1887

Chapter 15 : Antigen-Presenting Cell Receptors and Innate Immunity: Diversity, Recognition, and Responses

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Antigen-Presenting Cell Receptors and Innate Immunity: Diversity, Recognition, and Responses, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817671/9781555812911_Chap15-1.gif /docserver/preview/fulltext/10.1128/9781555817671/9781555812911_Chap15-2.gif

Abstract:

This chapter discusses selected scavenger and lectinlike antigen-presenting cell (APC) receptors in relation to innate immunity to illustrate principles and provide questions for further study. Genes for the pattern recognition receptors (PRRs) of the innate immune system have become fixed in the germ line during evolution, unlike the recombinant genes generated in somatic cells, which determine clonotypic recognition by T and B lymphocytes in the acquired immune response. The SR-A molecule has two functional (I and II) and one nonfunctional (III) isoforms, depending on differential exon splicing. It is a distinct gene product from macrophage collagenous receptor (MARCO), a similar collagenlike type 2 transmembrane glycoprotein. SR-A function in innate immunity has not been fully analyzed in vivo, but in vitro model systems have contributed to our understanding of its role in uptake of bacteria. It is now clear that there are several distinct mannose recognition molecules expressed by mature macrophages and selected endothelia, including the classic multilectin mannose receptor (MR), DC-SIGN and DC-SIGN-related molecules, and Langerin. The chapter summarizes studies on the MR, for which a range of exogenous and endogenous ligands has been defined. Our knowledge of innate immune recognition by APC receptors and of the pathways leading to distinct responses is limited. This subject has become topical and will have considerable theoretical and practical implications in therapeutic modulation of host resistance to infection and vaccine development. In addition, improved understanding will bring insights into the pathogenesis of autoimmunity and of a range of inflammatory disease syndromes.

Citation: Gordon S. 2004. Antigen-Presenting Cell Receptors and Innate Immunity: Diversity, Recognition, and Responses, p 287-299. In Kaufmann S, Medzhitov R, Gordon S (ed), The Innate Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555817671.ch15

Key Concept Ranking

Major Histocompatibility Complex
0.57001555
Innate Immune System
0.55717134
Immune Receptors
0.5296316
Tumor Necrosis Factor alpha
0.43689036
0.57001555
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Heterogeneity of MΦs, including activation.

Citation: Gordon S. 2004. Antigen-Presenting Cell Receptors and Innate Immunity: Diversity, Recognition, and Responses, p 287-299. In Kaufmann S, Medzhitov R, Gordon S (ed), The Innate Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555817671.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

SRs. LOX-1, lectin-like oxidized LDL receptor; SREC, scavenger receptor, endothelial cells.

Citation: Gordon S. 2004. Antigen-Presenting Cell Receptors and Innate Immunity: Diversity, Recognition, and Responses, p 287-299. In Kaufmann S, Medzhitov R, Gordon S (ed), The Innate Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555817671.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Lectin and lectinlike receptors.

Citation: Gordon S. 2004. Antigen-Presenting Cell Receptors and Innate Immunity: Diversity, Recognition, and Responses, p 287-299. In Kaufmann S, Medzhitov R, Gordon S (ed), The Innate Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555817671.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817671.chap15
1. Abraham, R.,, N. Singh,, A. Mukhopadhyay,, S. K. Basu,, V. Bal,, and S. Rath. 1995. Modulation of immunogenicity and antigenicity of proteins by maleylation to target scavenger receptors on macrophages. J. Immunol. 154: 1 8.
2. Aderem, A.,, and D. M. Underhill. 1999. Mechanisms of phagocytosis in macrophages. Annu. Rev. Immunol. 17: 593 623.
3. Allen, L. A. H.,, and A. Aderem. 1995. A role for MARCKS, the α isozyme of protein kinase C and a myosin I in zymosan phagocytosis by macrophages. J. Exp. Med. 182: 829 840.
4. Anderson, D. C.,, and T. A. Springer. 1987. Leukocyte adhesion deficiency: an inherited defect in Mac-1, LFA-1 and p150,95 glycoproteins. Annu. Rev. Med. 38: 175 194.
5. Banchereau, J.,, F. Briere,, C. Caux,, J. Davoust,, S. Lebecque,, Y. J. Liu,, B. Pulendran,, and K. Palucka. 2000. Immunobiology of dendritic cells. Annu. Rev. Immunol. 18: 767 811.
6. Barclay, A. N.,, G. J. Wright,, G. Brooke,, and M. H. Brown. 2002. CD200 and membrane protein interactions in the control of myeloid cells. Trends Immunol. 213: 285 290.
7. Barton, G. M.,, and R. Medzhitov. 2003. Toll-like receptor signaling pathways. Science 300: 1524 1525.
8. Beller, D. I.,, T. A. Springer,, and R. D. Schreiber. 1982. Anti Mac-1 selectively inhibits the mouse and human type three complement receptor. J. Exp. Med. 156: 1000 1009.
9. Bianco, C.,, F. M. Griffin, Jr.,, and S. C. Silverstein. 1975. The macrophage complement receptor. Alteration of receptor function upon macrophage activation. J. Exp. Med. 141: 1278 1290.
10. Blackwell, J. M.,, R. A. B. Ezekowitz,, M. B. Roberts,, J. Y. Channon,, R. B. Sim,, and S. Gordon. 1985. Macrophage complement and lectinlike receptors bind Leishmania in the absence of serum. J. Exp. Med. 162: 324 331.
11. Boldrick, J. C.,, A. A. Alizadeh,, M. Diehn,, S. Dudoit,, C. L. Liu,, C. E. Belcher,, D. Botstein,, L. M. Staudt,, P. O. Brown,, and D. A. Relman. 2002. Stereotyped and specific gene-expression programs in human innate immune responses to bacteria. Proc. Natl. Acad. Sci. USA 99: 972 977.
12. Brown, E. J.,, and W. A. Frazier. 2001. Integrinassociated protein (CD47) and its ligands. Trends Cell Biol. 11: 130 135.
13. Brown, G. D.,, and S. Gordon. 2001. A new receptor for β-glucans. Nature 413: 36 37.
14. Brown, G. D.,, P. R. Taylor,, D. M. Reid,, D. L. Williams,, J. A. Willment,, L. Martinez-Pomares,, S. Y. C. Wong,, and S. Gordon. 2002. Dectin-1 is a major β-glucan receptor on macrophages. J. Exp. Med. 196: 407 412.
15. Brown, G. D.,, J. Herre,, D. L. Williams,, J. A. Willment,, A. S. J. Marshall,, and S. Gordon. 2003. Dectin-1 mediates the biological effects of β-glucans. J. Exp. Med. 197: 1119 1124.
16. Brown, M. S.,, and J. L. Goldstein. 1983. Lipoprotein metabolism in the macrophage: implications for cholestrol deposition in atherosclerosis. Annu. Rev. Biochem. 52: 223 261.
17. Caron, E.,, and A. Hall. 1998. Identification of two distinct mechanisms of phagocytosis controlled by different Rho GTPases. Science 282: 1717 1721.
18. Coxon, A.,, P. Rieu,, F. J. Barkalow,, S. Askari,, A. H. Sharpe,, U.H. von Andrian,, M.A. Arnaout,, and T. Norton-Mayadas. 1996. A novel role for the β2 integrin CD11b/CD18 in neutrophil apoptosis: a homeostatic mechanism in inflammation. Immunity 5: 653 666.
19. Devitt, A.,, O. D. Moffatt,, C. Raykundalia,, J. D. Capra,, D. J. Simmons,, and C. D. Gregory. 1998. Human CD14 mediates recognition and phagocytosis of apoptotic cells. Nature 392: 505 509.
20. Ding, A.,, S. D. Wright,, and C. Nathan. 1987. Activation of mouse peritoneal macrophages by monoclonal antibody to Mac-1 (complement receptor three). J. Exp. Med. 165: 733 749.
21. Dunne, D. W.,, D. Resnick,, J. Greenberg,, M. Krieger,, and K. A. Joiner. 1994. The type I macrophage scavenger receptor binds to gram-positive bacteria and recognizes lipoteichoic acid. Proc. Natl. Acad. Sci. USA 91: 1863 1867.
22. East, L.,, and C. M. Isacke. 2002. The mannosereceptor family. Biochim. Biophys. Acta 1572: 364 386.
23. Ehlers, M. R. W., 1999. The role of complement receptor type 3 in the invasion strategies of Mycobacterium tuberculosis, p. 81 105. In S. Gordon (ed.), Phagocytosis: Microbial Invasion, vol. 6. JAI Press Inc., Stamford, Conn.
24. Ehrt, S.,, D. Schnappinger,, S. Bekiranov,, J. Drenkow,, S. Shi,, T. R. Gingeras,, T. Gaasterland,, G. Schoolnik,, and C. Nathan. 2001. Reprogramming of the macrophage transcriptome in response to Interferonγ and Mycobacterium tuberculosis. Signalling roles of nitric oxide synthase-2 and phagocyte oxidase. J. Exp. Med. 194: 1123 1140.
25. Elomaa, O.,, M. Kangas,, C. Sahlberg,, J. Tuukkanen,, R. Sormunen,, A. Liakka,, I. Thesleff,, G. Kraal,, and K. Tryggvason. 1995. Cloning of a novel bacteria-binding receptor structurally related to scavenger receptors and expressed in a subset of macrophages. Cell 80: 603 609.
26. Engering, A. J.,, M. Cella,, D. Fluitsma,, M. Brockhaus,, E. C. Hoefsmit,, A. Lanzavecchia,, and J. Pieters. 1997. The mannose receptor functions as a high capacity and broad specificity antigen receptor in human dendritic cells. Eur. J. Immunol. 27: 2417 2425.
27. Ezekowitz, R. A. B.,, R. B. Sim,, G. G. MacPherson,, and S. Gordon. 1985. Interaction of human monocytes, macrophages and polymorphonuclear leukocytes with zymosan in vitro. Role of type 3 complement receptors and macrophage-derived complement. J. Clin. Invest. 76: 2368 2376.
28. Ezekowitz, R. A. B.,, K. Sastry,, P. Bailly,, and A. Warner. 1990. Molecular characterization of the human macrophage mannose receptor: demonstration of multiple carbohydrate recognition-like domains and phagocytosis of yeasts in Cos-1 cells. J. Exp. Med. 172: 1785 1794.
29. Fiete, D. J.,, M. C. Beranek,, and J. U. Baenziger. 1998. A cysteine-rich domain of the “mannose” receptor mediates Ga1NAc-4-SO4 binding. Proc. Natl. Acad. Sci. USA 95: 2089 2093.
30. Fraser, I.,, D. Hughes,, and S. Gordon. 1993. Divalent cation-independent macrophage adhesion inhibited by monoclonal antibody to murine scavenger receptor. Nature 364: 343 346.
31. Gantner, B. N.,, R. M. Simmons,, S. J. Canavera,, S. Akira,, and D. M. Underhill. 2003. Collaborative induction of inflammatory responses by Dectin-1 and Toll-like receptor 2. J. Exp. Med. 197: 1107 1117.
32. Geijtenbeek, T. B. H.,, A. Engering,, and Y. van Kook. 2002. DC-SIGN, a C-type lectin on dendritic cells that unveils many aspects of dendritic cell biology. J. Leukoc. Biol. 71: 921 931.
33. Gordon, S., 2001. Mononuclear phagocytes in immune defence, p. 147 162. In I. Roitt,, B. Brostoff,, and D. Male (ed.), Immunology, 6th ed. Mosby, Edinburgh, United Kingdom.
34. Gordon, S. 2002. Pattern recognition receptors: doubling up for the innate immune response. Cell 11: 1 4.
35. Gordon, S. 2003a. Alternative activation of macrophages. Nat. Rev. Immunol. 3: 23 35.
36. Gordon, S., 2003b. Macrophages and the immune response, p. 481 495. In W. Paul (ed.), Fundamental Immunology, 5th ed. Lippincott Raven, Philadelphia, Pa.
37. Gordon, S.,, L. Lawson,, S. Rabinowitz,, P. R. Crocker,, L. Morris,, and V. H. Perry. 1992. Antigen markers of macrophage differentiation in murine tissues. Curr.Top. Microbiol. Immunol. 181: 1 37.
38. Greenberg, S.,, and S. Grinstein. 2002. Phagocytosis and innate immunity. Curr. Opin. Immunol. 14: 136 145.
39. Haworth, R.,, N. Platt,, S. Keshav,, D. Hughes,, E. Darley,, H. Suzuki,, Y. Kurihara,, T. Kodama,, and S. Gordon. 1997. The Macrophage Scavenger Receptor Type A (SR-A) is expressed by activated macrophages and protects the host against lethal endotoxic shock. J. Exp. Med. 186: 1431 1439.
40. Henson, P. M.,, D. L. Bratton,, and V. A. Fadok. 2001. Apoptotic cell removal. Curr. Biol. 11: R795 R805.
41. Hogarth, P. M. 2002. Fc receptors are major mediators of antibody based inflammation in autoimmunity. Curr. Opin. Immunol. 14: 798 802.
42. Hughes, D. A.,, I. P. Fraser,, and S. Gordon. 1995. Murine Macrophage Scavenger Receptor: in vivo expression and function as receptor for macrophage adhesion in lymphoid and non-lymphoid organs. Eur. J. Immunol. 25: 466 473.
43. Imler, J. L.,, and J. A. Hoffmann. 2001. Toll receptors in innate immunity. Trends Cell Biol. 11: 304 311.
44. Janeway, C.A., Jr. 1989. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harbor Symp. Quant. Biol. 54: 1 13.
45. Law, S. K. A. 1988. C3 receptors on macrophages. J. Cell Sci. 9(Suppl.): 67 97.
46. Lee, S. J.,, S. Evers,, D. Roeder,, A. F. Parlow,, J. Risteli,, L. Risteli,, Y. C. Lee,, T. Feizi,, H. Langen,, and M. C. Nussenzweig. 2002. Mannose receptormediated regulation of serum glycoprotein homeostasis. Science 295: 1898 1901.
47. Linehan, S. A.,, L. Martinez-Pomares,, R. Da Silva,, and S. Gordon. 2001. Endogenous ligands of carbohydrate recognition domains of the mannose receptor in murine macrophages, endothelial cells and secretory cells; potential relevance to inflammation and immunity. Eur. J. Immunol. 31: 1857 1866.
48. Linehan, S. A.,, P. A. Coulson,, R. A. Wilson,, A. P. Mountford,, F. Brombacher,, L. Martinez- Pomares,, and S. Gordon. 2003. IL-4 receptor signalling is required for mannose receptor expression by macrophages recruited to granulomata but not resident cells in mice infected with Schistosoma mansoni. Lab. Invest. 83: 1223 1231.
49. Liu, C.,, Z. Xu,, D. Gupta,, and R. Dziarski. 2001. Peptidoglycan recognition proteins: a novel family of four human innate immunity pattern recognition molecules. J. Biol. Chem. 276: 34686 34694.
50. Lu, H.,, C. W. Smith,, J. Perrard,, D. Bullard,, L. Tang,, S. B. Shappell,, M. L. Entman,, A. L. Beaudet,, and C. M. Ballantyne. 1997. LFA-1 is sufficient in mediating neutrophil emigration in Mac- 1-deficient mice. J. Clin. Invest. 99: 1340 1350.
51. Martinez-Pomares, L.,, and S. Gordon. 1999. The Mannose receptor and its role in antigen presentation. Immunologist 7: 119 123.
52. Martinez-Pomares, L.,, M. Kosco-Vilbois,, E. Darley,, P. Tree,, S. Herren,, J.Y. Bonnefoy,, and S. Gordon. 1996. Fc chimeric protein containing the cysteine-rich domain of the murine mannose receptor binds to macrophages from splenic marginal zone and lymph node subcapsular sinus, and to germinal centres. J. Exp. Med. 184: 1927 1937.
53. Martinez-Pomares, L.,, J. A. Mahoney,, R. Kaposzta,, S. A. Linehan,, P. D. Stahl,, and S. Gordon. 1998. A functional soluble form of the murine mannose receptor is produced by macrophages in vitro and is present in mouse serum. J. Biol. Chem. 273: 23376 23380.
54. Medzhitov, R.,, P. Preston-Hurlburt,, and C. A. Janeway, Jr. 1997. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388: 394 397.
55. Mellman, I.,, T. Koch,, G. Healey,, W. Hunziker,, V. Lewis,, H. Plutner,, H. Mettinen,, D. J. Vaux,, K. Moore,, and S. Stuart. 1988. Structure and function of Fc receptors on macrophages and lymphocytes. J. Cell Sci. 9(Suppl.): 45 65.
56. Mevorach, D.,, J. O. Mascarenhas,, D. Gershov,, and K. B. Elkon. 1998. Complement-dependent clearance of apoptotic cells by human macrophages. J. Exp. Med. 188: 2313 2320.
57. Nau, G. J.,, J. F. L. Richmond,, A. Schlesinger,, E. G. Jennings,, E. S. Lander,, and R. A. Young. 2002. Human macrophage activation programs induced by bacterial pathogens. Proc. Natl. Acad. Sci. USA 99: 1503 1508.
58. Ozinsky, A.,, D. M. Underhill,, J. D. Fontenot,, A. M. Hajjar,, K. D. Smith,, C. B. Wilson,, L. Schroeder,, and A. Aderem. 2000. The repertoire for pattern recognition of pathogens by the innate immune system is defined by co-operation between Toll-like receptors. Proc. Natl. Acad. Sci. USA 97: 13766 13771.
59. Peiser, L.,, P. J. Gough,, T. Kodama,, and S. Gordon. 2000. Macrophage class A scavenger receptor- mediated phagocytosis of Escherichia coli: role of cell heterogeneity, microbial strain and culture conditions in vitro. Infect. Immun. 68: 1953 1963.
60. Peiser, L.,, S. Mukhopadhyay,, and S. Gordon. 2002a. Scavenger receptors in innate immunity. Curr. Opin. Immunol. 14: 123 128.
61. Peiser, L.,, M. P. J. de Winther,, K. Makepeace,, M. Hollinshead,, P. Coull,, J. Plested,, T. Kodama,, E. R. Moxon,, and S. Gordon. 2002b. The class A macrophage scavenger receptor is a major patternrecognition receptor for Neisseria meningitidis, which is independent of lipopolysaccharide and not required for secretory responses. Infect. Immun. 70: 5346 5354.
62. Platt, N.,, H. Suzuki,, Y. Kurihara,, T. Kodama,, and S. Gordon. 1996. Role for the Class A macrophage scavenger receptor in the phagocytosis of apoptotic thymocytes in vitro. Proc. Natl. Acad. Sci. USA 93: 12456 12460.
63. Poltorak, A.,, X. He,, I. Smirnova,, M.Y. Liu,, C.V. Huffel,, X. Du,, D. Birdwell,, E. Alejos,, M. Silva,, C. Galanos,, M. Freudenberg,, P. Ricciardi- Castagnoli,, B. Layton,, and B. Beutler. 1998. Defective LPS signalling in C3H/HeJ and C57BL/10ScCr mice:mutations in TLR4 gene. Science 282: 2085 2088.
64. Pontow, S. E.,, V. Kery,, and P. D. Stahl. 1992. Mannose receptor. Int. Rev. Cytol. 137B: 221 244.
65. Prigozy, T. I.,, P. A. Sieling,, D. Clemens,, P. L. Stewart,, S. M. Behar,, S. A. Porcelli,, M. B. Brenner,, R. L. Modlin,, and M. Kronenberg. 1997. The mannose receptor delivers lipoglycan antigens to endosomes for presentation to T cells by CD1b molecules. Immunity 6: 187 197.
66. Rabinovitch, M. 1995. Professional and non-professional phagocytes: an introduction. Trends Cell Biol. 5: 85 87.
67. Ravetch, J.V.,, and S. Bolland. 2001. IgG Fc receptors. Annu. Rev. Immunol. 19: 275 290.
68. Reid, D. M.,, V. H. Perry,, P. B. Andersson,, and S. Gordon. 1994. Mitosis and apoptosis of microglia in vivo induced by an anti-CR3 antibody which crossed the blood-brain barrier. Neuroscience 56: 529 533.
69. Rohrer, L.,, M. Freeman,, T. Kodama,, M. Penman,, and M. Krieger. 1990. Coiled-coil fibrous domains mediate ligand binding by macrophage scavenger receptor type III. Nature 343: 570 572.
70. Rosen, H.,, and S. Gordon. 1987. Monoclonal antibody to the murine type 3 complement receptor inhibits adhesion of myelomonocytic cells in vitro and inflammatory cell recruitment in vivo. J. Exp. Med. 166: 1685 1701.
71. Shortman, K.,, and Y. J. Liu. 2002. Mouse and human dendritic cell sub-types. Nat. Immunol. 2: 151 161.
72. Silverstein, S. C.,, R. M. Steinman,, and Z. A. Cohn. 1977. Endocytosis. Annu. Rev. Biochem. 46: 669 722.
73. Springer, T.,, G. Galfré,, D. S. Secher,, and C. Milstein. 1978. Monoclonal xenogeneic antibodies to murine cell surface antigens: identification of novel leukocyte differentiation antigens. Eur. J. Immunol. 8: 539 551.
74. Stacey, M.,, H. H. Lin,, S. Gordon,, and A. J. McKnight. 2000. LNB-TM7, a novel group of seven-transmembrane proteins related to family-B Gprotein- coupled receptors. Trends Biochem. Sci. 25: 284 289.
75. Steinman, R. M.,, and C. L. Moberg. 1994. Zanvil Alexander Cohn—1926-1993. J. Exp. Med. 179: 1 30.
76. Suzuki, H.,, Y. Kurihara,, M. Takeya,, N. Kamada,, M. Kataoka,, K. Jishage,, O. Ueda,, H. Sakaguchi,, T. Higashi,, T. Suzuki,, Y. Takashima,, Y. Kawabe,, O. Cynshi,, Y. Wada,, M. Honda,, H. Kirihara,, H. Aburatani,, T. Doi,, A. Matsumoto,, S. Azuma,, T. Noda,, Y. Toyoda,, H. Itakura,, Y. Yazaki,, S. Horiuchi,, K. Takashi,, J. Kar Kruijt,, T. J.C. van Berkel,, U. P. Steinbrecher,, S. Ishibashi,, N. Maeda,, S. Gordon,, and T. Kodama. 1997. A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection. Nature 386: 292 296.
77. Taylor, M. E.,, K. Bezouska,, and K. Drickamer. 1992. Contribution to ligand binding by multiple carbohydrate- recognition domains in the macrophage mannose receptor. J. Biol. Chem. 267: 1719 1726.
78. Triantafilou, M.,, and K. Triantafilou. 2002. Lipopolysaccharide recognition: CD14,TLRs and the LPS-activation cluster. Trends Immunol. 23: 301 304.
79. Unkeless, J.C. 1979. Characterization of a monoclonal antibody directed against mouse macrophage and lymphocyte Fc receptors. J. Exp. Med. 150: 580 596.
80. Valladeau, J.,, O. Ravel,, C. Dezutter-Dambuyant,, K. Moore,, M. Kleijmeer,, Y. Liu,, Y. Duvert- Frances,, C. Vincent,, D. Schmitt,, J. Davoust,, C. Caux,, S. Lebeque,, and S. Saeland. 2000. Langerin, a novel C-type lectin specific to Langerhans cells, is an endocytic receptor that induces the formation of Birbeck granules. Immunity 12: 71 81.
81. Van der Laan, L. J.W.,, E. A. Döpp,, R. Haworth,, T. Pikkarainen,, M. Kangas,, O. Elomaa,, C. D. Dijkstra,, S. Gordon,, K. Tryggvason,, and G. Kraal. 1999. Regulation and functional involvement of macrophage scavenger receptor MARCO in clearance of bacteria in vivo. J. Immunol. 2: 939 947.
82. Wright, S. D.,, and P. Detmers. 1988. Adhesion-promoting receptors in phagocytes. J. Cell Sci. 9(Suppl.): 99 120.
83. Wright, S. D.,, and S. C. Silverstein. 1983. Receptors for C3b and C3bi promote phagocytosis but not the release of toxic oxygen from human phagocytes. J. Exp. Med. 158: 2016 2023.
84. Yamamoto, K.,, and R. B. Johnston, Jr. 1984. Dissociation of phagocytosis from stimulation of the oxidative metabolic burst in macrophages. J. Exp. Med. 159: 405 416.
85. Yamamoto, M.,, S. Sato,, H. Hemmi,, H. Sanjo,, S. Uematsu,, T. Kaisho,, K. Hoshino,, O. Takeuchi,, M. Kobayashi,, T. Fujita,, K. Takeda,, and S. Akira. 2002. Essential role for TIRAP in activation of the signaling cascade shared by TLR2 and TLR4. Nature 420: 324 329.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error