1887

Chapter 22 : Role of Innate Immunity in Bacterial Infection

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Role of Innate Immunity in Bacterial Infection, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817671/9781555812911_Chap22-1.gif /docserver/preview/fulltext/10.1128/9781555817671/9781555812911_Chap22-2.gif

Abstract:

This chapter focuses on innate immunity against bacterial pathogens with emphasis on the local response at the two major sites of entry, lung and gut. Infection of a number of experimental animal species with provides suitable models for in vivo studies. In terms of the host response, most has been learned from the immunologically well-established mouse model employing the physiological route of infection via aerosols. Recently, angiogenins (ANGs), RNases released from Paneth cells, have been identified to discriminate between commensal and exogenous bacteria in the intestine. In mammalian cells, activation via toll-like receptors (TLRs) results in stimulation of the innate immune system, including upregulation of cytokines, chemokines, costimulatory molecules, and oxidative burst. Listeriosis is characterized by bacterial dissemination from the gut lumen to the central nervous system via the blood-brain barrier and to the fetus via the fetoplacental barrier. The highly organized microarchitecture of secondary lymphoid organs forms the basis for antigen trapping. The spleen is responsible for filtering blood-borne particles. Kupffer cells, the resident tissue macrophages of the liver, adhere to the endothelial cells of the liver sinusoids and are most densely accumulated in the periportal region. Chemokines are critical mediators of leukocyte trafficking, including attraction to sites of inflammation. Mycobacteria-specific antibodies are produced by type 2 B cells abundantly during active tuberculosis. Tuberculosis patients exhibit elevated levels of pleural neutrophil defensins.

Citation: Seiler P, Steinhoff U, Kaufmann S. 2004. Role of Innate Immunity in Bacterial Infection, p 433-454. In Kaufmann S, Medzhitov R, Gordon S (ed), The Innate Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555817671.ch22

Key Concept Ranking

Tumor Necrosis Factor alpha
0.43273297
Bacterial Proteins
0.41613168
0.43273297
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555817671.chap22
1. Abel, B.,, N. Thieblemont,, V. J. Quesniaux,, N. Brown,, J. Mpagi,, K. Miyake,, F. Bihl,, and B. Ryffel. 2002. Toll-like receptor 4 expression is required to control chronic Mycobacterium tuberculosis infection in mice. J. Immunol. 169:31553162.
2. Aichele, P.,, J. Zinke,, L. Grode,, R. A. Schwendener,, S. H. Kaufmann,, and P. Seiler. 2003. Macrophages of the splenic marginal zone are essential for trapping of blood-borne particulate antigen but dispensable for induction of specific T cell responses. J. Immunol. 171:11481155.
3. Ansel, K. M.,, R. B. Harris,, and J. G. Cyster. 2002. CXCL13 is required for B1 cell homing, natural antibody production, and body cavity immunity. Immunity 16:6776.
4. Arnold, R. R.,, J. E. Russell,, W. J. Champion,, M. Brewer,, and J. J. Gauthier. 1982. Bactericidal activity of human lactoferrin: differentiation from the stasis of iron deprivation. Infect. Immun. 35:792799.
5. Ashitani, J.,, H. Mukae,, T. Hiratsuka,, M. Nakazato,, K. Kumamoto,, and S. Matsukura. 2002. Elevated levels of alpha-defensins in plasma and BAL fluid of patients with active pulmonary tuberculosis. Chest 121:519526.
6. Astarie-Dequeker, C.,, E. N. N'Diaye,, V. Le Cabec,, M. G. Rittig,, J. Prandi,, and I. Maridonneau- Parini. 1999. The mannose receptor mediates uptake of pathogenic and nonpathogenic mycobacteria and bypasses bactericidal responses in human macrophages. Infect. Immun. 67:469477.
7. Auerbuch, V.,, L. L. Lenz,, and D. A. Portnoy. 2001. Development of a competitive index assay to evaluate the virulence of Listeria monocytogenes actA mutants during primary and secondary infection of mice. Infect. Immun. 69:59535957.
8. Austyn, J. M. 1996. New insights into the mobilization and phagocytic activity of dendritic cells. J. Exp. Med. 183:12871292.
9. Banchereau, J.,, and R. M. Steinman. 1998. Dendritic cells and the control of immunity. Nature 392:245252.
10. Barton, G. M.,, and R. Medzhitov. 2002.Toll-like receptors and their ligands. Curr. Top. Microbiol. Immunol. 270:8192.
11. Beharka, A. A.,, C. D. Gaynor,, B. K. Kang,, D. R. Voelker,, F. X. McCormack,, and L. S. Schlesinger. 2002. Pulmonary surfactant protein a up-regulates activity of the mannose receptor, a pattern recognition receptor expressed on human macrophages. J. Immunol. 169:35653573.
12. Bevilacqua, M. P.,, J. S. Pober,, M. E. Wheeler,, R. S. Cotran,, and M. A. Gimbrone, Jr. 1985. Interleukin 1 acts on cultured human vascular endothelium to increase the adhesion of polymorphonuclear leukocytes, monocytes, and related leukocyte cell lines. J. Clin. Invest. 76:20032011.
13. Bleharski, J. R.,, V. Kiessler,, C. Buonsanti,, P. A. Sieling,, S. Stenger,, M. Colonna,, and R. L. Modlin. 2003. A role for triggering receptor expressed on myeloid cells-1 in host defense during the early-induced and adaptive phases of the immune response. J. Immunol. 170:38123818.
14. Borelli, V.,, F. Vita,, S. Shankar,, M. R. Soranzo,, E. Banfi,, G. Scialino,, C. Brochetta,, and G. Zabucchi. 2003. Human eosinophil peroxidase induces surface alteration, killing, and lysis of Mycobacterium tuberculosis. Infect. Immun. 71:605613.
15. Borelli, V.,, E. Banfi,, M. G. Perrotta,, and G. Zabucchi. 1999. Myeloperoxidase exerts microbicidal activity against Mycobacterium tuberculosis. Infect. Immun. 67:41494152.
16. Brennan, P. J.,, and H. Nikaido. 1995.The envelope of mycobacteria. Annu. Rev. Biochem. 64:2963.
17. Brook, I. 1999. Bacterial interference. Crit. Rev. Microbiol. 25:155172.
18. Cameron, L. A.,, P. A. Giardini,, F. S. Soo,, and J. A. Theriot. 2000. Secrets of actin-based motility revealed by a bacterial pathogen. Nat. Rev. Mol. Cell Biol. 1:110119.
19. Chico-Calero, I.,, M. Suarez,, B. Gonzalez-Zorn,, M. Scortti,, J. Slaghuis,, W. Goebel,, and J. A. Vazquez-Boland. 2002. Hpt, a bacterial homolog of the microsomal glucose-6-phosphate translocase, mediates rapid intracellular proliferation in Listeria. Proc. Natl. Acad. Sci. USA 99:431436.
20. Coconnier, M. H.,, E. Dlissi,, M. Robard,, C. L. Laboisse,, J. L. Gaillard,, and A. L. Servin. 1998. Listeria monocytogenes stimulates mucus exocytosis in cultured human polarized mucosecreting intestinal cells through action of listeriolysin O. Infect. Immun. 66:36733681.
21. Cole, A. M.,, T. Ganz,, A. M. Liese,, M. D. Burdick,, L. Liu,, and R. M. Strieter. 2001. Cutting edge: IFN-inducible ELR-CXC chemokines display defensin-like antimicrobial activity. J. Immunol. 167: 623627.
22. Conlan, J.W.,, and R. J. North. 1994. Neutrophils are essential for early anti-Listeria defense in the liver, but not in the spleen or peritoneal cavity, as revealed by a granulocyte-depleting monoclonal antibody. J. Exp. Med. 179:259268.
23. Cossart, P.,, M. F. Vicente,, J. Mengaud,, F. Baquero,, J. C. Perez-Diaz,, and P. Berche. 1989. Listeriolysin O is essential for virulence of Listeria monocytogenes: direct evidence obtained by gene complementation. Infect. Immun. 57:36293636.
24. Cousens, L. P.,, and E. J. Wing. 2000. Innate defenses in the liver during Listeria infection. Immunol. Rev. 174:150159.
25. Cyster, J. G. 2000. B cells on the front line. Nat. Immunol. 1:910.
26. Czuprynski, C. J.,, N. G. Faith,, and H. Steinberg. 2003.A/J mice are susceptible and C57BL/6 mice are resistant to Listeria monocytogenes infection by intragastric inoculation. Infect. Immun. 71:682689.
27. Dalrymple, S. A.,, L. A. Lucian,, R. Slattery,, T. McNeil,, D. M. Aud,, S. Fuchino,, F. Lee,, and R. Murray. 1995. Interleukin-6-deficient mice are highly susceptible to Listeria monocytogenes infection: correlation with inefficient neutrophilia. Infect. Immun. 63:22622268.
28. Decatur, A. L.,, and D. A. Portnoy. 2000.A PESTlike sequence in listeriolysin O essential for Listeria monocytogenes pathogenicity. Science 290:992995.
29. Denis, M. 1991. Human neutrophils, activated with cytokines or not, do not kill virulent Mycobacterium tuberculosis. J. Infect. Dis. 163:919920.
30. Dorner, B. G.,, A. Scheffold,, M. S. Rolph,, M. B. Huser,, S. H. Kaufmann,, A. Radbruch,, I. E. Flesch,, and R. A. Kroczek. 2002. MIP-1alpha, MIP-1beta, RANTES, and ATAC/lymphotactin function together with IFN-gamma as type 1 cytokines. Proc. Natl. Acad. Sci. USA 99:61816186.
31. Edelson, B.T.,, and E. R. Unanue. 2002. MyD88- dependent but Toll-like receptor 2-independent innate immunity to Listeria: no role for either in macrophage listericidal activity. J. Immunol. 169:38693875.
32. Ehlers, M. R.,, and M. Daffe. 1998. Interactions between Mycobacterium tuberculosis and host cells: are mycobacterial sugars the key? Trends Microbiol. 6:328335.
33. Ehlers, S.,, M. E. Mielke,, T. Blankenstein,, and H. Hahn. 1992. Kinetic analysis of cytokine gene expression in the livers of naive and immune mice infected with Listeria monocytogenes.The immediate early phase in innate resistance and acquired immunity. J. Immunol. 149:30163022.
34. Engering, A.,, T. B. Geijtenbeek,, and Y. van Kooyk. 2002. Immune escape through C-type lectins on dendritic cells. Trends Immunol. 23:480485.
35. Ernst, J. D. 1998. Macrophage receptors for Mycobacterium tuberculosis. Infect. Immun. 66:12771281.
36. Falk, P. G.,, L.V. Hooper,, T. Midtvedt,, and J. I. Gordon. 1998. Creating and maintaining the gastrointestinal ecosystem: what we know and need to know from gnotobiology. Microbiol. Mol. Biol. Rev. 62:11571170.
37. Fauroux, B.,, B. Delaisi,, A. Clement,, C. Saizou,, D. Moissenet,, C. Truffot-Pernot,, G. Tournier,, and T. H. Vu. 1997. Mycobacterial lung disease in cystic fibrosis: a prospective study. Pediatr. Infect. Dis. J. 16:354358.
38. Ferguson, J. S.,, and L. S. Schlesinger. 2000. Pulmonary surfactant in innate immunity and the pathogenesis of tuberculosis. Tuber. Lung Dis. 80:173184.
39. Fischer, K.,, D. Chatterjee,, J. Torrelles,, P. J. Brennan,, S. H. Kaufmann,, and U. E. Schaible. 2001. Mycobacterial lysocardiolipin is exported from phagosomes upon cleavage of cardiolipin by a macrophage-derived lysosomal phospholipase A2. J. Immunol. 167:21872192.
40. Flynn, J. L.,, and J. Chan. 2001. Immunology of tuberculosis. Annu. Rev. Immunol. 19:93129.
41. Fox, E. S.,, P. Thomas,, and S. A. Broitman. 1987. Comparative studies of endotoxin uptake by isolated rat Kupffer and peritoneal cells. Infect. Immun. 55: 29622966.
42. Fulton, S. A.,, S. M. Reba,, T.D. Martin,, and W. H. Boom. 2002. Neutrophil-mediated mycobacteriocidal immunity in the lung during Mycobacterium bovis BCG infection in C57BL/6 mice. Infect. Immun. 70: 53225327.
43. Furie, M. B.,, and D. D. McHugh. 1989. Migration of neutrophils across endothelial monolayers is stimulated by treatment of the monolayers with interleukin- 1 or tumor necrosis factor-alpha. J. Immunol. 143:33093317.
44. Fusunyan, R. D.,, N. N. Nanthakumar,, M. E. Baldeon,, and W. A. Walker. 2001. Evidence for an innate immune response in the immature human intestine: toll-like receptors on fetal enterocytes. Pediatr. Res. 49:589593.
45. Ganz, T. 2002a. Antimicrobial polypeptides in host defense of the respiratory tract. J. Clin. Invest. 109:693697.
46. Ganz, T. 2002b. Epithelia: not just physical barriers. Proc. Natl. Acad. Sci. USA 99:33573358.
47. Ganz, T. 2003.Angiogenin: an antimicrobial ribonuclease. Nat. Immunol. 4:213214.
48. Gardam, M. A.,, E. C. Keystone,, R. Menzies,, S. Manners,, E. Skamene,, R. Long,, and D. C. Vinh. 2003.Anti-tumour necrosis factor agents and tuberculosis risk: mechanisms of action and clinical management. Lancet Infect. Dis. 3:148155.
49. Gedde, M. M.,, D. E. Higgins,, L. G. Tilney,, and D. A. Portnoy. 2000. Role of listeriolysin O in cellto- cell spread of Listeria monocytogenes. Infect. Immun. 68:9991003.
50. Geijtenbeek, T. B.,, S. J. Van Vliet,, E. A. Koppel,, M. Sanchez-Hernandez,, C. M. Vandenbroucke- Grauls,, B. Appelmelk,, and Y. van Kooyk. 2003. Mycobacteria target DC-SIGN to suppress dendritic cell function. J. Exp. Med. 197:717.
51. Geoffroy, C.,, J. L. Gaillard,, J. E. Alouf,, and P. Berche. 1987. Purification, characterization, and toxicity of the sulfhydryl-activated hemolysin listeriolysin O from Listeria monocytogenes. Infect. Immun. 55:16411646.
52. Gewirtz, A. T.,, T. A. Navas,, S. Lyons,, P. J. Godowski,, and J. L. Madara. 2001. Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J. Immunol. 167:18821885.
53. Gough, P. J.,, and S. Gordon. 2000. The role of scavenger receptors in the innate immune system. Microb. Infect. 2:305311.
54. Gregory, S. H.,, and E. J. Wing. 2002. Neutrophil- Kupffer cell interaction: a critical component of host defenses to systemic bacterial infections. J. Leukoc. Biol. 72:239248.
55. Gregory, S. H.,, A. J. Sagnimeni,, and E. J. Wing. 1996a. Bacteria in the bloodstream are trapped in the liver and killed by immigrating neutrophils. J. Immunol. 157:25142520.
56. Gregory, S. H.,, X. Jiang,, and E. J. Wing. 1996b. Lymphokine-activated killer cells lyse Listeria-infected hepatocytes and produce elevated quantities of interferon- gamma. J. Infect. Dis. 174:10731079.
57. Gregory, S. H.,, E. J. Wing,, K. L. Danowski,, N. van Rooijen,, K. F. Dyer,, and D. J. Tweardy. 1998. IL-6 produced by Kupffer cells induces STAT protein activation in hepatocytes early during the course of systemic listerial infections. J. Immunol. 160:60566061.
58. Guermonprez, P.,, J. Valladeau,, L. Zitvogel,, C. Thery,, and S. Amigorena. 2002. Antigen presentation and T cell stimulation by dendritic cells. Annu. Rev. Immunol. 20:621667.
59. Guo, Y.,, D.W. Niesel,, H. K. Ziegler,, and G. R. Klimpel. 1992. Listeria monocytogenes activation of human peripheral blood lymphocytes: induction of non-major histocompatibility complex-restricted cytotoxic activity and cytokine production. Infect. Immun. 60:18131819.
60. Guzman, C. A.,, M. Rohde,, T. Chakraborty,, E. Domann,, M. Hudel,, J. Wehland,, and K. N. Timmis. 1995. Interaction of Listeria monocytogenes with mouse dendritic cells. Infect. Immun. 63:36653673.
61. Havell, E.A.,, G. R. Beretich, Jr.,, and P. B. Carter. 1999. The mucosal phase of Listeria infection. Immunobiology 201:164177.
62. Hooper, L.V.,, T. S. Stappenbeck,, C.V. Hong,, and J. I. Gordon. 2003. Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nat. Immunol. 4:269273.
63. Huang, Q.,, D. Liu,, P. Majewski,, L. C. Schulte,, J. M. Korn,, R. A. Young,, E. S. Lander,, and N. Hacohen. 2001. The plasticity of dendritic cell responses to pathogens and their components. Science 294:870875.
64. Janeway, C.A., Jr.,, and R. Medzhitov. 2002. Innate immune recognition. Annu. Rev. Immunol. 20:197216.
65. Jiao, X.,, R. Lo-Man,, P. Guermonprez,, L. Fiette,, E. Deriaud,, S. Burgaud,, B. Gicquel,, N. Winter,, and C. Leclerc. 2002. Dendritic cells are host cells for mycobacteria in vivo that trigger innate and acquired immunity. J. Immunol. 168:12941301.
66. Jones, G. S.,, H. J. Amirault,, and B. R. Andersen. 1990. Killing of Mycobacterium tuberculosis by neutrophils: a nonoxidative process. J. Infect. Dis. 162:700704.
67. Juffermans, N. P.,, A. Verbon,, S. J. van Deventer,, W.A. Buurman,, H. van Deutekom,, P. Speelman,, and T. van der Poll. 1998. Serum concentrations of lipopolysaccharide activity-modulating proteins during tuberculosis. J. Infect. Dis. 178:18391842.
68. Kang, B. K.,, and L. S. Schlesinger. 1998. Characterization of mannose receptor-dependent phagocytosis mediated by Mycobacterium tuberculosis lipoarabinomannan. Infect. Immun. 66:27692777.
69. Kaufmann, S. H. 2001. How can immunology contribute to the control of tuberculosis? Nat. Rev. Immunol. 1:2030.
70. Kaufmann, S. H.,, and U. E. Schaible. 2003.A dangerous liaison between two major killers: Mycobacterium tuberculosis and HIV target dendritic cells through DC-SIGN. J. Exp. Med. 197:15.
71. Kisich, K. O.,, L. Heifets,, M. Higgins,, and G. Diamond. 2001. Antimycobacterial agent based on mRNA encoding human beta-defensin 2 enables primary macrophages to restrict growth of Mycobacterium tuberculosis. Infect. Immun. 69:26922699.
72. Kisich, K. O.,, M. Higgins,, G. Diamond,, and L. Heifets. 2002. Tumor necrosis factor alpha stimulates killing of Mycobacterium tuberculosis by human neutrophils. Infect. Immun. 70:45914599.
73. Knowles, M. R.,, and R. C. Boucher. 2002. Mucus clearance as a primary innate defense mechanism for mammalian airways. J. Clin. Invest. 109:571577.
74. Kolb-Maurer, A.,, I. Gentschev,, H. W. Fries,, F. Fiedler,, E. B. Brocker,, E. Kampgen,, and W. Goebel. 2000. Listeria monocytogenes-infected human dendritic cells: uptake and host cell response. Infect. Immun. 68:36803688.
75. Koski, G. K.,, L. A. Lyakh,, P. A. Cohen,, and N. R. Rice. 2001. CD14+ monocytes as dendritic cell precursors: diverse maturation-inducing pathways lead to common activation of NF-kappab/RelB. Crit. Rev. Immunol. 21:179189.
76. Kraal, G. 1992. Cells in the marginal zone of the spleen. Int. Rev. Cytol. 132:3174.
77. Ladel, C. H.,, C. Blum,, A. Dreher,, K. Reifenberg,, M. Kopf,, and S. H. Kaufmann. 1997. Lethal tuberculosis in interleukin-6-deficient mutant mice. Infect. Immun. 65:48434849.
78. Lee, R. E.,, P. J. Brennan,, and G. S. Besra,. 1996. Mycobacterium tuberculosis cell envelope, p. 128. In T. M. Shinnick (ed.), Tuberculosis. Springer, Berlin, Germany.
79. Leemans, J. C.,, S. Florquin,, M. Heikens,, S. T. Pals,, R. R. Neut,, and P. T. van der Poll. 2003. CD44 is a macrophage binding site for Mycobacterium tuberculosis that mediates macrophage recruitment and protective immunity against tuberculosis. J. Clin. Invest. 111:681689.
80. Lehrer, R. I.,, and T. Ganz. 2002a. Cathelicidins: a family of endogenous antimicrobial peptides. Curr. Opin. Hematol. 9:1822.
81. Lehrer, R. I.,, and T. Ganz. 2002b. Defensins of vertebrate animals. Curr. Opin. Immunol. 14:96102.
82. Linde, C. M.,, S. E. Hoffner,, E. Refai,, and M. Andersson. 2001. In vitro activity of PR-39, a proline-arginine-rich peptide, against susceptible and multi-drug-resistant Mycobacterium tuberculosis. J. Antimicrob. Chemother. 47:575580.
83. Lorber, B. 1997. Listeriosis. Clin. Infect. Dis. 24:19.
84. Lu, B.,, B. J. Rutledge,, L. Gu,, J. Fiorillo,, N. W. Lukacs,, S. L. Kunkel,, R. North,, C. Gerard,, and B. J. Rollins. 1998. Abnormalities in monocyte recruitment and cytokine expression in monocyte chemoattractant protein 1-deficient mice. J. Exp. Med. 187:601608.
85. Matsuguchi, T.,, K. Takagi,, T. Musikacharoen,, and Y. Yoshikai. 2000. Gene expressions of lipopolysaccharide receptors, toll-like receptors 2 and 4, are differently regulated in mouse T lymphocytes. Blood 95:13781385.
86. McCormack, F. X.,, and J. A. Whitsett. 2002. The pulmonary collectins, SP-A and SP-D, orchestrate innate immunity in the lung. J. Clin. Invest. 109:707712.
87. McGregor, D. D.,, H. H. Hahn,, and G. B. Mackaness. 1973. The mediator of cellular immunity. V. Development of cellular resistance to infection in thymectomized irradiated rats. Cell Immunol. 6:186199.
88. Mengaud, J.,, H. Ohayon,, P. Gounon,, R.-M. Mege,, and P. Cossart. 1996. E-cadherin is the receptor for internalin, a surface protein required for entry of L. monocytogenes into epithelial cells. Cell 84: 923932.
89. Miyakawa, Y.,, P. Ratnakar,, A. G. Rao,, M. L. Costello,, O. Mathieu-Costello,, R. I. Lehrer,, and A. Catanzaro. 1996. In vitro activity of the antimicrobial peptides human and rabbit defensins and porcine leukocyte protegrin against Mycobacterium tuberculosis. Infect. Immun. 64:926932.
90. Miyamoto, M.,, M. Emoto,, Y. Emoto,, V. Brinkmann,, I. Yoshizawa,, P. Seiler,, P. Aichele,, E. Kita,, and S. H. Kaufmann. 2003. Neutrophilia in LFA-1-deficient mice confers resistance to listeriosis: possible contribution of granulocyte-colony-stimulating factor and IL-17. J. Immunol. 170:52285234.
91. Nathan, C.,, and M. U. Shiloh. 2000. Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc. Natl. Acad. Sci. USA 97:88418848.
92. Nigou, J.,, C. Zelle-Rieser,, M. Gilleron,, M. Thurnher,, and G. Puzo. 2001. Mannosylated lipoarabinomannans inhibit IL-12 production by human dendritic cells: evidence for a negative signal delivered through the mannose receptor. J. Immunol. 166:74777485.
93. Nozaki, Y.,, Y. Hasegawa,, S. Ichiyama,, I. Nakashima,, and K. Shimokata. 1997. Mechanism of nitric oxide-dependent killing of Mycobacterium bovis BCG in human alveolar macrophages. Infect. Immun. 65:36443647.
94. Ochsenbein, A. F.,, and R. M. Zinkernagel. 2000. Natural antibodies and complement link innate and acquired immunity. Immunol.Today 21:624630.
95. Ofek, I.,, and N. Sharon. 1988. Lectinophagocytosis: a molecular mechanism of recognition between cell surface sugars and lectins in the phagocytosis of bacteria. Infect. Immun. 56:539547.
96. Ohya, S.,, Y. Tanabe,, M. Makino,, T. Nomura,, H. Xiong,, M. Arakawa,, and M. Mitsuyama. 1998. The contributions of reactive oxygen intermediates and reactive nitrogen intermediates to listericidal mechanisms differ in macrophages activated pre- and postinfection. Infect. Immun. 66:40434049.
97. Oshiumi, H.,, M. Matsumoto,, K. Funami,, T. Akazawa,, and T. Seya. 2003.TICAM-1, an adaptor molecule that participates in Toll-like receptor 3- mediated interferon-beta induction. Nat. Immunol. 4:161167.
98. Ouellette, A. J. 1997. Paneth cells and innate immunity in the crypt microenvironment. Gastroenterology 113:17791784.
99. Ozinsky, A.,, D. M. Underhill,, J. D. Fontenot,, A. M. Hajjar,, K. D. Smith,, C. B. Wilson,, L. Schroeder,, and A. Aderem. 2000. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc. Natl. Acad. Sci. USA 97:1376613771.
100. Pedrosa, J.,, B. M. Saunders,, R. Appelberg,, I. M. Orme,, M. T. Silva,, and A. M. Cooper. 2000. Neutrophils play a protective nonphagocytic role in systemic Mycobacterium tuberculosis infection of mice. Infect. Immun. 68:577583.
101. Peschel, A.,, R.W. Jack,, M. Otto,, L.V. Collins,, P. Staubitz,, G. Nicholson,, H. Kalbacher,, W. F. Nieuwenhuizen,, G. Jung,, A. Tarkowski,, K. P. van Kessel,, and J. A. van Strijp. 2001. Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with llysine. J. Exp. Med. 193:10671076.
102. Peters, W.,, H. M. Scott,, H. F. Chambers,, J. L. Flynn,, I. F. Charo,, and J. D. Ernst. 2001. Chemokine receptor 2 serves an early and essential role in resistance to Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 98:79587963.
103. Pieters, J. 2001. Entry and survival of pathogenic mycobacteria in macrophages. Microb. Infect. 3:249255.
104. Pieters, J.,, and J. Gatfield. 2002. Hijacking the host: survival of pathogenic mycobacteria inside macrophages. Trends Microbiol. 10:142146.
105. Portnoy, D.A.,, V. Auerbuch,, and I. J. Glomski. 2002. The cell biology of Listeria monocytogenes infection: the intersection of bacterial pathogenesis and cell-mediated immunity. J. Cell Biol. 158:409414.
106. Pron, B.,, C. Boumaila,, F. Jaubert,, S. Sarnacki,, J. P. Monnet,, P. Berche,, and J. L. Gaillard. 1998. Comprehensive study of the intestinal stage of listeriosis in a rat ligated ileal loop system. Infect. Immun. 66:747755.
107. Pron, B.,, C. Boumaila,, F. Jaubert,, P. Berche,, G. Milon,, F. Geissmann,, and J. L. Gaillard. 2001. Dendritic cells are early cellular targets of Listeria monocytogenes after intestinal delivery and are involved in bacterial spread in the host. Cell. Microbiol. 3:331340.
108. Reiling, N.,, C. Holscher,, A. Fehrenbach,, S. Kroger,, C. J. Kirschning,, S. Goyert,, and S. Ehlers. 2002. Cutting edge: toll-like receptor (TLR)2- and TLR4-mediated pathogen recognition in resistance to airborne infection with Mycobacterium tuberculosis. J. Immunol. 169:34803484.
109. Remoli, M. E.,, E. Giacomini,, G. Lutfalla,, E. Dondi,, G. Orefici,, A. Battistini,, G. Uze,, S. Pellegrini,, and E. M. Coccia. 2002. Selective expression of type I IFN genes in human dendritic cells infected with Mycobacterium tuberculosis. J. Immunol. 169:366374.
110. Rich, E. A.,, M. Torres,, E. Sada,, C. K. Finegan,, D. B. Hamilton,, and Z. Toossi. 1997. Mycobacterium tuberculosis (MTB)-stimulated production of nitric oxide by human alveolar macrophages and relationship of nitric oxide production to growth inhibition of MTB. Tuber. Lung Dis. 78:247255.
111. Rogers, H. W.,, and E. R. Unanue. 1993. Neutrophils are involved in acute, nonspecific resistance to Listeria monocytogenes in mice. Infect. Immun. 61:50905096.
112. Rosen, H.,, S. Gordon,, and R. J. North. 1989. Exacerbation of murine listeriosis by a monoclonal antibody specific for the type 3 complement receptor of myelomonocytic cells. Absence of monocytes at infective foci allows Listeria to multiply in nonphagocytic cells. J. Exp. Med. 170:2737.
113. Roussel, P.,, G. Lamblin,, M. Lhermitte,, N. Houdret,, J. J. Lafitte,, J. M. Perini,, A. Klein,, and A. Scharfman. 1988. The complexity of mucins. Biochimie 70:14711482.
114. Russell, D. G. 2001.TB comes to a sticky beginning. Nat. Med. 7:894895.
115. Rutledge, B. J.,, H. Rayburn,, R. Rosenberg,, R. J. North,, R. P. Gladue,, C. L. Corless,, and B. J. Rollins. 1995. High level monocyte chemoattractant protein-1 expression in transgenic mice increases their susceptibility to intracellular pathogens. J. Immunol. 155:48384843.
116. Salzman, N. H.,, D. Ghosh,, K. M. Huttner,, Y. Paterson,, and C. L. Bevins. 2003. Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature 422:522526.
117. Sato, K.,, H. Tomioka,, T. Shimizu,, T. Gonda,, F. Ota,, and C. Sano. 2002. Type II alveolar cells play roles in macrophage-mediated host innate resistance to pulmonary mycobacterial infections by producing proinflammatory cytokines. J. Infect. Dis. 185:11391147.
118. Saunders, B. M.,, A. A. Frank,, I. M. Orme,, and A. M. Cooper. 2000. Interleukin-6 induces early gamma interferon production in the infected lung but is not required for generation of specific immunity to Mycobacterium tuberculosis infection. Infect. Immun. 68:33223326.
119. Schaible, U. E.,, H. L. Collins,, and S. H. Kaufmann. 1999. Confrontation between intracellular bacteria and the immune system. Adv. Immunol. 71:267377.
120. Schaible, U. E.,, H. L. Collins,, F. Priem,, and S. H. Kaufmann. 2002. Correction of the iron overload defect in beta-2-microglobulin knockout mice by lactoferrin abolishes their increased susceptibility to tuberculosis. J. Exp. Med. 196:15071513.
121. Schlech, W. F., III. 2000. Foodborne listeriosis. Clin. Infect. Dis. 31:770775.
122. Schlesinger, L. S. 1998. Mycobacterium tuberculosis and the complement system. Trends Microbiol. 6:4749.
123. Schlesinger, L. S.,, T. M. Kaufman,, S. Iyer,, S. R. Hull,, and L. K. Marchiando. 1996. Differences in mannose receptor-mediated uptake of lipoarabino- mannan from virulent and attenuated strains of Mycobacterium tuberculosis by human macrophages. J. Immunol. 157:45684575.
124. Schorey, J. S.,, M. C. Carroll,, and E. J. Brown. 1997. A macrophage invasion mechanism of pathogenic mycobacteria. Science 277:10911093.
125. Scott, H. M.,, and J. L. Flynn. 2002. Mycobacterium tuberculosis in chemokine receptor 2-deficient mice: influence of dose on disease progression. Infect. Immun. 70:59465954.
126. Seiler, P.,, P. Aichele,, B. Raupach,, B. Odermatt,, U. Steinhoff,, and S. H. Kaufmann. 2000. Rapid neutrophil response controls fast-replicating intracellular bacteria but not slow-replicating Mycobacterium tuberculosis. J. Infect. Dis. 181:671680.
127. Seiler, P.,, P. Aichele,, S. Bandermann,, A. E. Hauser,, B. Lu,, N. P. Gerard,, C. Gerard,, S. Ehlers,, H. J. Mollenkopf,, and S. H. Kaufmann. 2003. Early granuloma formation after aerosol Mycobacterium tuberculosis-infection is regulated by neutrophils via CXCR3-signalling chemokines. Eur. J. Immunol. 33: 26762686.
128. Sharma, S.,, and G. Khuller. 2001. DNA as the intracellular secondary target for antibacterial action of human neutrophil peptide-I against Mycobacterium tuberculosis H37Ra. Curr. Microbiol. 43:7476.
129. Sharma, S.,, I. Verma,, and G. K. Khuller. 2000. Antibacterial activity of human neutrophil peptide-1 against Mycobacterium tuberculosis H37Rv: in vitro and ex vivo study. Eur. Respir. J. 16:112117.
130. Sharma, S.,, I. Verma,, and G. K. Khuller. 2001. Therapeutic potential of human neutrophil peptide 1 against experimental tuberculosis. Antimicrob. Agents Chemother. 45:639640.
131. Shiloh, M. U.,, J. D. MacMicking,, S. Nicholson,, J. E. Brause,, S. Potter,, M. Marino,, F. Fang,, M. Dinauer,, and C. Nathan. 1999. Phenotype of mice and macrophages deficient in both phagocyte oxidase and inducible nitric oxide synthase. Immunity 10:2938.
132. Soilleux, E. J.,, L. S. Morris,, G. Leslie,, J. Chehimi,, Q. Luo,, E. Levroney,, J. Trowsdale,, L. J. Montaner,, R.W. Doms,, D. Weissman,, N. Coleman,, and B. Lee. 2002. Constitutive and induced expression of DC-SIGN on dendritic cell and macrophage subpopulations in situ and in vitro. J. Leukoc. Biol. 71:445457.
133. Tailleux, L.,, O. Schwartz,, J. L. Herrmann,, E. Pivert,, M. Jackson,, A. Amara,, L. Legres,, D. Dreher,, L. P. Nicod,, J. C. Gluckman,, P. H. Lagrange,, B. Gicquel,, and O. Neyrolles. 2003. DC-SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells. J. Exp. Med. 197: 121127.
134. Tani, K.,, W. J. Murphy,, O. Chertov,, R. Salcedo,, C.Y. Koh,, I. Utsunomiya,, S. Funakoshi,, O. Asai,, S. H. Herrmann,, J. M. Wang,, L.W. Kwak,, and J. J. Oppenheim. 2000. Defensins act as potent adjuvants that promote cellular and humoral immune responses in mice to a lymphoma idiotype and carrier antigens. Int. Immunol. 12:691700.
135. Thiel, S.,, T. Vorup-Jensen,, C. M. Stover,, W. Schwaeble,, S. B. Laursen,, K. Poulsen,, A. C. Willis,, P. Eggleton,, S. Hansen,, U. Holmskov,, K. B. Reid,, and J. C. Jensenius. 1997.A second serine protease associated with mannan-binding lectin that activates complement. Nature 386:506510.
136. Unanue, E. R. 1996. Macrophages, NK cells and neutrophils in the cytokine loop of Listeria resistance. Res. Immunol. 147:499505.
137. van Crevel, R.,, T. H. Ottenhoff,, and J. W. Der Meer. 2002. Innate immunity to Mycobacterium tuberculosis. Clin. Microbiol. Rev. 15:294309.
138. Weikert, L. F.,, J. P. Lopez,, R. Abdolrasulnia,, Z. C. Chroneos,, and V. L. Shepherd. 2000. Surfactant protein A enhances mycobacterial killing by rat macrophages through a nitric oxide-dependent pathway. Am. J. Physiol. Lung Cell Mol. Physiol. 279:L216L223.
139. West, J. B., 1994. Ventilation, blood flow, and gas exchange, p. 5189. In J. F. N. J. A. Murray (ed.), Textbook of Respiratory Medicine. W. B. Saunders, Philadelphia, Pa.
140. Zahrt, T. C.,, and V. Deretic. 2002. Reactive nitrogen and oxygen intermediates and bacterial defenses: unusual adaptations in Mycobacterium tuberculosis. Antioxid. Redox. Signal. 4:141159.
141. Zhang, L.,, W. Yu,, T. He,, J. Yu,, R. E. Caffrey,, E.A. Dalmasso,, S. Fu,, T. Pham,, J. Mei,, J. J. Ho,, W. Zhang,, P. Lopez,, and D. D. Ho. 2002. Contribution of human alpha-defensin 1, 2, and 3 to the anti-HIV-1 activity of CD8 antiviral factor. Science 298:9951000.
142. Zimmerli, S.,, S. Edwards,, and J. D. Ernst. 1996. Selective receptor blockade during phagocytosis does not alter the survival and growth of Mycobacterium tuberculosis in human macrophages. Am. J. Respir. Cell Mol. Biol. 15:760770.

Tables

Generic image for table
TABLE 1

Secreted effector molecules in innate immune response against

Citation: Seiler P, Steinhoff U, Kaufmann S. 2004. Role of Innate Immunity in Bacterial Infection, p 433-454. In Kaufmann S, Medzhitov R, Gordon S (ed), The Innate Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555817671.ch22
Generic image for table
TABLE 2

Surface effector molecules in innate immune response against

Citation: Seiler P, Steinhoff U, Kaufmann S. 2004. Role of Innate Immunity in Bacterial Infection, p 433-454. In Kaufmann S, Medzhitov R, Gordon S (ed), The Innate Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555817671.ch22

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error