Chapter 20 : Chemokines

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Chemokines, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817671/9781555812911_Chap20-1.gif /docserver/preview/fulltext/10.1128/9781555817671/9781555812911_Chap20-2.gif


Early progress was made for those chemokines with unique selectivity for cells of the innate immune system, giving the impression that T and B cells are poor targets for chemokines. Of course, it is now thoroughly established that chemokine selectivity reaches well beyond monocytes and phagocytes, embracing all types of leukocytes, including T and B cells as well as hematopoietic progenitor cells. Recent exciting progress focuses on the recognition that certain G-protein-coupled receptors (GPCRs) also signal by G-protein-independent mechanisms. Recent reports demonstrated the involvement of chemokines in tumor metastasis, a finding that seems to be related to the chemokine-typical control of leukocyte traffic. In support, one group reported dimerization of chemokine receptors (such as CXCR4, CCR2, or CCR5) and suggested that higher-order structure formation is a prerequisite for chemokine receptor signaling. Although tissue cell recruitment and localization may be fundamental roles played by chemokines in tissue remodeling and secondary tumor formation, elucidation of leukocyte mobilization-unrelated functions is one of the major topics in current chemokine research. Importantly, changes in the diversity of local chemokines during ongoing inflammatory processes directly affect the composition of the inflammatory infiltrates and, as such, dictate disease evolution. Future challenges in chemokine research are related to tissue cell responses to chemokines and include the potential effect of chemokines on tissue cell growth and differentiation during organogenesis and tissue repair.

Citation: Moser B. 2004. Chemokines, p 397-416. In Kaufmann S, Medzhitov R, Gordon S (ed), The Innate Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555817671.ch20

Key Concept Ranking

Innate Immune System
Major Histocompatibility Complex
Human immunodeficiency virus 1
Tumor Necrosis Factor alpha
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Remarkable diversity in chemokine function. Leukocyte chemotaxis is the prototype function of chemokines, which requires rapid and transient changes in cytoskeletal arrangements and adhesive interactions with extracellular matrices. Extravasation includes the transendothelial migration of bloodborne leukocytes, whereas chemotaxis is the directional movement of leukocytes along a chemoattractant gradient within the tissue. Chemokine-mediated cell migration as well as migration-unrelated functions may also affect hematopoiesis and aspects of exocytosis (and possibly other effector functions). Certain chemokines also function in tissue cells and may control, in part, secondary tumor formation, angiogenesis, and organogenesis. Finally, chemokines of viral or human origin play multiple roles in viral infections.

Citation: Moser B. 2004. Chemokines, p 397-416. In Kaufmann S, Medzhitov R, Gordon S (ed), The Innate Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555817671.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

CCR5 and CXCR4 are the two major HIV-1 coreceptors.HIV-1 (as well as HIV-2 and SIV) requires CD4 and one of two chemokine receptors, termed HIV/SIV coreceptors, for entry into target cells, which include T cells and monocytes and macrophages (T/M). Coreceptor selectivity determines viral tropism; accordingly, CCR5 or CXCR4 usage defines R5 or X4 viruses. RANTES, MIP-1α, and MIP-1β with selectivity for CCR5, and SDF-1 with selectivity for CXCR4, inhibit target cell entry of R5 and X4 HIV/SIV, respectively, and are referred to as HIV/SIV suppressor factors. R5 HIV-1 particles predominate during viral transmission and the asymptomatic phase of the disease, whereas the appearance of X4 HIV-1 particles correlates with progression to AIDS.

Citation: Moser B. 2004. Chemokines, p 397-416. In Kaufmann S, Medzhitov R, Gordon S (ed), The Innate Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555817671.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Central role of T cells in the initiation of adaptive immune responses. The chemokines SLC and ELC direct the recruitment of CCR7-expressing peripheral blood T cells into secondary lymphoid tissues for colocalization in the T zone with CCR7 antigen-presenting cells. Antigen recognition and costimulation result in CD4 T-cell priming, characterized by expression of CXCR5 and certain costimulatory molecules, such as ICOS, and concomitant downmodulation of CCR7 and responsiveness to T-zone chemokines. CXCR5 characterizes T cells, which are nonpolarized T-helper cells with unique homing properties for B-cell follicles.Through contact with antigen-presenting B cells,T cells may develop into B helper T cells to support follicular B-cell activation and plasma cell or memory B-cell generation. Alternatively, contact with B cells induces differentiation of T cells into effector T-helper cells, such as cytokine-producing Th1 and Th2 cells, with newly acquired homing capability for inflammatory sites. Abbreviations:APC, antigen-presenting cell; BCR, B-cell antigen receptor; ICOS, inducible costimulatory molecule; ICOS-L, ICOS ligand; T, follicular B-helper T cell;T1,Th1 cell;T2,Th2 cell.

Citation: Moser B. 2004. Chemokines, p 397-416. In Kaufmann S, Medzhitov R, Gordon S (ed), The Innate Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555817671.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Aiuti, A.,, I. J. Webb,, C. Bleul,, T. Springer,, and J. C. Gutierrez-Ramos. 1997. The chemokine SDF-1 is a chemoattractant for human CD34 + hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34 + progenitors to peripheral blood. J. Exp. Med. 185: 111 120.
2. Ansel, K. M.,, and J. G. Cyster. 2001. Chemokines in lymphopoiesis and lymphoid organ development. Curr. Opin. Immunol. 13: 172 179.
3. Ansel, K. M.,, V. N. Ngo,, P. L. Hyman,, S. A. Luther,, R. Forster,, J. D. Sedgwick,, J. L. Browning,, M. Lipp,, and J. G. Cyster. 2000. A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature 406: 309 314.
4. Baggiolini, M.,, B. Dewald,, and B. Moser. 1994. Interleukin-8 and related chemotactic cytokines—CXC and CC chemokines. Adv. Immunol. 55: 97 179.
5. Baggiolini, M.,, B. Dewald,, and B. Moser. 1997. Human chemokines: an update. Annu. Rev. Immunol. 15: 675 705.
6. Baldwin, E. T.,, I. T. Weber,, R. St. Charles, J.-C. Xuan, E. Appella, M. Yamada, K. Matsushima, B. F. P. Edwards,G. M. Clore,A. M. Gronenborn, and A. Wlodawer. 1991. Crystal structure of interleukin 8: symbiosis of NMR and crystallography. Proc. Natl. Acad. Sci. USA 88: 502 506.
7. Barlic, J.,, J. D. Andrews,, A. A. Kelvin,, S. E. Bosinger,, M. E. DeVries,, L. Xu,, T. Dobransky,, R. D. Feldman,, S. S. Ferguson,, and D. J. Kelvin. 2000. Regulation of tyrosine kinase activation and granule release through beta-arrestin by CXCRI. Nat. Immunol. 1: 227 233.
8. Belperio, J. A.,, M. P. Keane,, D. A. Arenberg,, C. L. Addison,, J. E. Ehlert,, M. D. Burdick,, and R. M. Strieter. 2000. CXC chemokines in angiogenesis. J. Leukoc. Biol. 68: 1 8.
9. Bowman, E. P.,, J. J. Campbell,, D. Soler,, Z. Dong,, N. Manlongat,, D. Picarella,, R. R. Hardy,, and E. C. Butcher. 2000. Developmental switches in chemokine response profiles during B cell differentiation and maturation. J. Exp. Med. 191: 1303 1318.
10. Bretscher, P. A. 1999. A two-step, two-signal model for the primary activation of precursor helper T cells. Proc. Natl. Acad. Sci. USA 96: 185 190.
11. Broxmeyer, H. E.,, B. Sherry,, L. Lu,, S. Cooper,, C. Carow,, S. D. Wolpe,, and A. Cerami. 1989. Myelopoietic enhancing effects of murine macrophage inflammatory proteins 1 and 2 on colony formation in vitro by murine and human bone marrow granulocyte/macrophage progenitor cells. J. Exp. Med. 170: 1583 1594.
12. Butcher, E. C.,, M. Williams,, K. Youngman,, L. Rott,, and M. Briskin. 1999. Lymphocyte trafficking and regional immunity. Adv. Immunol. 72: 209 253.
13. Cairns, J. S.,, and M. P. D'Souza. 1998. Chemokines and HIV-1 second receptors: the therapeutic connection. Nat. Med. 4: 563 568.
14. Campbell, J. J.,, and E. C. Butcher. 2000. Chemokines in tissue-specific and microenvironment-specific lymphocyte homing. Curr. Opin. Immunol. 12: 336 341.
15. Carding, S. R.,, and P. J. Egan. 2002. Gammadelta T cells: functional plasticity and heterogeneity. Nat. Rev. Immunol. 2: 336 345.
16. Clark-Lewis, I.,, K.-S. Kim,, K. Rajarathnam,, J.-H. Gong,, B. Dewald,, B. Moser,, M. Baggiolini,, and B. D. Sykes. 1995. Structure-activity relationships of chemokines. J. Leukoc. Biol. 57: 703 711.
17. Clore, G. M.,, E. Appella,, M. Yamada,, K. Matsushima,, and A. M. Gronenborn. 1990. Three-dimensional structure of interleukin 8 in solution. Biochemistry 29: 1689 1696.
18. Cocchi, F.,, A. L. DeVico,, A. Garzino-Demo,, S. K. Arya,, R. C. Gallo,, and P. Lusso. 1995. Identification of RANTES, MIP-1α, and MIP-1β as the major HIV-suppressive factors produced by CD8 + T cells. Science 270: 1811 1815.
19. Cyster, J. G. 1999. Chemokines and cell migration in secondary lymphoid organs. Science 286: 2098 2102.
20. Daelemans, D.,, D. Schols,, M. Witvrouw,, C. Pannecouque,, S. Hatse,, S. Van Dooren,, F. Hamy,, T. Klimkait,, E. De Clercq,, and A. M. Vandamme. 2000. A second target for the peptoid Tat/transactivation response element inhibitor CGP64222: inhibition of human immunodeficiency virus replication by blocking CXC-chemokine receptor 4-mediated virus entry. Mol. Pharmacol. 57: 116 124.
21. D'Amico, G.,, G. Frascaroli,, G. Bianchi,, P. Transidico,, A. Doni,, A. Vecchi,, S. Sozzani,, P. Allavena,, and A. Mantovani. 2000. Uncoupling of inflammatory chemokine receptors by IL-10: generation of functional decoys. Nat. Immunol. 1: 387 391.
22. D'Apuzzo, M.,, A. Rolink,, M. Loetscher,, J. A. Hoxie,, I. Clark-Lewis,, F. Melchers,, M. Baggiolini,, and B. Moser. 1997. The chemokine SDF-1, stromal cell-derived factor 1, attracts early stage B cell precursors via the chemokine receptor CXCR4. Eur. J. Immunol. 27: 1788 1793.
23. Deichmann, M.,, R. Kronenwett,, and R. Haas. 1997. Expression of the human immunodeficiency virus type-1 coreceptors CXCR-4 (fusin, LESTR) and CKR-5 in CD34 + hematopoietic progenitor cells. Blood 89: 3522 3528.
24. Dhawan, P.,, and A. Richmond. 2002. Role of CXCL1 in tumorigenesis of melanoma. J. Leukoc. Biol. 72: 9 18.
25. Egawa, T.,, K. Kawabata,, H. Kawamoto,, K. Amada,, R. Okamoto,, N. Fujii,, T. Kishimoto,, Y. Katsura,, and T. Nagasawa. 2001. The earliest stages of B cell development require a chemokine stromal cell-derived factor/pre-B cell growth-stimulating factor. Immunity 15: 323 334.
26. Feng, Y.,, C. C. Broder,, P. E. Kennedy,, and E. A. Berger. 1996. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272: 872 877.
27. Finke, D.,, H. Acha-Orbea,, A. Mattis,, M. Lipp,, and J. Kraehenbuhl. 2002. CD4+CD3-cells induce Peyer's patch development: role of alpha4beta1 integrin activation by CXCR5. Immunity 17: 363 373.
28. Foxman, E. F.,, J. J. Campbell,, and E. C. Butcher. 1997. Multistep navigation and the combinatorial control of leukocyte chemotaxis. J. Cell Biol. 139: 1349 1360.
29. Gerard, C.,, and B. J. Rollins. 2001. Chemokines and disease. Nat. Immunol. 2: 108 115.
30. Godessart, N.,, and S. L. Kunkel. 2001. Chemokines in autoimmune disease. Curr. Opin. Immunol. 13: 670 675.
31. Gunn, M. D.,, V. N. Ngo,, K. M. Ansel,, E. H. Ekland,, J. G. Cyster,, and L. T. Williams. 1998. A B-cell-homing chemokine made in lymphoid follicles activates Burkitt's lymphoma receptor-1. Nature 391: 799 803.
32. Hamada, T.,, R. Möhle,, J. Hesselgesser,, J. Hoxie,, R. L. Nachman,, M. A. S. Moore,, and S. Rafii. 1998. Transendothelial migration of megakaryocytes in response to stromal cell-derived factor 1 (SDF-1) enhances platelet formation. J. Exp. Med. 188: 539 548.
33. Hargreaves, D. C.,, P. L. Hyman,, T. T. Lu,, V. N. Ngo,, A. Bidgol,, G. Suzuki,, Y. R. Zou,, D. R. Littman,, and J. G. Cyster. 2001. A coordinated change in chemokine responsiveness guides plasma cell movements. J. Exp. Med. 194: 45 56.
34. Holmes, W. E.,, J. Lee,, W.-J. Kuang,, G. C. Rice,, and W. I. Wood. 1991. Structure and functional expression of a human interleukin-8 receptor. Science 253: 1278 1280.
35. Janatpour, M. J.,, S. Hudak,, M. Sathe,, J. D. Sedgwick,, and L. M. McEvoy. 2001. Tumor necrosis factor-dependent segmental control of MIG expression by high endothelial venules in inflamed lymph nodes regulates monocyte recruitment. J. Exp. Med. 194: 1375 1384.
36. Kawabata, K.,, M. Ujikawa,, T. Egawa,, H. Kawamoto,, K. Tachibana,, H. Iizasa,, Y. Katsura,, T. Kishimoto,, and T. Nagasawa. 1999. A cell-autonomous requirement for CXCR4 in long-term lymphoid and myeloid reconstitution. Proc. Natl. Acad. Sci. USA 96: 5663 5667.
37. Kim, C. H.,, and H. E. Broxmeyer. 1999. Chemokines: signal lamps for trafficking of T and B cells for development and effector function. J. Leukoc. Biol. 65: 6 15.
38. Legler, D. F.,, M. Loetscher,, R. S. Roos,, I. Clark-Lewis,, M. Baggiolini,, and B. Moser. 1998. B cell-attracting chemokine 1, a human CXC chemokine expressed in lymphoid tissues, selectively attracts B lymphocytes via BLR1/CXCR5. J. Exp. Med. 187: 655 660.
39. Lin, T. J.,, T. B. Issekutz,, and J. S. Marshall. 2000. Human mast cells transmigrate through human umbilical vein endothelial monolayers and selectively produce IL-8 in response to stromal cell-derived factor-1 alpha. J. Immunol. 165: 211 220.
40. Lindley, I. J. D.,, M. Ceska,, and P. Peichl. 1991. NAP-1/IL-8 in rheumatoid arthritis. Adv. Exp. Med. Biol. 305: 147 156.
41. Loetscher, P.,, and B. Moser. 2002. Homing chemokines in rheumatoid arthritis. Arthritis Res. 4: 233 236.
42. Loetscher, P.,, B. Moser,, and M. Baggiolini. 2000. Chemokines and their receptors in lymphocyte traffic and HIV infection. Adv. Immunol. 74: 127 180.
43. Loetscher, P.,, A. Pellegrino,, J. H. Gong,, I. Mattioli,, M. Loetscher,, G. Bardi,, M. Baggiolini,, and I. Clark-Lewis. 2001. The ligands of CXC chemokine receptor 3, I-TAC,Mig, and IP10, are natural antagonists for CCR3. J. Biol. Chem. 276: 2986 2991.
44. Ma, Q.,, D. Jones,, and T. A. Springer. 1999. The chemokine receptor CXCR4 is required for the retention of B lineage and granulocytic precursors within the bone marrow microenvironment. Immunity 10: 463 471.
45. Maddon, P. J.,, A. G. Dalgleish,, J. S. McDougal,, P. R. Clapham,, R. A. Weiss,, and R. Axel. 1986. The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain. Cell 47: 333 348.
46. McFadden, G.,, and P. M. Murphy. 2000. Host-related immunomodulators encoded by poxviruses and herpesviruses. Curr. Opin. Microbiol. 3: 371 378.
47. Moore, J. P. 1997. Co-receptors for HIV-1 entry. Curr. Opin. Immunol. 9: 551 562.
48. Moser, B. 1997. Chemokines and HIV: a remarkable synergism. Trends Microbiol. 5: 88 90.
49. Moser, B.,, and P. Loetscher. 2001. Lymphocyte traffic control by chemokines. Nat. Immunol. 2: 123 128.
50. Moser, B.,, C. Schumacher,, V. von Tscharner,, I. Clark-Lewis,, and M. Baggiolini. 1991. Neutrophil-activating peptide 2 and gro/melanoma growth-stimulatory activity interact with neutrophil-activating peptide 1/interleukin 8 receptors on human neutrophils. J. Biol. Chem. 266: 10666 10671.
51. Moser, B.,, M. Loetscher,, L. Piali,, and P. Loetscher. 1998. Lymphocyte responses to chemokines. Int. Rev. Immunol. 16: 323 344.
52. Moser, B.,, P. Schaerli,, and P. Loetscher. 2002. CXCR5(+) T cells: follicular homing takes center stage in T-helper-cell responses. Trends Immunol. 23: 250 254.
53. Muller, A.,, B. Homey,, H. Soto,, N. Ge,, D. Catron,, M. E. Buchanan,, T. McClanahan,, E. Murphy,, W. Yuan,, S. N. Wagner,, J. L. Barrera,, A. Mohar,, E. Verastegui,, and A. Zlotnik. 2001. Involvement of chemokine receptors in breast cancer metastasis. Nature 410: 50 56.
54. Müller, G.,, U. E. Höpken,, H. Stein,, and M. Lipp. 2002. Systemic immunoregulatory and pathogenic functions of homeostatic chemokine receptors. J. Leukoc. Biol. 72: 1 8.
55. Murphy, P. M. 2001. Viral exploitation and subversion of the immune system through chemokine mimicry. Nat. Immunol. 2: 116 122.
56. Murphy, P. M. 2002. International Union of Pharmacology. XXX. Update on chemokine receptor nomenclature. Pharmacol. Rev. 54: 227 229.
57. Murphy, P. M.,, and H. L. Tiffany. 1991. Cloning of complementary DNA encoding a functional human interleukin-8 receptor. Science 253: 1280 1283.
58. Murphy, P. M.,, M. Baggiolini,, I. F. Charo,, C. A. Hebert,, R. Horuk,, K. Matsushima,, L. H. Miller,, J. J. Oppenheim,, and C. A. Power. 2000. International Union of Pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol. Rev. 52: 145 176.
59. Nagasawa, T. 2000. A chemokine, SDF-1/PBSF, and its receptor, CXC chemokine receptor 4, as mediators of hematopoiesis. Int. J. Hematol. 72: 408 411.
60. Nagasawa, T.,, H. Kikutani,, and T. Kishimoto. 1994. Molecular cloning and structure of a pre-B-cell growth-stimulating factor. Proc. Natl. Acad. Sci. USA 91: 2305 2309.
61. Ogilvie, P.,, G. Bardi,, I. Clark-Lewis,, M. Baggiolini,, and M. Uguccioni. 2001. Eotaxin is a natural antagonist for CCR2 and an agonist for CCR5. Blood 97: 1920 1924.
62. Onai, N.,, Y. Zhang,, H. Yoneyama,, T. Kitamura,, S. Ishikawa,, and K. Matsushima. 2000. Impairment of lymphopoiesis and myelopoiesis in mice reconstituted with bone marrow-hematopoietic progenitor cells expressing SDF-1-intrakine. Blood 96: 2074 2080.
63. Onuffer, J. J.,, and R. Horuk. 2002. Chemokines, chemokine receptors and small-molecule antagonists: recent developments. Trends Pharmacol. Sci. 23: 459 467.
64. Palframan, R.T.,, S. Jung,, G. Cheng,, W. Weninger,, Y. Luo,, M. Dorf,, D. R. Littman,, B. J. Rollins,, H. Zweerink,, A. Rot,, and U. H. Von Andrian. 2001. Inflammatory chemokine transport and presentation in HEV: a remote control mechanism for monocyte recruitment to lymph nodes in inflamed tissues. J. Exp. Med. 194: 1361 1373.
65. Pierce, K. L.,, R.T. Premont,, and R. J. Lefkowitz. 2002. Seven-transmembrane receptors. Nat. Rev. Mol. Cell Biol. 3: 639 650.
66. Rodriguez-Frade, J. M.,, M. Mellado,, and A. Martinez. 2001. Chemokine receptor dimerization: two are better than one. Trends Immunol. 22: 612 617.
67. Sallusto, F.,, D. Lenig,, R. Förster,, M. Lipp,, and A. Lanzavecchia. 1999. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401: 708 712.
68. Sallusto, F.,, C. R. Mackay,, and A. Lanzavecchia. 2000. The role of chemokine receptors in primary, effector, and memory immune responses. Annu. Rev. Immunol. 18: 593 620.
69. Savino, W.,, D. A. Mendes-da-Cruz,, J. S. Silva,, M. Dardenne,, and V. Cotta-de-Almeida. 2002. Intrathymic T-cell migration: a combinatorial interplay of extracellular matrix and chemokines? Trends Immunol. 23: 305 313.
70. Schmid, J.,, and C. Weissmann. 1987. Induction of mRNA for a serine protease and a β-thromboglobulin-like protein in mitogen-stimulated human leukocytes. J. Immunol. 139: 250 256.
71. Schnitzel, W.,, B. Garbeis,, U. Monschein,, and J. Besemer. 1991. Neutrophil activating peptide-2 binds with two affinities to receptor(s) on human neutrophils. Biochem. Biophys. Res. Commun. 180: 301 307.
72. Serrador, J. M.,, M. Nieto,, and F. Sánchez-Madrid. 1999. Cytoskeletal rearrangement during migration and activation of T lymphocytes. Trends Cell Biol. 9: 228 232.
73. Spangrude, G. J.,, B. A. Braaten,, and R. A. Daynes. 1984. Molecular mechanisms of lymphocyte extravasation. I. Studies of two selective inhibitors of lymphocyte recirculation. J. Immunol. 132: 354 362.
74. Springer, T. A. 1994. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76: 301 314.
75. Thelen, M. 2001. Dancing to the tune of chemokines. Nat. Immunol. 2: 129 134.
76. Walker, C. M.,, D. J. Moody,, D. P. Stites,, and J. A. Levy. 1986. CD8+ lymphocytes can control HIV infection in vitro by suppressing virus replication. Science 234: 1563 1566.
77. Walz, A.,, P. Peveri,, H. Aschauer,, and M. Baggiolini. 1987. Purification and amino acid sequencing of NAF, a novel neutrophil-activating factor produced by monocytes. Biochem. Biophys. Res. Commun. 149: 755 761.
78. Wang, J.Y.,, M. Huang,, P. Lee,, K. Komanduri,, S. Sharma,, G. Chen,, and S. M. Dubinett. 1996. Interleukin-8 inhibits non-small cell lung cancer proliferation: a possible role for regulation of tumor growth by autocrine and paracrine pathways. J. Interferon. Cytokine Res. 16: 53 60.
79. Wright, D. E.,, E. P. Bowman,, A. J. Wagers,, E. C. Butcher,, and I. L. Weissman. 2002. Hematopoietic stem cells are uniquely selective in their migratory response to chemokines. J. Exp. Med. 195: 1145 1154.
80. Yoshimura, T.,, K. Matsushima,, S. Tanaka,, E. A. Robinson,, E. Appella,, J. J. Oppenheim,, and E. J. Leonard. 1987. Purification of a human monocyte-derived neutrophil chemotactic factor that has peptide sequence similarity to other host defense cytokines. Proc. Natl. Acad. Sci. USA 84: 9233 9237.
81. Zlotnik, A.,, and O. Yoshie. 2000. Chemokines: anew classification system and their role in immunity. Immunity 12: 121 127.


Generic image for table

The human chemokine system

Citation: Moser B. 2004. Chemokines, p 397-416. In Kaufmann S, Medzhitov R, Gordon S (ed), The Innate Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555817671.ch20
Generic image for table

Cellular distribution of human chemokine receptors

Citation: Moser B. 2004. Chemokines, p 397-416. In Kaufmann S, Medzhitov R, Gordon S (ed), The Innate Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555817671.ch20

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error