Chapter 5 : The Regulatory Role of Dendritic Cells in the Innate Immune Response

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

The Regulatory Role of Dendritic Cells in the Innate Immune Response, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817671/9781555812911_Chap05-1.gif /docserver/preview/fulltext/10.1128/9781555817671/9781555812911_Chap05-2.gif


Cells of the dendritic cells (DC) lineage are continuously produced; they arise from bone marrow hematopoietic stem cells as myeloid progenitors and seed all organism tissues. Although rare, they are ubiquitously distributed in lymphoid and nonlymphoid tissues; together with macrophages, they recognize pathogens and regulate the inflammatory processes. The responsiveness of mucosal DC populations to inflammatory stimuli, in particular their rapid kinetics of recruitment that surprisingly is equivalent to that of neutrophils, underscores their relevance as antigen sentinels and regulators at the mucosal sites. Indeed, in pathological conditions, such as in Crohn’s disease, a good deal of recent evidence suggests that the failure of a physiological innate immune response could degenerate into an autoimmune response. In the absence of inflammation, innocuous antigens that are continuously encountered in the lungs by DCs induce antigen-specific unresponsiveness. In the lymphoid organs, DCs have the unique opportunity to encounter and present antigens to the rare unprimed antigen-specific T cells. Mannose receptors are believed to be expressed by DCs because internalization and presentation of mannosylated proteins are very efficient in DCs. The movement of the pseudopodia in activated DCs involves actin binding proteins, and it can be blocked by the drug cytochalasin D, which stops the polymerization of actin and inhibits phagocytosis. Natural killer (NK) cells activity is primed during the early phases of an immune response, a few hours after infection. As a matter of fact, physiological immune responses originate from a well-controlled inflammatory process.

Citation: Granucci F, Feau S, Zanoni I, Raimondi G, Pavelka N, Vizzardelli C, Ricciardi-Castagnoli P. 2004. The Regulatory Role of Dendritic Cells in the Innate Immune Response, p 95-110. In Kaufmann S, Medzhitov R, Gordon S (ed), The Innate Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555817671.ch5

Key Concept Ranking

Bacterial Proteins
Major Histocompatibility Complex
Innate Immune System
Immune Systems
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Model of conventional and unconventional mechanisms of bacterial uptake.

Citation: Granucci F, Feau S, Zanoni I, Raimondi G, Pavelka N, Vizzardelli C, Ricciardi-Castagnoli P. 2004. The Regulatory Role of Dendritic Cells in the Innate Immune Response, p 95-110. In Kaufmann S, Medzhitov R, Gordon S (ed), The Innate Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555817671.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Two possible pathways of DC-mediated NK cell activation. According to the IL-4 pathway, immature DCs in the presence of IL-4 become competent NK cell activators. This process is bidirectional and requires cell-to-cell contact and soluble factors. According to the IL-2 pathway, early-microbial-activated DCs, IL-2 producers, acquire the ability to stimulate NK cells. This process depends on IL-2 and membrane proteins.

Citation: Granucci F, Feau S, Zanoni I, Raimondi G, Pavelka N, Vizzardelli C, Ricciardi-Castagnoli P. 2004. The Regulatory Role of Dendritic Cells in the Innate Immune Response, p 95-110. In Kaufmann S, Medzhitov R, Gordon S (ed), The Innate Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555817671.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

DCs link innate and adaptive immune responses. Following microbial encounter, immature DCs increase the efficiency of antigen processing and presentation and express, with a strictly defined kinetic IL-2. At early time points, DC-derived IL-2 helps to activate NK cells (IL-2 pathway; see Fig. 2 ). At later time points, when DCs have not yet reached the final stage of maturation and still express low levels of costimulatory molecules and peptide-MHC complexes at the cell surface, DC-derived IL-2 cooperates in the activation of T-cell responses (late adaptive response). It cannot be excluded that IL-2 can also act on DCs in an autocrine fashion. CTL, cytotoxic T lymphocyte.

Citation: Granucci F, Feau S, Zanoni I, Raimondi G, Pavelka N, Vizzardelli C, Ricciardi-Castagnoli P. 2004. The Regulatory Role of Dendritic Cells in the Innate Immune Response, p 95-110. In Kaufmann S, Medzhitov R, Gordon S (ed), The Innate Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555817671.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Aderem, A.,, and R. J. Ulevitch. 2000. Toll-like receptors in the induction of the innate immune response. Nature 406:782787.
2. Akashi, K.,, D. Traver,, T. Miyamoto,, and I. Weissman. 2000. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404:193197.
3. Akbari, O.,, R. H. DeKruyff,, and D. T. Umetsu. 2001. Pulmonary Dc producing IL10 mediate tolerance induced by respiratory exposure to antigen. Nat. Immunol. 2:725731.
4. Akira, S.,, K. Takeda,, and T. Kaisho. 2001.Toll-like receptors: critical proteins linking innate and acquired immunity. Nat. Immunol. 2:675680.
5. Anderson, D. C.,, L. J. Miller,, F. C. Schmalstieg,, R. Rothlein,, and T. A. Springer. 1986. Contributions of the Mac-1 glycoprotein family to adherence-dependent granulocyte functions: structure-function assessments employing subunit-specific monoclonal antibodies. J. Immunol. 137:1527.
6. Anderson, K. L.,, H. Perkin,, C. D. Surh,, S. Venturini,, R. A. Maki,, and B. E. Torbett. 2000. Transcription factor PU.1 is necessary for development of thymic and myeloid progenitor-derived dendritic cells. J. Immunol. 164:18551861.
7. Austyn, J. M. 1996. New insights into the mobilization and phagocytic activity of dendritic cells. J. Exp. Med. 183:12871292.
8. Austyn, J. M.,, D. F. Hankins,, C. P. Larsen,, P. J. Morris,, A. S. Rao,, and J. A. Roake. 1994. Isolation and characterization of dendritic cells from mouse heart and kidney. J. Immunol. 152:24012410.
9. Banchereau, J.,, and R. M. Steinman. 1998. Dendritic cells and the control of immunity. Nature 392:245252.
10. Banchereau, J.,, F. Briere,, C. Caux,, J. Davoust,, S. Lebecque,, Y. J. Liu,, B. Pulendran,, and K. Palucka. 2000. Immunobiology of dendritic cells. Annu. Rev. Immunol. 18:767811.
11. Bendelac, A.,, and R. Medzhitov. 2002. Adjuvants of immunity: harnessing innate immunity to promote adaptive immunity. J. Exp. Med. 195:F19F23.
12. Biron, C. A.,, K. B. Nguyen,, G. C. Pien,, L. P. Cousens,, and T. P. Salazar-Mather. 1999. Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu. Rev. Immunol. 17:189220.
13. Blank, C.,, H. Fuchs,, K. Rappersberger,, M. Rollinghoff,, and H. Moll. 1993. Parasitism of epidermal Langerhans cells in experimental cutaneous leishmaniasis with Leishmania major. J. Infect. Dis. 167:418425.
14. Cella, M.,, M. Salio,, Y. Sakakibara,, H. Langen,, I. Julkunen,, and A. Lanzavecchia. 1999. Maturation, activation, and protection of dendritic cells induced by double-stranded RNA. J. Exp. Med. 189:821829.
15. Corinti, S.,, D. Medaglini,, A. Cavani,, M. Rescigno,, G. Pozzi,, P. Ricciardi-Castagnoli,, and G. Girolomoni. 1999. Human dendritic cells very efficiently present a heterologous antigen expressed on the surface of recombinant gram-positive bacteria to CD4+ T lymphocytes. J. Immunol. 163:30293036.
16. Demangel, C.,, A.G. Bean,, E. Martin,, C.G. Feng,, A.T. Kamath,, and W. J. Britton. 1999. Protection against aerosol Mycobacterium tuberculosis infection using Mycobacterium bovis Bacillus Calmette Guerin-infected dendritic cells. Eur. J. Immunol. 29:19721979.
17. De Smedt, T.,, B. Pajak,, E. Muraille,, L. Lespagnard,, E. Heinen,, P. De Baetselier,, J. Urbain,, O. Leo,, and M. Moser. 1996. Regulation of dendritic cell numbers and maturation by lipopolysaccharide in vivo. J. Exp. Med. 184:14131424.
18. d'Ostiani, C. F.,, G. Del Sero,, A. Bacci,, C. Montagnoli,, A. Spreca,, A. Mencacci,, P. Ricciardi-Castagnoli,, and L. Romani. 2000. Dendritic cells discriminate between yeasts and hyphae of the fungus Candida albicans. Implications for initiation of T helper cell immunity in vitro and in vivo. J. Exp. Med. 191:16611674.
19. Ferlazzo, G.,, M. L. Tsang,, L. Moretta,, G. Melioli,, R. M. Steinman,, and C. Munz. 2002. Human dendritic cells activate resting natural killer (NK) cells and are recognized via the NKp30 receptor by activated NK cells. J. Exp. Med. 195:343351.
20. Fernandez, N. C.,, A. Lozier,, C. Flament,, P. Ricciardi-Castagnoli,, D. Bellet,, M. Suter,, M. Perricaudet,, T. Tursz,, E. Maraskovsky,, and L. Zitvogel. 1999. Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate antitumor immune responses in vivo. Nat. Med. 5:405411.
21. Filgueira, L.,, F. O. Nestle,, M. Rittig,, H. I. Joller,, and P. Groscurth. 1996. Human dendritic cells phagocytose and process Borrelia burgdorferi. J. Immunol. 157:29983005.
22. Galli, S. J.,, M. Maurer,, and C. S. Lantz. 1999. Mast cells as sentinels of innate immunity. Curr. Opin. Immunol. 11:5359.
23. Gerosa, F.,, B. Baldani-Guerra,, C. Nisii,, V. Marchesini,, G. Carra,, and G. Trinchieri. 2002. Reciprocal activating interaction between natural killer cells and dendritic cells. J. Exp. Med. 195:327333.
24. Girolomoni, G.,, C. Caux,, C. Dezutter-Dambuyant,, S. Lebecque,, and P. Ricciardi-Castagnoli. 2001. Langerhans cells: still a fundamental paradigm for studying the immunobiology of dendritic cells. Trends Immunol. 23:68.
25. Grakoui, A.,, S. K. Bromley,, C. Sumen,, M. M. Davis,, A. S. Shaw,, P. M. Allen,, and M. L. Dustin. 1999. The immunological synapse: a molecular machine controlling T cell activation. Science 28:221227.
26. Granucci, F.,, C. Vizzardelli,, E. Virzi,, M. Rescigno,, and P. Ricciardi-Castagnoli. 2001a. Transcriptional reprogramming of dendritic cells by differentiation stimuli. Eur. J. Immunol. 31:25392546.
27. Granucci, F.,, C. Vizzardelli,, N. Pavelka,, S. Feau,, M. Persico,, E. Virzi,, M. Rescigno,, G. Moro,, and P. Ricciardi-Castagnoli. 2001b. Inducible IL2 production by dendritic cells revealed by global gene expression analysis. Nat. Immunol. 2:883888.
28. Granucci, F.,, S. Feau,, V. Angeli,, F. Trottein,, and P. Ricciardi-Castagnoli. 2003. Early IL-2 production by mouse dendritic cells is the result of microbial induced priming. J. Immunol. 170:50755081.
29. Groux, H.,, A. O'Garra,, M. Bigler,, M. Rouleau,, S. Antonenko,, J. E. de Vries,, and M. G. Roncarolo. 1997. A CD4+ T cell subset inhibits antigen-specific T cell responses and prevents colitis. Nature 389:737742.
30. Guerriero, A.,, P. B. Langmuir,, L. M. Spain,, and E. W. Scott. 2000. PU.1 is required for myeloidderived but not lymphoid-derived dendritic cells. Blood 95:879885.
31. Henderson, R. A.,, S. C. Watkins,, and J. L. Flynn. 1997. Activation of human dendritic cells following infection with Mycobacterium tuberculosis. J. Immunol. 159:635643.
32. Henz, B. M.,, M. Maurer,, U. Lippert,, M. Worm,, and M. Babina. 2001. Mast cells as initiators of immunity and host defense. Exp. Dermatol. 10:110.
33. Hirschfeld, M.,, C. J. Kirschning,, R. Schwandner,, H. Wesche,, J. H. Weis,, R. M. Wooten,, and J. J. Weis. 1999. Cutting edge: inflammatory signaling by Borrelia burgdorferi lipoproteins is mediated by toll-like receptor 2. J. Immunol. 163:23822386.
34. Hofer, S.,, M. Rescigno,, F. Granucci,, S. Citterio,, M. Francolini,, and P. Ricciardi-Castagnoli. 2001. Differential activation of NF-kB subunits in dendritic cells in response to Gram negative bacteria and to Lipopolysaccharide. Microb. Infect. 3:259265.
35. Hugot, J. P.,, M. Chamaillard,, H. Zouali,, S. Lesage,, J. P. Cezard,, J. Belaiche,, S. Almer,, C. Tysk,, C. A. O'Morain,, M. Gassull,, V. Binder,, Y. Finkel,, A. Cortot,, R. Modigliani,, P. Laurent-Puig,, C. Gower-Rousseau,, J. Macry,, J. F. Colombel,, M. Sahbatou,, and G. Thomas. 2001. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411:599603.
36. Inaba, K.,, M. Inaba,, M. Naito,, and R. M. Steinman. 1993. Dendritic cell progenitors phagocytose particulates, including bacillus Calmette-Guerin organisms, and sensitize mice to mycobacterial antigens in vivo. J. Exp. Med. 178:479488.
37. Ingulli, E.,, A. Mondino,, A. Khoruts,, and M. K. Jenkins. 1997. In vivo detection of dendritic cell antigen presentation to CD4 (+) T cells. J. Exp. Med. 185:21332141.
38. Inohara, N.,, and G. Nunez. 2002. NODs: a family of cytosolic proteins that regulate the response to pathogens. Curr. Opin. Microbiol. 5:7680.
39. Iwasaki, A.,, and B. Kelsall. 1999. Freshly isolated Peyer's patch, but not spleen DC produce IL10 and induce the differentiation of Th2 cells. J. Exp. Med. 190:229239.
40. Iwasaki, A.,, and B. L. Kelsall. 2000. Localization of distinct Peyer's patch dendritic cell subsets and their recruitment by chemokines macrophage inflammatory protein (MIP)-3alpha, MIP-3beta, and secondary lymphoid organ chemokine. J. Exp. Med. 191:13811394.
41. Kelsall, B. L.,, and W. Strober. 1996. Distinct populations of dendritic cells are present in subepithelial dome and T cell regions of the murine Peyer's patch. J. Exp. Med. 183:237247.
42. Kim, J.,, S. Sif,, B. Jones,, A. Jackson,, J. Koipally,, E. Heller,, S. Winandy,, A. Viel,, A. Sawyer,, T. Ikeda,, R. Kingston,, and K. Georgopoulos. 1999. DNA-binding proteins direct formation of chromatin remodeling complexes in lymphocytes. Immunity 10:345355.
43. Kohbata, S.,, H. Yokoyama,, and E. Yabuuchi. 1986. Cytopathogenic effect of Salmonella typhi GIFU 10007 on M cells of murine ileal Peyer's patches in ligated ileal loops: an ultrastructural study. Microbiol. Immunol. 30:12251232.
44. Langenkamp, A.,, M. Messi,, A. Lanzavecchia,, and F. Sallusto. 2000. Kinetics of dendritic cell activation: impact on priming of TH1,TH2 and nonpolarized T cells. Nat. Immunol. 1:311316.
45. Lemaitre, B.,, E. Nicolas,, L. Michaut,, J. M. Reichhart,, and J. A. Hoffmann. 1996. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86:973983.
46. Maric, I.,, P. G. Holt,, M. H. Perdue,, and J. Bienstock. 1996. Class II MHC antigen (Ia)-bearing dendritic cells in the epithelium of the rat intestine. J. Immunol. 156:14081414.
47. Matsuno, K.,, T. Ezaki,, S. Kudo,, and Y. Uehara. 1996.A life stage of particle-laden rat dendritic cells in vivo: their terminal division, active phagocytosis, and translocation from the liver to the draining lymph. J. Exp. Med. 183:18651878.
48. Mbow, M. L.,, N. Zeidner,, N. Panella,, R.G. Titus,, and J. Piesman. 1997. Borrelia burgdorferi-pulsed dendritic cells induce a protective immune response against tick-transmitted spirochetes. Infect. Immun. 65:33863390.
49. McWilliam, A. S.,, D. Nelson,, J. A. Thomas,, and P. G. Holt. 1994. Rapid DC recruitment is a hallmark of acute inflammatory responses at mucosal surfaces. J. Exp. Med. 179:13311336.
50. McWilliam, A. S.,, S. Napoli,, A. M. Marsh,, D. J. Pemper,, D. Nelson,, C. L. Primm,, P.A. Stumbles,, T. N. Wells,, and P. G. Holt. 1996. DC are recruited into the airway epithelium during the inflammatory response to a broad spectrum of stimuli. J. Exp. Med. 184:24292432.
51. Medzhitov, R.,, and C. A. J. Janeway. 1997. Innate immunity: the virtues of a nonclonal system of recognition. Cell 91:295298.
52. Merad, M.,, M. Manz,, H. Karunsky,, A. Wagers,, W. Peters,, I. Charo,, I. L. Weissman,, J. G. Cyster,, and E. G. Engleman. 2002. Langerhans cells renew in the skin throughout life under steady-state conditions. Nat. Immunol. 3:11351141.
53. Miller, L. J.,, D. F. Bainton,, N. Borregaard,, and T. A. Springer. 1987. Stimulated mobilization of monocyte Mac-1 and p150,95 adhesion proteins from an intracellular vesicular compartment to the cell surface. J. Clin. Investig. 80:535544.
54. Moretta, A. 2002. Natural killer cells and dendritic cells: rendezvous in abused tissues. Nat. Rev. Immunol. 2:957965.
55. Ogura, Y.,, D. K. Bonen,, N. Inohara,, D. L. Nicolae,, F. F. Chen,, R. Ramos,, H. Britton,, T. Moran,, R. Karaliuskas,, R. H. Duerr,, J. P. Achkar,, S. R. Brant,, T. M. Bayless,, B. S. Kirschner,, S. B. Hanauer,, G. Nunezm,, and J. H. Cho. 2001. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 411:603606.
56. Parr, M. B.,, L. Kepple,, and E. L. Parr. 1991. Langerhans cells phagocytose vaginal epithelial cells undergoing apoptosis during the murine estrous cycle. Biol. Reprod. 45:252260.
57. Piccioli, D.,, S. Sbrana,, E. Melandri,, and N. M. Valiante. 2002. Contact-dependent stimulation and inhibition of dendritic cells by natural killer cells. J. Exp. Med. 195:335341.
58. Poltorak, A.,, X. He,, I. Smirnova,, M. Y. Liu,, C. V. Huffel,, X. Du,, D. Birdwell,, E. Alejos,, M. Silva,, C. Galanos,, M. Freudenberg,, P. Ricciardi-Castagnoli,, B. Layton,, and B. Beutler. 1998. Defective LPS signaling in C3H/HeJ and C57BL/ 10ScCr mice: mutations in Tlr4 gene. Science 282:20852088.
59. Qureshi, S. T.,, L. Lariviere,, G. Leveque,, S. Clermont,, K. J. Moore,, P. Gros,, and D. Malo. 1999. Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4). J. Exp. Med. 189:615625.
60. Reis e Sousa, C.,, P. D. Stahl,, and J. M. Austyn. 1993. Phagocytosis of antigens by Langerhans cells in vitro. J. Exp. Med. 178:509519.
61. Rescigno, M.,, M. Martino,, C. L. Sutherland,, M. R. Gold,, and P. Ricciardi-Castagnoli. 1998a. Dendritic cell survival and maturation are regulated by different signaling pathways. J.Exp.Med. 188:21752180.
62. Rescigno, M.,, S. Citterio,, C. Théry,, M. Rittig,, D. Medaglini,, G. Pozzi,, S. Amigorena,, and P. Ricciardi-Castagnoli. 1998b. Bacteria-induced neo-biosynthesis, stabilization, and surface expression of functional class I molecules in mouse dendritic cells. Proc. Natl. Acad. Sci. USA 95:52295234.
63. Rescigno, M.,, F. Granucci,, S. Citterio,, M. Foti,, and P. Ricciardi-Castagnoli. 1999. Coordinated events during bacteria-induced DC maturation. Immunol.Today 20:200203.
64. Rescigno, M.,, M. Urbano,, B. Valzasina,, M. Francolini,, G. Rotta,, R. Bonasio,, F. Granucci,, J. P. Kraehenbuhl,, and P. Ricciardi-Castagnoli. 2001. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat. Immunol. 2:361368.
65. Rescigno, M.,, M. Urbano,, M. Rimoldi,, B. Valzasina,, G. Rotta,, F. Granucci,, and P. Ricciardi-Castagnoli. 2002. Toll-like receptor 4 is not required for the full maturation of dendritic cells nor for the degradation of gram-negative bacteria. Eur. J. Immunol. 32:28002806.
66. Ricciardi-Castagnoli, P.,, and F. Granucci. 2002. Interpretation of innate immune response complexity by functional genomics. Nat. Rev. Immunol. 21:881889.
67. Ridge, J. P.,, F. Di Rosa,, and P. Matzinger. 1998. A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393:474478.
68. Rittig, M.,, T. Haupl,, and G. R. Burmester. 1994. Coiling phagocytosis—a way for MHC class I presentation of bacterial antigens? Int. Arch. Allergy Immunol. 103:410.
69. Rittig, M. G.,, K. Kuhn,, C. Dechant,, A. Gauckler,, M. Modolell,, P. Ricciardi-Castagnoli,, A. Krause,, and G. R. Burmester. 1996. Phagocytes from both vertebrate and invertebrate species use coiling phagocytosis. Dev. Comp. Immunol. 20:393406.
70. Rodriguez, A.,, A. Regnault,, M. Kleijmeer,, P. Ricciardi-Castagnoli,, and S. Amigorena. 1999. Selective transport of internalized antigens to the cytosol for MHC class I presentation in dendritic cells. Nat. Cell Biol. 6:362368.
71. Ruedl, C.,, and S. Hubele. 1997. Maturation of Peyer's patch dendritic cells in vitro upon stimulation via cytokines or CD40 triggering. Eur. J. Immunol. 27:13251330.
72. Sallusto, F.,, P. Schaerli,, P. Loetscher,, C. Schaniel,, D. Lenig,, C. R. Mackay,, S. Qin,, and A. Lanzavecchia. 1998. Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. Eur. J. Immunol. 28:27602769.
73. Sato, N.,, S. K. Ahuja,, M. Quinones,, V. Kostecki,, R. L. Reddick,, P. C. Melby,, W. A. Kuziel,, and S. S. Ahuja. 2000. CC chemokine receptor (CCR)2 is required for LC migration and localization of T helper cell type 1 (Th1)-inducing dendritic cells. J. Exp. Med. 192:205218.
74. Schimpl, A.,, I. Berberich,, B. Kneitz,, S. Kramer,, B. Santner-Nanan,, S. Wagner,, M. Wolf,, and T. Hunig. 2002. IL2 and autoimmune disease. Cytokine Growth Factor Rev. 13:369378.
75. Steinman, R. M. 1991.The dendritic cell system and its role in immunogenicity. Annu. Rev. Immunol. 9:271279.
76. Steinman, R. M. 2000. DC-SIGN: a guide to some mysteries of dendritic cells. Cell 100:491494.
77. Steinman, R. M.,, and M. C. Nussenzweig. 2002. Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc. Natl. Acad. Sci. USA 99:351358.
78. Su, H.,, R. Messer,, W. Whitmire,, E. Fischer,, J. C. Portis,, and H. D. Caldwell. 1998. Vaccination against chlamydial genital tract infection after immunization with dendritic cells pulsed ex vivo with nonviable Chlamydiae. J. Exp. Med. 188:809818.
79. Svensson, M.,, B. Stockinger,, and M. J. Wick. 1997. Bone marrow-derived dendritic cells can process bacteria for MHC-I and MHC-II presentation to T cells. J. Immunol. 158:42294236.
80. Takeuchi, O.,, K. Hoshino,, T. Kawai,, H. Sanjo,, H. Takada,, T. Ogawa,, K. Takeda,, and S. Akira. 1999. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11:443451.
81. Tan, M. C.,, A. M. Mommaas,, J.W. Drijfhout,, R. Jordens,, J. J. Onderwater,, D. Verwoerd,, A. A. Mulder,, A. N. van der Heiden,, D. Scheidegger,, L. C. Oomen,, T. H. Ottenhoff,, A. Tulp,, J. J. Neefjes,, and F. Koning. 1997. Mannose receptor-mediated uptake of antigens strongly enhances HLA class II-restricted antigen presentation by cultured dendritic cells. Eur. J. Immunol. 27:24262435.
82. Tanaka, Y.,, T. Imai,, M. Baba,, I. Ishikawa,, M. Uehira,, H. Nomiyama,, and O. Yoshie. 1999. Selective expression of activation-regulated chemokine in intestinal epithelium in mice and human. Eur. J. Immunol. 29:633642.
83. Thurnher, M.,, R. Ramoner,, G. Gastl,, C. Radmayr,, G. Böck,, M. Herold,, H. Klocker,, and G. Bartsch. 1997. Bacillus calmette-guérin mycobacteria stimulate human blood dendritic cells. Int. J. Cancer 70:128134.
84. Traver, D.,, K. Akashi,, M. Manz,, M. Merad,, T. Miyamoto,, E. G. Engleman,, and I. L. Weissman. 2000. Development of CD8alpha-positive dendritic cells from a common myeloid progenitor. Science 290:21522154.
85. Underhill, D. M.,, A. Ozinsky,, A. M. Hajjar,, A. Stevens,, C. B. Wilson,, M. Bassetti,, and A. Aderem. 1999.The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 401:811815.
86. Valladeau, J.,, O. Ravel,, C. Dezutter-Dambuyant,, K. Moore,, M. Kleijmeer,, Y. Liu,, V. Duvert-Frances,, C. Vincent,, D. Schmitt,, J. Davoust,, C. Caux,, S. Lebecque,, and S. Saeland. 2000. Langerin, a novel C-type lectin specific to Langerhans cells, is an endocytic receptor that induces the formation of Birbeck granules. Immunity 12:7181.
87. Vanbervliet, B.,, B. Homey,, I. Durand,, C. Massacrier,, S. Ait-Yahia,, O. de Bouteiller,, A. Vicari,, and C. Caux. 2002. Sequential involvement of CCR2 and CCR6 ligands for immature dendritic cell recruitment: possible role at inflamed epithelial surfaces. Eur. J. Immunol. 32:231242.
88. Wedemeyer, J.,, M. Tsai,, and S. J. Galli. 2000. Roles of mast cells and basophils in innate and acquired immunity. Curr. Opin. Immunol. 12:624631.
89. Weih, F.,, D. Carrasco,, S. K. Durham,, D. S. Barton,, C. A. Rizzo,, R. P. Ryseck,, S. A. Lira,, and R. Bravo. 1995. Multiorgan inflammation and hematopoietic abnormalities in mice with a targeted disruption of RelB, a member of the NF-kappa B/Rel family. Cell 80:331340.
90. Wills-Karp, M. 1999. Immunological basis of antigen-induced airway hyperresponsiveness. Annu. Rev. Immunol. 17:225281.
91. Winzler, C.,, P. Rovere,, M. Rescigno,, F. Granucci,, G. Penna,, L. Adorini,, V. S. Zimmermann,, J. Davoust,, and P. Ricciardi-Castagnoli. 1997. Maturation stages of mouse dendritic cells in growth factor-dependent long-term cultures. J. Exp. Med. 185:317328.
92. Wu, L.,, A. Nichogiannopoulou,, K. Shortman,, and K. Geogopoulos. 1997. Cell-autonomous defects in dendritic cell populations of Ikaros mutant mice point to a developmental relationship with the lymphoid lineage. Immunity 7:483492.
93. Yoshimura, A.,, E. Lien,, R. R. Ingalls,, E. Tuomanen,, R. Dziarski,, and D. Golenbock. 1999. Cutting edge: recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J. Immunol. 163:15.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error