1887

Chapter 12 : Identifying a Pathogen's Biological Determinants of Disease Transmission

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Identifying a Pathogen's Biological Determinants of Disease Transmission, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817688/9781555812683_Chap12-1.gif /docserver/preview/fulltext/10.1128/9781555817688/9781555812683_Chap12-2.gif

Abstract:

This chapter discusses how studies of the genetic basis of infectious disease transmission are beginning to become part of the discipline of molecular epidemiology, and how these studies bridge molecular epidemiology with the discipline of infectious disease pathogenesis. The chapter provides three examples that share a common approach to the identification of new genes putatively involved in these pathogens’ distinct epidemiologic behavior. From the perspective of public health, the identification of biological factors that determine disease transmission of infectious agents may lead to the development of completely novel disease control strategies. For example, vaccines could be developed to prevent rapid progression of tuberculosis if factors responsible for this disease manifestation could be identified. With urinary tract infections (UTI) caused by ExPEC, isolates that cause a disease were compared with those that establish asymptomatic colonization. Treatment of latent infection could be offered to the contacts of index cases infected with an strain known to carry genes associated with rapidly progressive disease.

Citation: Riley L. 2004. Identifying a Pathogen's Biological Determinants of Disease Transmission, p 307-322. In Molecular Epidemiology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817688.ch12

Key Concept Ranking

Tumor Necrosis Factor alpha
0.4645202
Restriction Fragment Length Polymorphism
0.4396194
0.4645202
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555817688.chap12
1. Baumler, A. J.,, B. M. Hargis,, and R. M. Tsolis. 2000. Tracing the origins of Salmonella outbreaks. Science 287: 50 51.
2. Bishai, W. R.,, A. M. Dannenberg, Jr.,, N. Parrish,, R. Ruiz,, P. Chen,, B. C. Zook,, W. Johnson,, J. W. Boles,, and M. L. M. Pitt. 1999. Virulence of Mycobacterium tuberculosis CDC1551 and H37Rv in rabbits evaluated by Lurie’s pulmonary tubercle count method. Infect. Immun. 67: 4931 4934.
3. Bryk, R.,, C. D. Lima,, H. Erdjument-Bromage,, P. Tempst,, and C. Nathan. 2002. Metabolic enzymes of mycobacteria linked to antioxidant defense by a thioredoxinlike protein. Science 295: 1073 1077.
4. Centers for Disease Control and Prevention. 1996. Outbreaks of Salmonella serotype Enteritidis infection associated with consumption of raw shell eggs—United States, 1994-1995. Morb. Mortal. Wkly. Rep. 45: 737742.
5. Chan, J.,, Y. Xing,, R. S. Magliozzo,, and B. R. Bloom. 1992. Killing of virulent Mycobacterium tuberculosis by reactive nitrogen intermediates produced by activated murine macrophages. J. Exp. Med. 175: 1111 1122.
6. Chan, J.,, K. Tanaka,, D. Carroll,, D. Alland,, J. L. Flynn,, and R. R. Bloom. 1995. Effects of nitric oxide synthase inhibitors on murine infection with Mycobacterium tuberculosis in mice. Infect. Immun. 63: 736 740.
7. Cooper, A. M.,, D. K. Dalton,, T. A. Stewart,, J. P. Griffin,, D. G. Russell,, and I. M. Orme. 1993. Disseminated tuberculosis in interferon γ gene-disrupted mice. J. Exp. Med. 178: 2243 2247.
8. Doherty, T. M.,, A. Demissie,, J. Olobo,, D. Wolday,, S. Britton,, T. Eguale,, P. Ravn,, and P. Andersen. 2002. Immune responses to the Mycobacterium tuberculosisspecific antigen ESAT-6 signal subclinical infection among contacts of tuberculosis patients. J. Clin. Microbiol. 40: 704 706.
9. Dye, C.,, S. Scheele,, P. Dolin,, V. Pathania,, and M. C. Raviglione. 1999. Consensus statement: global burden of tuberculosis: estimated incidence, prevalence, and mortality by country: WHO Global Surveillance and Monitoring Project. JAMA 282: 677 686.
10. Ehrt, S.,, M. U. Shiloh,, J. Ruan,, M. Choi,, S. Gunzburg,, C. Nathan,, Q. W. Xie,, and L. W. Riley. 1997. A novel antioxidant gene from M. tuberculosis. J. Exp. Med. 186: 1885 1896.
11. Faine, S.,, B. Adler,, P. Perolat,, and C. A. Bolin. 1999. Leptospira and Leptospirosis, 2nd ed. MediSci, Melbourne, Australia.
12. Fang, F. C., 1999. An overview of nitric oxide in infection, p. 3 9. In F. C. Fang (ed.), Nitric Oxide and Infection. Kluwer Academic/Plenum Publishers, New York, N.Y.
13. Firmani, M. A.,, and L. W. Riley. 2002. Reactive nitrogen intermediates have a bacteriostatic effect on Mycobacterium tuberculosis in vitro. J. Clin. Microbiol. 40: 3162 3166.
14. Firmani, M. A.,, and L. W. Riley. 2002. Mycobacterium tuberculosis CDC 1551 is resistant to reactive nitrogen and oxygen intermediates in vitro. Infect. Immun. 70: 3965 3968.
15. Foxman, B.,, L. Zhang,, K. Palin,, P. Tallman,, and C. F. Marrs. 1995. Bacterial virulence characteristics of Escherichia coli isolates from first-time urinary tract infection. J. Infect. Dis. 171: 1514 1521.
16. Friedman, C. R.,, G. C. Quinn,, B. N. Kreiswirth,, D. C. Perlman,, N. Salomon,, N. Schluger,, M. Lutfey,, J. Berger,, N. Poltoratskaia,, and L. W. Riley. 1997. Widespread dissemination of a drug-susceptible strain of Mycobacterium tuberculosis. J. Infect. Dis. 176: 478 484.
17. Gast, R. D.,, and C. W. Beard. 1990. Production of Salmonella Enteritidiscontaminated eggs by experimentally infected hens. Avian Dis. 34: 438 446.
18. Guard-Petter, J.,, D. J. Henzler,, M. M. Rahaman,, and R. W. Carlson. 1997. Onfarm monitoring of mouse-invasive Salmonella enterica Serovar Enteritidis and a model for its association with the production of contaminated eggs. Appl. Env. Microbiol. 63: 1588 1593.
19. Guard-Petter, J.,, C. T. Parker,, K. Asokan,, and R. W. Carlson. 1999. Clinical and veterinary isolates of Salmonella enterica serovar Enteritidis defective in lipopolysaccharide O-chain polymerization. Appl. Environ. Microbiol. 65: 2195 2201.
20. Jerse, A. E.,, E. J. Yu,, B. D. Tall,, and J. B. Kaper. 1990. A genetic locus of enteropathogenic Escherichia coli necessary for the production of attaching and effacing lesions on tissue culture cells. Proc. Natl. Acad. Sci. USA 87: 7839 7843.
21. Keller, L. H.,, D. M. Schifferli,, C. E. Benson,, S. Aslam,, and R. J. Eckroade. 1997. Invasion of chicken reproductive tissues and forming eggs is not unique to S. Enteritidis. Avian Dis. 41: 535 539.
22. Kelley, C. L.,, and F. M. Collins. 1999. Growth of a highly virulent strain of Mycobacterium tuberculosis in mice of differing susceptibility to tuberculous challenge. Tuber. Lung Dis. 79: 367 370.
23. Lu, S.,, P. B. Killoran,, and L. W. Riley. 2003. Association of Salmonella enterica serovar Enteritidis YafD with chicken egg albumen resistance. Infect. Immun. 71: 6734 6741.
24. MacMicking, J. D.,, R. J. North,, R. LaCource,, J. S. Mudgett,, S. K. Shah,, and C. F. Nathan. 1997. Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc. Natl. Acad. Sci. USA 94: 5243 5248.
25. Manca, C.,, L. Tsenova,, C. E. Barry III,, A. Bergtold,, S. Freeman,, P. A. J. Haslett,, J. M. Musser,, V. H. Freeman,, and G. Kaplan. 1999. Mycobacterium tuberculosis CDC1551 induces a more vigorous host response in vivo and in vitro, but it is not more virulent than other clinical isolates. J. Immunol. 162: 6740 6746.
26. Marshall, R. B. 1976. The route of entry of leptospires into the kidney tubule. J. Med. Microbiol. 9: 149 154.
27. Master, S. S.,, B. Springer,, P. Sander,, E. C. Boettger,, V. Deretic,, and G. S. Timmins. 2002. Oxidative stress response genes in Mycobacterium tuberculosis: role of ahpC in resistance to peroxynitrite and stage-specific survival in macrophages. Microbiology 148: 3139 3144.
28. Mead, P. S.,, L. Slutsker,, V. Dietz,, L. F. McCaig,, J. S. Bresee,, C. Shapiro,, P. M. Griffin,, and R. V. Tauxe. 1999. Food-related illness and death in the United States. Emerg. Infect. Dis. 5: 607 625.
29. Nataro, J. P.,, M. M. Baldini,, J. P. Kaper,, R. E. Black,, N. Bravo,, and M. M. Levine. 1985. Detection of an adherence factor in enteropathogenic Escherichia coli with a DNA probe. J. Infect. Dis. 152: 560 565.
30. Nathan, C.,, and S. Ehrt,. Nitric oxide in tuberculosis. In W. N. Rom, and S. Garay (ed.), Tuberculosis, 2nd ed., in press. Lippincott Williams & Wilkins, Philadelphia, Pa.
31. O’Brien, L.,, J. Carmichael,, D. B. Lowrie,, and P. W. Andrews. 1994. Strains of Mycobacterium tuberculosis differ in susceptibility to reactive nitrogen intermediates in vitro. Infect. Immun. 62: 5187 5190.
32. Olsen, S. J.,, L. C. MacKinnon,, J. S. Goulding,, N. H. Bean,, and L. Slutsker. 2000. Surveillance for foodborne-disease outbreaks—United States, 1993-1997. Morb. Mortal. Wkly. Rep. CDC Surveill. Summ. 49(SS-1): 1 62.
33. Orme, I. M. 1999. Virulence of recent notorious Mycobacterium tuberculosis isolates. Tuber. Lung Dis. 79: 379 381.
34. Rhoades, E. R.,, and I. M. Orme. 1997. Susceptibility of a panel of virulent strains of Mycobacterium tuberculosis to reactive nitrogen intermediates. Infect. Immun. 65: 1189 1195.
35. Ruan, J.,, G. St. John, S. Ehrt, L. W. Riley, and C. Nathan. 1999. noxR3, a novel gene from Mycobacterium tuberculosis, protects Salmonella Typhimurium from nitrosative and oxidative stress. Infect. Immun. 67: 3276 3283.
36. Scanga, C. A.,, V. P. Mohan,, K. Tanaka,, D. Alland,, J. L. Flynn,, and J. Chan. 2001. The inducible nitric oxide synthase locus confers protection against aerosol challenge of both clinical and laboratory strains of Mycobacterium tuberculosis in mice. Infect. Immun. 69: 7711 7717.
37. Schneemann, M.,, G. Shoendon,, S. Hofer,, N. Blau,, L. Guerrero,, and A. Schaffner. 1993. Nitric oxide synthase is not a constituent of the antimicrobial armature of human mononuclear phagocytes. J. Infect. Dis. 167: 1358 1363.
38. Thoma-Uszynski, S.,, S. Stenger,, O. Takeuchi,, M. T. Ochoa,, M. Engele,, P. A. Sieling,, P. F. Barnes,, M. Rollinghoff,, P. L. Bolcskei,, M. Wagner,, S. Akira,, M. V. Norgard,, J. T. Belisle,, P. J. Godowski,, B. R. Bloom,, and R. L. Modlin. 2001. Induction of direct antimicrobial activity through mammalian toll-like receptors. Science 291: 1544 1547.
39. U.S. Department of Agriculture. 1998. Salmonella Enteritidis Risk Assessment for Shell Eggs and Egg Products. Final Report, June 12, 1998. Food Safety and Inspection Service, U.S. Department of Agriculture, Washington, D.C.
40. Valway, S. E.,, M. P. Sanchez,, T. F. Shinnick,, I. Orme,, T. Agerton,, D. Hoy,, J. S. Jones,, H. Westmoreland,, and I. M. Onorato. 1998. An outbreak involving extensive transmission of a virulent strain of Mycobacterium tuberculosis. N. Engl. J. Med. 338: 633 639.
41. Zhang, L. 1999. Molecular epidemiology of uropathogenic Escherichia coli. Ph.D. dissertation. University of Michigan, Ann Arbor.
42. Zhang, L.,, B. Foxman,, S. D. Manning,, P. Tallman,, and C. F. Marrs. 2000. Molecular epidemiologic approaches to urinary tract infection gene discovery in uropathogenic Escherichia coli. Infect. Immun. 68: 2009 2015.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error