 83:18721876.
125. Schluter, S. F.,, and J. J. Marchalonis. 2003. Cloning of shark RAG2 and characterization of the RAG1/RAG2 locus. FASEB J. 17:470472.
126. Schluter, S. F.,, C. J. Beischel,, S. A. Martin,, and J. J. Marchalonis. 1989. Sequence analysis of homogeneous peptides of shark immunoglobulin light chains by tandem mass spectrometry: correlation with gene sequence and homologies among variable and constant region peptides of sharks and mammals. Mol. Immunol. 27:1723.
127. Schluter, S. F.,, R. M. Bernstein,, and J. J. Marchalonis. 1997. Molecular origins and evolution of immunoglobulin heavy-chain genes of jawed vertebrates. Immunol.Today 18:543549.
128. Schluter, S. F.,, R. M. Bernstein,, H. Bernstein,, and J. J. Marchalonis. 1999. “Big Bang” emergence of the combinatorial immune system. Dev. Comp. Immunol. 23:107111.
129. Sekine, H.,, A. Kenjo,, K. Azumi,, G. Ohi,, M. Takahashi,, R. Kasukawa,, N. Ichikawa,, M. Nakata,, T. Mizuochi,, M. Matsushit,, Y. Endo,, and T. Fujita. 2001. An ancient lectin-dependent complement system in an ascidian: novel lectin isolated from the plasma of the solitary asicidian, Halocynthia roretzi. J. Immunol. 167:45044510.
130. Shaw, P. X.,, S. Horkko,, M. K. Chang,, L. K. Curtiss,, W. Palinski,, G. J. Silverman,, and J. L. Witztum. 2000. Natural antibodies with the T15 idiotype may act in atherosclerosis, apoptotic clearance, and protective immunity. J. Clin. Invest. 105: 17311740.
131. Shen, S. X.,, R. M. Bernstein,, S. F. Schluter,, and J. J. Marchalonis. 1996. Heavy-chain variable regions in carcharhine sharks: development of a comprehensive model for the evolution of VH domains among the gnathanstomes. Immunol. Cell Biol. 74:357364.
132. Sims, J. E.,, T. Z. Armel,, D. P. Carrington,, C. J. McMahan,, J. M. Wignall,, C. J. March,, and S. K. Dower. 1989. Cloning the interleukin 1 receptor from human T cells. Proc. Natl. Acad. Sci. USA 86:89468950.
133. Smith, D. K.,, and H. Xue. 1997. Sequence profiles of immunoglobulin and immunoglobulin-like domains. J. Mol. Biol. 274:530545.
134. Smith, L. C. 2002.Thioester function is conserved in SpC3, the sea urchin homologue of the complement component C3. Dev. Comp. Immunol. 26:603614.
135. Smith, L. C.,, C. S. Shih,, and S. G. Dachenhausen. 1998. Coelomocytes express SpBf, a homologue of factor B, the second component in the sea urchin complement system. J. Immunol. 1616:67846789.
136. Smith, S. 1998. Shark complement: an assessment. Immunol. Rev. 166:6778.
137. Spruyt, N.,, C. Delarbre,, G. Gachelin,, and V. Laudet. 1998. Complete sequence of the amphioxus (Branchiostoma lanceolatum) mitochondrial genome: relations to vertebrates. Nucleic Acids Res. 26:32793285.
138. Staskawicz, B.,, M. B. Mudgett,, J. Dangl,, and J. Galan. 2001. Common and contrasting themes of plant and animal diseases. Science 292:22852289.
139. Stein, L.,, P. Sternberg,, R. Durbin,, J. Thierry- Mieg,, and J. Spieth. 2001. WormBase network access to the genome and biology of Caenorhabditis elegans. Nucleic Acids Res. 29:8286.
140. Su, X. D.,, L. N. Gastinel,, D. E. Vaughn,, I. Faye,, P. Poon,, and P. J. Bjorkman. 1998. Crystal structure of hemolin: a horseshoe shape with implications for homophilic adhesion. Science 281:991995.
141. Sun, S. C.,, I. Lindstrom,, H. G. Boman,, I. Faye,, and O. Schmidt. 1990. Hemolin: an insect-immune protein belonging to the immunoglobulin superfamily. Science 250:17291731.
142. Sunyer, J. O.,, and J. D. Lambris. 1998. Evolution and diversity of the complement system of poikilothermic vertebrates. Immunol. Rev. 166:3957.
143. Teichmann, S. A.,, and C. Chothia. 2000. Immunoglobulin superfamily proteins in Caenorhabditis elegans. J. Mol. Biol. 296:13671383.
144. Tharia, H.,, A. Shrive,, J. Mills,, C. Arme,, G. Williams,, and T. Greenhough. 2002. Complete cDNA sequence of SAP-like pentraxin from Limulus polyphemus: implications for pentraxin evolution. J. Mol. Biol. 316:583597.
145. Tsuji, S.,, J. Uehori,, M. Matsoumoto,, Y. Suzuki,, A. Matsuhisa,, K. Toyoshima,, and T. Seya. 2001. Human intelectin is a novel soluble lectin that recognizes galactofuranose in carbohydrate chains of bacterial cell wall. J. Biol. Chem. 276:2345623463.
146. Uinuk-Ool, T.,, W. E. Mayer,, A. Sato,, R. Dongak,, M. D. Cooper,, and J. Klein. 2002. Lamprey lymphocyte- like cells express homologs of genes involved in immunologically relevant activities of mammalian lymphocytes. Proc. Natl. Acad. Sci. USA 99:1435614361.
147. Valentine, J.,, D. Jablonski,, and D. Erwin. 1999. Fossils, molecules and embryos: new perspectives on the Cambrian explosion. Development 126:851859.
148. Vasta, G. R.,, J. J. Marchalonis,, and H. Kohler. 1984. Invertebrate recognition protein cross-reacts with an immunoglobulin idiotype. J. Exp. Med. 159:12701276.
149. Venkatech, B.,, M.V. Erdmann,, and S. Brenner. 2001. Molecular synapomorphies resolve evolutionary relationships of extant jawed vertebrates. Proc. Natl. Acad. Sci. USA 98:1138211387.
150. Warr, G.,, J. Decker,, T. Mandel,, D. DeLuca,, R. Hudson,, and J. J. Marchalonis. 1977. Lymphocyte-like cells of the tunicate, Pyura stolonifera: binding of lectins, morphological and functional studies. Aust. J. Exp. Biol. Med. Sci. 55:151164.
151. Whitfield, G. K.,, H.T. L. Dang,, S. F. Schluter,, R. M. Bernstein,, T. Bunag,, L. A. Manzon,, G. Hsieh,, C. Encinas-Dominguez,, J. H. Youson,, M. R. Haussler,, and J. J. Marchalonis. 2003. Cloning of a functional Vitamin D receptor from the lamprey Petromyson marinus, an ancient vertebrate lacking calcified bones or teeth. Endocrinology 144:27142716.
152. Williams, A. F.,, and A. N. Barclay. 1988. The immunoglobulin superfamily—domains for cell surface recognition. Annu. Rev. Immunol. 6:381405.
153. Yacine, M.,, Y. Amrani,, M. Xavier,, P. Cazenave,, and S. Adrien. 2002. The Ig light chain restricted B6.kappa-lambda SEG mouse strain suggests that the IGL locus genomic organization is subject to constant evolution. Immunogenetics 54:106119.
154. Yanagi, Y.,, Y. Yoshikai,, K. Leggett,, S. P. Clark,, I. Aleksander,, and T.W. Mak. 1984. A human T cel-lspecific cDNA clone encodes a protein having extensive homology to immunoglobulin chains. Nature 308:145149.
155. Ying, S.,, J. Marchalonis,, A. Gewurz,, J. Siegel,, H. Jiang,, and H. Gewutz. 1992. Reactivity of antihuman C reactive protein (CRP) and serum amyloid P component (SAP) monoclonal antibodies with limulin and pentraxins of other species. Immunology 76:324330.
156. Yoder, J. A.,, M. G. Mueller,, S. Wei,, B. C. Corliss,, D. M. Prather,, T. Willis,, R.T. Litman,, J.V. Djeu,, and G. W. Litman. 2001. Immune type receptor genes in zebrafish share genetic and functional properties with genes encoded by the mammalian leukocyte receptor cluster. Proc. Natl. Acad. Sci. USA 98:67716776.
157. Yu, X. Q.,, and M. R. Kanost. 2002. Binding of hemolin to bacterial lipopolysaccharide and lipoteichoic acid. An immunoglobulin superfamily member from insects as a pattern recognition receptor. Eur. J. Biochem. 269:18271834.
158. Zapata, A.,, C. Ardavin,, R. Gomariz,, and J. Leceta. 1981. Plasma cells in the ammocoete of Petromyzon marinus. Cell Tissue Res. 221:203208.

Tables

Generic image for table
TABLE 1

Distribution in phylogeny of molecules functioning in innate immunity

Citation: Marchalonis J, Schluter S, Whitfield G. 2004. Evolutionary Emergence and Interactions among Elements of the Innate and Combinatorial Responses, p 1-30. In Kaufmann S, Medzhitov R, Gordon S (ed), The Innate Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555817671.ch1

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error