Chapter 11 : Hospital Infections: Gram-Negative Bacteria

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Hospital Infections: Gram-Negative Bacteria, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817688/9781555812683_Chap11-1.gif /docserver/preview/fulltext/10.1128/9781555817688/9781555812683_Chap11-2.gif


In this chapter, a few key examples of gram-negative bacteria, especially those that are considered saprophytes, are highlighted in which molecular biology methods were used to elucidate the epidemiology of hospital infections. The major clinical manifestations of infections caused by gram-negative organisms include bacteremia, urinary tract infection, pneumonia, intra-abdominal infections, and surgical wound infections. The major gram-negative bacterial pathogens associated with nosocomial infections are , , , and spp. Others include spp., spp., spp., spp., and . In the current Bush-Jacoby-Medeiros classification method, β-lactamases are divided into four main groups based on their substrate activity against penicillin, carbenicillin, oxacillin, cephaloridine, cefotaxime, aztreonam, and imipenem. possesses outer membrane proteins that are part of multidrug efflux systems, which can catalyze the energy-dependent extrusion of different classes of antibiotics. Quinolone (e.g., ciprofloxacin) resistance in (as well as in other gram-negative organisms) can be mediated by mutations that occur in DNA gyrase. Genotyping tests have shown that in cystic fibrosis patients with chronic infection, a patient may harbor the same genotype for decades. Gram-negative bacteria, especially those that reside in natural environmental habitats, are nearly impossible to categorize as pathovars or nonpathovars. Nevertheless, it is clear that molecular epidemiologic approaches to studying these organisms have yielded new epidemiologic knowledge that could not have been obtained from traditional epidemiologic and laboratory methods.

Citation: Riley L. 2004. Hospital Infections: Gram-Negative Bacteria, p 281-305. In Molecular Epidemiology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817688.ch11

Key Concept Ranking

Outer Membrane Proteins
Bacterial Classification
Urinary Tract Infections
Gram-Negative Bacilli
Pulsed-Field Gel Electrophoresis
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Ambler, R. P. 1980. The structure of β-lactamases. Philos. Trans. R. Soc. Lond. Ser. B 289:321331.
2. Bernard, H.,, C. Tancrede,, V. Livrelli,, A. Morand,, M. Marthelemy,, and R. Labia. 1992. A novel plasmid-mediated extended-spectrum beta-lactamase not derived from TEM- or SHV-type enzymes. J. Antimicrob. Chemother. 29:590592.
3. Bouvet, P. J. M.,, and S. Jeanjean. 1989. Delineation of new proteolytic genomic species in the genus Acinetobacter. Res. Microbiol. 140:291299.
4. Bouvet, P. J. M.,, and P. A. D. Grimont. 1986. Taxonomy of the genus Acinetobacter with recognition of Acinetobacter baumannii sp. nov., Acinetobacter haemolyticus sp. nov., Acinetobacter johnsonii sp. nov., and Acinetobacter junii sp. nov. and emended descriptions of Acinetobacter calocoaceticus and Acinetobacter lwoffii. Int. J. Syst. Bacteriol. 36:228240.
5. Brauner, A.,, B. Kaijser,, and I. Kuhn. 1994. Recurrent Escherichia coli bacteremia—clinical characteristics and bacterial properties. J. Infect. 28:4957.
6. Bryan, C. S.,, and K. L. Reynolds. 1983. Analysis of 1,186 episodes of Gram-negative bacteremia in non-university hospitals: the effects of antimicrobial therapy. Rev. Infect. Dis. 5:629638.
7. Bush, K.,, G. A. Jacoby,, and A. A. Medeiros. 1995. A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrob. Agents Chemother. 39:12111233.
8. Capdevilla, J. A.,, B. Almirante,, A. Pahissa,, A. M Planes,, E. Ribera,, and J. M. Marinez-Vazquez. 1994. Incidence and risk factors of recurrent episodes of bacteremia in adults. Arch. Intern. Med. 154:411415.
9. Couture, F.,, J. Lachapelle,, and R. C. Levesque. 1992. Phylogeny of LCR-1 and OXA-5 with class A and class D β-lactamases. Mol. Microbiol. 6:16931705.
10. D’Agata, E. M.,, M. M. Gerrits,, Y. W. Tang,, M. Samore,, and J. G. Kusters. 2001. Comparison of pulsed-field gel electrophoresis and amplified fragment-length polymorphism for epidemiological investigations of common nosocomial pathogens. Infect. Control Hosp. Epidemiol. 22:550554.
11. D’Agata, E. M. C.,, L. Venkataraman,, P. DeGirolami,, and M. Samore. 1999. Molecular epidemiology of ceftazidime-resistant Gram-negative bacilli on inanimate surfaces and their role in cross-transmission during nonoutbreak periods. J. Clin. Microbiol. 37:30653067.
12. D’Amato, R. F.,, and H. D. Isenberg,. 1988. Enteric bacteriosis, p. 217231. In A. Balows,, W. J. Hausler, Jr.,, M. Ohashi,, and A. Turano (ed.), Laboratory Diagnosis of Infectious Diseases: Principles and Practice, vol. 1. Bacterial, Mycotic, and Parasitic Diseases. Springer-Verlag, New York, N.Y.
13. Dijkshoorn, L.,, H. M. Aucken,, P. Gerner-Smidt,, P. Janssen,, M. E. Kaufmann,, J. Garaizar,, J. Ursing,, and T. L. Pitt. 1996. Comparison of outbreak and nonoutbreak Acinetobacter baumannii strains by genotypic and phenotypic methods. J. Clin. Microbiol. 34:15191525.
14. DuPont, H. L.,, and W. W. Spink. 1969. Infections due to Gram-negative organisms: an analysis of 860 patients with bacteremia at the University of Minnesota Medical Center, 1958-1966. Medicine 48:307332.
15. Emori, T. G.,, D. H. Culver,, and T. C. Horan. 1991. National Nosocomial Infection Surveillance (NNIS) system: description of surveillance methods. Am. J. Infect. Control 19:1935.
16. Fagon, J. Y.,, J. Chastre,, A. J. Hance,, P. Montravers,, A. Novara,, and C. Gibert. 1993. Nosocomial pneumonia in ventilated patients: a cohort study evaluating attributable mortality and hospital stay. Am. J. Med. 94:281288.
17. Falcone, G.,, and M. Campa,. 1988. Diseases caused by Pseudomonas, p. 435447. In A. Balows,, W. J. Hausler, Jr.,, M. Ohashi,, and A. Turano (ed.), Laboratory Diagnosis of Infectious Diseases: Principles and Practice, vol. 1. Bacterial, Mycotic, and Parasitic Diseases. Springer-Verlag, New York, N.Y.
18. Fleming, P. C.,, M. Goldner,, and D. G. Glass. 1963. Observations on the nature, distribution, and significance of cephalosporinase. Lancet i:1399 i:13991401.
19. Fridkin, S. K.,, and R. P. Gaynes. 1999. Antimicrobial resistance in intensive care units. Clin. Chest Med. 20:303316.
20. Gales, A. C.,, H. S. Sader,, R. E. Mendes,, and R. N. Jones. 2002. Salmonella spp. isolates causing bloodstream infections in Latin America: report of antimicrobial activity from the SENTRY Antimicrobial Surveillance Program (1997-2000). Diagn. Microbiol. Infect. Dis. 44:313318.
21. Gerner-Smidt, P.,, and I. Tjernberg. 1993. Acinetobacter in Denmark. II. Molecular studies of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex. APMIS 101:826832.
22. Gold, H. S.,, and R. C. Moellering. 1996. Antimicrobial-drug resistance. N. Engl. J. Med. 335:14451453.
23. Goldstein, C.,, M. D. Lee,, S. Sanchez,, C. Hudson,, B. Phillips,, B. Register,, M. Grady,, C. Liebert,, A. O. Summers,, D. G. White,, and J. J. Maurer. 2001. Incidence of class 1 and 2 integrases in clinical and commensal bacteria from livestock, companion animals, and exotics. Antimicrob. Agents Chemother. 45:723726.
24. Grundman, H.,, C. Schneider,, D. Harung,, F. D. Daschner,, and T. L. Pitt. 1995. Discriminatory power of three DNA-based typing techniques for Pseudomonas aeruginosa. J. Clin. Microbiol. 33:528534.
25. Hall, R. M.,, and C. M. Collis. 1995. Mobile gene cassettes and integrons: capture and spread of genes by site-specific recombination. Mol. Microbiol. 15: 593600.
26. Hall, R. M.,, C. M. Collis,, M.-J. Kim,, S. R. Partridge,, G. D. Recchia,, and H. W. Stokes. 1999. Mobile gene cassettes and integrons in evolution. Ann. N. Y. Acad. Sci. 870:6880.
27. Hanberger, H.,, J.-A. Garcia-Rodriquez,, M. Governado,, H. Gossens,, L. E. Nilsson,, and M. J. Struelens. 1999. Antibiotic susceptibility among aerobic Gram-negative bacilli in intensive care units in 5 European countries. JAMA 181:6771.
28. Ispahani, P.,, N. J. Pearson,, and D. Greenwood. 1987. An analysis of community and hospital-acquired bacteremia in a large teaching hospital in the United Kingdom. Q. J. Med. 63:427440.
29. Kiska, D. L.,, and P. H. Gilligan,. 2003. Pseudomonas, p. 719728. In P. R. Murray,, E. J. Baron,, J. H. Jorgensen,, M. A. Pfaller,, and R. H. Yolken (ed.), Manual of Clinical Microbiology, 8th ed. ASM Press, Washington, D.C.
30. Klugman, K. P. 2003. The role of clonality in the global spread of fluoroquinolone-resistant bacteria. Clin. Infect. Dis. 36:783785.
31. Kohler, T.,, M. Michae-Hamzehpour,, U. Henze,, N. Gotoh,, L. K. Curty,, and J. C. Pechere. 1997. Characterization of MexE-MexF-OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa. Mol. Microbiol. 23:345354.
32. Kohler, T.,, S. F. Epp,, L. K. Curty,, and J.-C. Pechere. 1999. Characterization of MexT, the regulator of the MexE-MexF-OprN multidrug efflux system of Pseudomonas aeruginosa. J. Bacteriol. 181:63006305.
33. Kollef, M. H.,, P. Silver,, D. M. Murphy,, and E. Trovillion. 1995. The effect of late-onset ventilator-associated pneumonia in determining patient mortality. Chest 108:343349.
34. Kreger, B. E.,, D. Craven,, and W. R. McCabe. 1980. Gram negative bacteremia. IV. Re-evaluation of clinical features and treatment in 612 patients. Am. J. Med. 68:344355.
35. Li, X.,, H. Nikaido,, and K. Poole. 1995. Role of MexA-MexB-OprM in antibiotic efflux in Pseudomonas aeruginosa. J. Antimicrob. Chemother. 39:19481953.
36. Livermore, D. M. 1995. -Lactamases in laboratory and clinical resistance. Clin. Microbiol. Rev. 8:557584.
37. Livermore, D. M.,, and N. Woodford. 2000. Carbapenemases: a problem in waiting? Curr. Opin. Microbiol. 3:489495.
38. Livermore, D. M.,, and Y.-J. Yang. 1987. β-Lactamase lability and inducer power of newer -lactam antibiotics in relation to their activity against -lactamase inducibility mutants of Pseudomonas aeruginosa. J. Infect. Dis. 155:775782.
39. Lomholt, J. A.,, K. Poulsen,, and M. Kilian. 2001. Epidemic population structure of Pseudomonas aeruginosa: evidence for a clone that is pathogenic to the eye and that has a distinct combination of virulence factors. Infect. Immun. 69:62846295.
40. Maslow, J. N.,, M. E. Mulligan,, and R. D. Arbeit. 1994. Recurrent Escherichia coli bacteremia. J. Clin. Microbiol. 32:710714.
41. McCabe, W. R.,, and G. G. Jackson. 1962. Gram-negative bacteremia. I. Etiology and ecology. Arch. Intern. Med. 110:847855.
42. McGowan, J. E.,, M. W. Barnes,, and M. Finland. 1975. Bacteremia at Boston City Hospital: occurrence and mortality during 12 selected years (1935-1972), with special reference to hospital-acquired cases. J. Infect. Dis. 132:316334.
43. Mifsud, A. J.,, J. Watine,, B. Picard,, J. C. Charet,, C. Solignac-Bourrel,, and T. L. Pitt. 1997. Epidemiologically related and unrelated strains of Pseudomonas aeruginosa serotype O12 cannot be distinguished by phenotypic and genotypic typing. J. Hosp. Infect. 36:105116.
44. Mylotte, J. M.,, and C. McDermott. 1988. Recurrent gram-negative bacteremia. Am. J. Med. 85:159163.
45. Neter, E.,, O. Westphal,, O. Luderitz,, R. M. Gino,, and E. A. Gorzunski. 1955. Demonstration of antibodies against enteropathogenic Escherichia coli in sera of children of various ages. Paediatrics 16:801807.
46. Nordmann, P.,, E. Ronco,, T. Naas,, C. Duport,, C. Y. Michel-Briand,, and R. Labia. 1993. Characterization of a novel extended-spectrum -lactamase from Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 37:962969.
47. O’Brien, O. J.,, D. G. Ross,, M. A. Guzman,, A. A. Medeiros,, R. W. Hedges,, and D. Botstein. 1980. Dissemination of an antibiotic resistance plasmid in hospital patient flora. Antimicrob. Agents Chemother. 17:537543.
48. Paterson, D. L.,, L. Mulazimoglu,, J. M. Casellas,, W.-C. Ko,, H. Gossens,, A. Von Gottberg,, S. Mohapatra,, G. M. Trenholme,, K. P. Klugman,, J. G. McCormack,, and V. L. Yu. 2000. Epidemiology of ciprofloxacin resistance and its relationship to extended-spectrum β-lactamase production in Klebsiella pneumoniae isolates causing bacteremia. Clin. Infect. Dis. 30:473478.
49. Pellegrino, F. L.,, L. M. Teixeira,, M. M. G. Carvalho,, N. S. Aranha,, M. Pinto De Oliveria,, J. L. Mello Sampaio,, A. D’Avila Freitas,, A. L. Ferreira,, L. Amorim Ed Ede,, L. W. Riley,, and B. M. Moreira. 2002. Occurrence of a multidrug-resistant Pseudomonas aeruginosa clone in different hospitals in Rio de Janeiro, Brazil. J. Clin. Microbiol. 40:24202424.
50. Pessoa-Silva, C. L.,, C. M. Toscano,, B. M. Moreira,, A. L. Santos,, A. C. Frota,, C. A. Solari,, E. L. Amorim,, M. da G. Carvalho,, L. M. Teixeira,, and W. R. Jarvis. 2002. Infection due to extended-spectrum beta-lactamase-producing Salmonella enterica subsp. enterica serotype infantis in a neonatal unit. J. Pediatr. 141:381387.
51. Pfaller, M. A.,, J. Acar,, R. N. Jones,, J. Verhoef,, J. Turnidge,, and H. S. Sader. 2001. Integration of molecular characterization of microorganisms in a global antimicrobial resistance surveillance program. Clin. Infect. Dis. 32(Suppl. 2):S156S167.
52. Pirnay, J.-P.,, D. De Vos,, C. Cochez,, F. Bilocq,, A. Vanderkelen,, M. Zizi,, B. Ghysels,, and P. Cornelis. 2002. Pseudomonas aeruginosa displays an epidemic population structure. Environ. Microbiol. 4:898911.
53. Pitt, T. L.,, D. M. Livermore,, D. Pitcher,, A. C. Vatopoulos,, and N. J. Legakis. 1989. Multiresistant serotype O:12 Pseudomonas aeruginosa: evidence for a common strain in Europe. Epidemiol. Infect. 103:565576.
54. Poole, K.,, K. Krebes,, C. McNally,, and S. Neshat. 1993. Multiple antibiotic resistance in Pseudomonas aeruginosa: evidence for involvement of an efflux operon. J. Bacteriol. 175:73637372.
55. Poole, K.,, N. Gotoh,, H. Tsujimoto,, Q. Zhao,, A. Wada,, T. Yamasaki,, S. Neshat,, J. Yamagishi,, X. Z. Li,, and T. Nishino. 1996. Overexpression of the mexC-mexD-oprJ efflux operon in nfxB-type multidrug-resistant strains of Pseudomonas aeruginosa. Mol. Microbiol. 21:713724.
56. Recchia, G. D.,, and R. M. Hall. 1995. Gene cassettes: a new class of mobile elements. Microbiology 141:30153027.
57. Rello, J.,, P. Jubert,, J. Valles,, A. Artigas,, M. Rue,, and M. S. Niederman. 1996. Evaluation of outcome for intubated patients with pneumonia due to Pseudomonas aeruginosa. Clin. Infect. Dis. 23:973978.
58. Revathi, G.,, K. P. Shannon,, P. D. Stapleton,, B. K. Jain,, and G. L. French. 1998. An outbreak of extended-spectrum, beta-lactamase-producing Salmonella senftenberg in a burns ward. J. Hosp. Infect. 40:295302.
59. Robins-Browne, R. M. 1987. Traditional enteropathogenic Escherichia coli of infantile diarrhea. Rev. Infect. Dis. 9:2853.
60. Roe, E.,, and E. J. L. Lowbury. 1972. Changes in antibiotic sensitivity patterns of Gram-negative bacilli in burns. J. Clin. Pathol. 25:176178.
61. Romling, U.,, J. Wingender,, H. Muller,, and B. Tummler. 1994. A major Pseudomonas aeruginosa clone common to patients and aquatic habitats. Appl. Environ. Microbiol. 60:17341738.
62. Ruimy, R.,, E. Genauzeau,, C. Barnabe,, A. Beaulieu,, M. Tibayrenc,, and A. Andremont. 2001. Genetic diversity of Pseudomonas aeruginosa strains isolated from ventilated patients with nosocomial pneumonia, cancer patients with bacteremia, and environmental water. Infect. Immun. 69:584588.
63. Sabath, L. D. 1969. Current concepts: drug resistance of bacteria. N. Engl. J. Med. 280:9194.
64. Sader, H. S.,, A. C. Gales,, M. A. Pfaller,, R. E. Mendes,, C. Zoccoli,, A. Barth,, and R. N. Jones. 2001. Pathogen frequency and resistance patterns in Brazilian hospitals: summary of results from three years of the SENTRY Antimicrobial Surveillance Program. Braz. J. Infect. Dis. 5:200214.
65. Sanders, C. C.,, and W. E. Sanders. 1992. β-Lactam resistance in gram-negative bacteria: global trends and clinical impact. Clin. Infect. Dis. 15:824839.
66. Schaberg, D. R.,, D. H. Culver,, and R. P. Gaynes. 1991. Major trends in the microbial etiology of nosocomial infection. Am. J. Med. 91(3B):72S75S.
67. Schmitz, F.-J.,, D. Hafner,, R. Geisel,, P. Follmann,, C. Kirschke,, J. Verhoef,, K. Köhrer,, and A. C. Fluit. 2001. Increased prevalence of class I integrons in Escherichia coli, Klebsiella species, and Enterobacter species isolates over a 7-year period in a German university hospital. J. Clin. Microbiol. 39:37243726.
68. Schreckenberger, P. C.,, M. I. Daneshvar,, R. S. Weyant,, and D. G. Hollis,. 2003. Acinetobacter, Achromobacter, Chryseobacterium, Moraxella, and other nonfermentative gram-negative rods, p. 749779. In P. R. Murray,, E. J. Baron,, J. H. Jorgensen,, M. A. Pfaller,, and R. H. Yolken (ed.), Manual of Clinical Microbiology, 8th ed. ASM Press, Washington, D.C.
69. Seifert, H.,, R. Baginski,, A. Schultze,, and G. Pulverer. 1993. Antimicrobial susceptibility of Acinetobacter species. Antimicrob. Agents Chemother. 37: 750753.
70. Seigel, R. R.,, C. S. Sant’anna,, K. Salgado,, P. deJesus,, and L. W. Riley. 1996. Acute diarrhea among children from high and low socioeconomic communities in Salvador, Brazil. Int. J. Infect. Dis. 1:2834.
71. Speert, D. P. 2002. Molecular epidemiology of Pseudomonas aeruginosa. Front. Biosci. 7:e354e361.
72. Starling, C. 2001. Infection control in developing countries. Curr. Opin. Infect. Dis. 14:461466.
73. Steward, C. D.,, J. K. Racheed,, S .K. Hubert,, J. W. Biddle,, P. M. Raney,, G. J. Anderson,, P. P. Williams,, K. L. Brittain,, A. Oliver,, J. E. McGowan, Jr.,, and F. C. Tenover. 2001. Characterization of clinical isolates of Klebsiella pneumoniae from 19 laboratories using the National Committee for Clinical Laboratory Standards extended spectrum -lactamase detection methods. J. Clin. Microbiol. 39:28642872.
74. Stokes, H. W.,, and R. M. Hall. 1989. A novel family of potentially mobile DNA elements encoding site-specific gene-integration functions: integrons. Mol. Microbiol. 3:16691683.
75. Stokes, H. W.,, D. B. O’Gorman,, G. D. Recchia,, M. Parsekhian,, and R. M. Hall. 1997. Structure and function of 59-base element recombination sites associated with mobile gene cassettes. Mol. Microbiol. 26:731745.
76. Struelens, M. J.,, V. Schwam,, A. Deplano,, and D. Baran. 1993. Genome macrorestriction analysis of diversity and variability of Pseudomonas aeruginosa strains infecting cystic fibrosis patients. J. Clin. Microbiol. 31:23202326.
77. Tassios, P. T.,, V. Gennimata,, A. N. Maniatis,, C. Fock,, N. J. Legakis, and the Greek Pseudomonas aeruginosa Study Group. 1998. Emergence of multidrug resistance in ubiquitous and dominant Pseudomonas aeruginosa serogroup O:11. J. Clin. Microbiol. 36:897901.
78. Tolzis, P.,, M. J. Dul,, C. Hoyen,, A. Salvador,, M. Walsh,, L. Zetts,, and H. Tolzis. 2001. Molecular epidemiology of antibiotic-resistant Gram-negative bacilli in a neonatal intensive care unit during a nonoutbreak period. Pediatrics 108:11431148.
79. Tolzis, P.,, C. Hoyen,, S. Spinner-Block,, A. E. Salvador,, and L. B. Rice. 1999. Factors that predict preexisting colonization with antibiotic-resistant Gram-negative bacilli in patients admitted to a pediatric intensive care unit. Pediatrics 103:719723.
80. Traub, W. H.,, and B. Leonhard. 1994. Serotyping of Acinetobacter baumannii and genospecies 3: an update. Med. Microbiol. Lett. 3:120127.
81.. Walsh, T. R.,, A. P. MacGowan,, and P. M. Bennett. 1997. Sequence analysis and enzyme kinetics of the L2 serine -lactamase from Stenotrophomonas maltophilia. Antimicrob. Agents Chemother. 41:14601464.
82. Wang, F.,, D. M. Zhu,, F. P. Hu,, and Y. Y. Zhang. 2001. Surveillance of bacterial resistance among isolates in Shanghai in 1999. J. Infect. Chemother. 7:117120.
83. Watanabe, M.,, S. Iyobe,, M. Inoue,, and S. Mitsuhashi. 1991. Transferable imipenem resistance in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 35:147151.
84. Waterer, G. W.,, and R. G. Wunderink. 2001. Increasing threat of Gram-negative bacteria. Crit. Care Med. 29(4 Suppl.):N75N81.
85. Webb, E. C. (ed.). 1984. Enzyme Nomenclature, vol. 1. Academic Press, Inc., London, England.
86. Weber, S.,, M. A. Pfaller,, and L. A. Herwaldt. 1997. Role of molecular epidemiology in infection control. Infect. Dis. Clin. N. Am. 11:257278.
87. Webster, C. A.,, and K. J. Towner. 2000. Use of RAPD-ALF analysis for investigating the frequency of bacterial cross-contamination in an adult intensive care unit. J. Hosp. Infect. 44:254260.
88. Wendt, C.,, S. A. Messer,, R. J. Hollis,, M. A. Pfaller,, and L. A. Herwaldt. 1998. Epidemiology of polyclonal gram-negative bacteremia. Diagn. Microbiol. Infect. Dis. 32:913.
89. Wendt, C.,, S. A. Messer,, R. J. Hollis,, M. A. Pfaller,, R. P. Wenzel,, and L. A. Herwaldt. 1999. Molecular epidemiology of Gram-negative bacteremia. Clin. Infect. Dis. 28:605610.
90. White, P. A.,, C. J. McIver,, and W. D. Rawlinson. 2001. Integron and gene cassettes in the Enterobacteriaceae. Antimicrob. Agents Chemother. 45:26582661.
91. Wisplinghoff, H.,, M. B. Edmond,, M. A. Pfaller,, R. N. Jones,, R. P. Wenzel,, and H. Seifert. 2000. Nosocomial bloodstream infections caused by Acinetobacter species in United States hospitals: clinical features, molecular epidemiology, and antimicrobial susceptibility. Clin. Infect. Dis. 31:690697.
92. Wood, C. A.,, and A. C. Reboli. 1993. Infections caused by imipenem-resistant Acinetobacter calcoaceticus biotype anitratus. J. Infect. Dis. 168:16021603.
93. Yoshida, H.,, M. Bogaki,, M. Nakamura,, L. M. Yamanaka,, and S. Nakamura. 1991. Quinolone resistance-determining region in the DNA gyrase gyrB gene of Escherichia coli. Antimicrob. Agents Chemother. 35:16471650.
94. Yoshida, H.,, M. Nakamura,, M. Bogaki,, and S. Nakamura. 1990. Proportion of DNA gyrase mutants among quinolone-resistant strains of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 34:12731275.
95. Yu, W.-L.,, R. N. Jones,, R. J. Hollis,, S. A. Messer,, D. J. Biedenbach,, L. M. Deshpande,, and M. A. Pfaller. 2002. Molecular epidemiology of extended-spectrum β-lactamase-producing, fluoroquinolone-resistant isolates of Klebsiella pneumoniae in Taiwan. J. Clin. Microbiol. 40:46664669.


Generic image for table
Table 11.1

Classification of bacterial β-lactamases

Adapted from reference 7.

CA, clavulanic acid.

ND, not determined.

Citation: Riley L. 2004. Hospital Infections: Gram-Negative Bacteria, p 281-305. In Molecular Epidemiology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817688.ch11

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error