1887

Chapter 12 : Identifying a Pathogen's Biological Determinants of Disease Transmission

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Identifying a Pathogen's Biological Determinants of Disease Transmission, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817688/9781555812683_Chap12-1.gif /docserver/preview/fulltext/10.1128/9781555817688/9781555812683_Chap12-2.gif

Abstract:

This chapter discusses how studies of the genetic basis of infectious disease transmission are beginning to become part of the discipline of molecular epidemiology, and how these studies bridge molecular epidemiology with the discipline of infectious disease pathogenesis. The chapter provides three examples that share a common approach to the identification of new genes putatively involved in these pathogens’ distinct epidemiologic behavior. From the perspective of public health, the identification of biological factors that determine disease transmission of infectious agents may lead to the development of completely novel disease control strategies. For example, vaccines could be developed to prevent rapid progression of tuberculosis if factors responsible for this disease manifestation could be identified. With urinary tract infections (UTI) caused by ExPEC, isolates that cause a disease were compared with those that establish asymptomatic colonization. Treatment of latent infection could be offered to the contacts of index cases infected with an strain known to carry genes associated with rapidly progressive disease.

Citation: Riley L. 2004. Identifying a Pathogen's Biological Determinants of Disease Transmission, p 307-322. In Molecular Epidemiology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817688.ch12

Key Concept Ranking

Tumor Necrosis Factor alpha
0.4645202
Restriction Fragment Length Polymorphism
0.4396194
0.4645202
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555817688.chap12
1. Baumler, A. J.,, B. M. Hargis,, and R. M. Tsolis. 2000. Tracing the origins of Salmonella outbreaks. Science 287:5051.
2. Bishai, W. R.,, A. M. Dannenberg, Jr.,, N. Parrish,, R. Ruiz,, P. Chen,, B. C. Zook,, W. Johnson,, J. W. Boles,, and M. L. M. Pitt. 1999. Virulence of Mycobacterium tuberculosis CDC1551 and H37Rv in rabbits evaluated by Lurie’s pulmonary tubercle count method. Infect. Immun. 67:49314934.
3. Bryk, R.,, C. D. Lima,, H. Erdjument-Bromage,, P. Tempst,, and C. Nathan. 2002. Metabolic enzymes of mycobacteria linked to antioxidant defense by a thioredoxinlike protein. Science 295:10731077.
4.Centers for Disease Control and Prevention. 1996. Outbreaks of Salmonella serotype Enteritidis infection associated with consumption of raw shell eggs—United States, 1994-1995. Morb. Mortal. Wkly. Rep. 45:737742.
5. Chan, J.,, Y. Xing,, R. S. Magliozzo,, and B. R. Bloom. 1992. Killing of virulent Mycobacterium tuberculosis by reactive nitrogen intermediates produced by activated murine macrophages. J. Exp. Med. 175:11111122.
6. Chan, J.,, K. Tanaka,, D. Carroll,, D. Alland,, J. L. Flynn,, and R. R. Bloom. 1995. Effects of nitric oxide synthase inhibitors on murine infection with Mycobacterium tuberculosis in mice. Infect. Immun. 63:736740.
7. Cooper, A. M.,, D. K. Dalton,, T. A. Stewart,, J. P. Griffin,, D. G. Russell,, and I. M. Orme. 1993. Disseminated tuberculosis in interferon γ gene-disrupted mice. J. Exp. Med. 178:22432247.
8. Doherty, T. M.,, A. Demissie,, J. Olobo,, D. Wolday,, S. Britton,, T. Eguale,, P. Ravn,, and P. Andersen. 2002. Immune responses to the Mycobacterium tuberculosisspecific antigen ESAT-6 signal subclinical infection among contacts of tuberculosis patients. J. Clin. Microbiol. 40:704706.
9. Dye, C.,, S. Scheele,, P. Dolin,, V. Pathania,, and M. C. Raviglione. 1999. Consensus statement: global burden of tuberculosis: estimated incidence, prevalence, and mortality by country: WHO Global Surveillance and Monitoring Project. JAMA 282:677686.
10. Ehrt, S.,, M. U. Shiloh,, J. Ruan,, M. Choi,, S. Gunzburg,, C. Nathan,, Q. W. Xie,, and L. W. Riley. 1997. A novel antioxidant gene from M. tuberculosis. J. Exp. Med. 186:18851896.
11. Faine, S.,, B. Adler,, P. Perolat,, and C. A. Bolin. 1999. Leptospira and Leptospirosis, 2nd ed. MediSci, Melbourne, Australia.
12. Fang, F. C., 1999. An overview of nitric oxide in infection, p. 39. In F. C. Fang (ed.), Nitric Oxide and Infection. Kluwer Academic/Plenum Publishers, New York, N.Y.
13. Firmani, M. A.,, and L. W. Riley. 2002. Reactive nitrogen intermediates have a bacteriostatic effect on Mycobacterium tuberculosis in vitro. J. Clin. Microbiol. 40:31623166.
14. Firmani, M. A.,, and L. W. Riley. 2002. Mycobacterium tuberculosis CDC 1551 is resistant to reactive nitrogen and oxygen intermediates in vitro. Infect. Immun. 70:39653968.
15. Foxman, B.,, L. Zhang,, K. Palin,, P. Tallman,, and C. F. Marrs. 1995. Bacterial virulence characteristics of Escherichia coli isolates from first-time urinary tract infection. J. Infect. Dis. 171:15141521.
16. Friedman, C. R.,, G. C. Quinn,, B. N. Kreiswirth,, D. C. Perlman,, N. Salomon,, N. Schluger,, M. Lutfey,, J. Berger,, N. Poltoratskaia,, and L. W. Riley. 1997. Widespread dissemination of a drug-susceptible strain of Mycobacterium tuberculosis. J. Infect. Dis. 176:478484.
17. Gast, R. D.,, and C. W. Beard. 1990. Production of Salmonella Enteritidiscontaminated eggs by experimentally infected hens. Avian Dis. 34:438446.
18. Guard-Petter, J.,, D. J. Henzler,, M. M. Rahaman,, and R. W. Carlson. 1997. Onfarm monitoring of mouse-invasive Salmonella enterica Serovar Enteritidis and a model for its association with the production of contaminated eggs. Appl. Env. Microbiol. 63:15881593.
19. Guard-Petter, J.,, C. T. Parker,, K. Asokan,, and R. W. Carlson. 1999. Clinical and veterinary isolates of Salmonella enterica serovar Enteritidis defective in lipopolysaccharide O-chain polymerization. Appl. Environ. Microbiol. 65:21952201.
20. Jerse, A. E.,, E. J. Yu,, B. D. Tall,, and J. B. Kaper. 1990. A genetic locus of enteropathogenic Escherichia coli necessary for the production of attaching and effacing lesions on tissue culture cells. Proc. Natl. Acad. Sci. USA 87:78397843.
21. Keller, L. H.,, D. M. Schifferli,, C. E. Benson,, S. Aslam,, and R. J. Eckroade. 1997. Invasion of chicken reproductive tissues and forming eggs is not unique to S. Enteritidis. Avian Dis. 41:535539.
22. Kelley, C. L.,, and F. M. Collins. 1999. Growth of a highly virulent strain of Mycobacterium tuberculosis in mice of differing susceptibility to tuberculous challenge. Tuber. Lung Dis. 79:367370.
23. Lu, S.,, P. B. Killoran,, and L. W. Riley. 2003. Association of Salmonella enterica serovar Enteritidis YafD with chicken egg albumen resistance. Infect. Immun. 71:67346741.
24. MacMicking, J. D.,, R. J. North,, R. LaCource,, J. S. Mudgett,, S. K. Shah,, and C. F. Nathan. 1997. Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc. Natl. Acad. Sci. USA 94:52435248.
25. Manca, C.,, L. Tsenova,, C. E. Barry III,, A. Bergtold,, S. Freeman,, P. A. J. Haslett,, J. M. Musser,, V. H. Freeman,, and G. Kaplan. 1999. Mycobacterium tuberculosis CDC1551 induces a more vigorous host response in vivo and in vitro, but it is not more virulent than other clinical isolates. J. Immunol. 162:67406746.
26. Marshall, R. B. 1976. The route of entry of leptospires into the kidney tubule. J. Med. Microbiol. 9:149154.
27. Master, S. S.,, B. Springer,, P. Sander,, E. C. Boettger,, V. Deretic,, and G. S. Timmins. 2002. Oxidative stress response genes in Mycobacterium tuberculosis: role of ahpC in resistance to peroxynitrite and stage-specific survival in macrophages. Microbiology 148:31393144.
28. Mead, P. S.,, L. Slutsker,, V. Dietz,, L. F. McCaig,, J. S. Bresee,, C. Shapiro,, P. M. Griffin,, and R. V. Tauxe. 1999. Food-related illness and death in the United States. Emerg. Infect. Dis. 5:607625.
29. Nataro, J. P.,, M. M. Baldini,, J. P. Kaper,, R. E. Black,, N. Bravo,, and M. M. Levine. 1985. Detection of an adherence factor in enteropathogenic Escherichia coli with a DNA probe. J. Infect. Dis. 152:560565.
30. Nathan, C.,, and S. Ehrt,. Nitric oxide in tuberculosis. In W. N. Rom, and S. Garay (ed.), Tuberculosis, 2nd ed., in press. Lippincott Williams & Wilkins, Philadelphia, Pa.
31. O’Brien, L.,, J. Carmichael,, D. B. Lowrie,, and P. W. Andrews. 1994. Strains of Mycobacterium tuberculosis differ in susceptibility to reactive nitrogen intermediates in vitro. Infect. Immun. 62:51875190.
32. Olsen, S. J.,, L. C. MacKinnon,, J. S. Goulding,, N. H. Bean,, and L. Slutsker. 2000. Surveillance for foodborne-disease outbreaks—United States, 1993-1997. Morb. Mortal. Wkly. Rep. CDC Surveill. Summ. 49(SS-1):162.
33. Orme, I. M. 1999. Virulence of recent notorious Mycobacterium tuberculosis isolates. Tuber. Lung Dis. 79:379381.
34. Rhoades, E. R.,, and I. M. Orme. 1997. Susceptibility of a panel of virulent strains of Mycobacterium tuberculosis to reactive nitrogen intermediates. Infect. Immun. 65:11891195.
35. Ruan, J.,, G. St. John, S. Ehrt, L. W. Riley, and C. Nathan. 1999. noxR3, a novel gene from Mycobacterium tuberculosis, protects Salmonella Typhimurium from nitrosative and oxidative stress. Infect. Immun. 67:32763283.
36. Scanga, C. A.,, V. P. Mohan,, K. Tanaka,, D. Alland,, J. L. Flynn,, and J. Chan. 2001. The inducible nitric oxide synthase locus confers protection against aerosol challenge of both clinical and laboratory strains of Mycobacterium tuberculosis in mice. Infect. Immun. 69:77117717.
37. Schneemann, M.,, G. Shoendon,, S. Hofer,, N. Blau,, L. Guerrero,, and A. Schaffner. 1993. Nitric oxide synthase is not a constituent of the antimicrobial armature of human mononuclear phagocytes. J. Infect. Dis. 167:13581363.
38. Thoma-Uszynski, S.,, S. Stenger,, O. Takeuchi,, M. T. Ochoa,, M. Engele,, P. A. Sieling,, P. F. Barnes,, M. Rollinghoff,, P. L. Bolcskei,, M. Wagner,, S. Akira,, M. V. Norgard,, J. T. Belisle,, P. J. Godowski,, B. R. Bloom,, and R. L. Modlin. 2001. Induction of direct antimicrobial activity through mammalian toll-like receptors. Science 291: 15441547.
39.U.S. Department of Agriculture. 1998. Salmonella Enteritidis Risk Assessment for Shell Eggs and Egg Products. Final Report, June 12, 1998. Food Safety and Inspection Service, U.S. Department of Agriculture, Washington, D.C.
40. Valway, S. E.,, M. P. Sanchez,, T. F. Shinnick,, I. Orme,, T. Agerton,, D. Hoy,, J. S. Jones,, H. Westmoreland,, and I. M. Onorato. 1998. An outbreak involving extensive transmission of a virulent strain of Mycobacterium tuberculosis. N. Engl. J. Med. 338:633639.
41. Zhang, L. 1999. Molecular epidemiology of uropathogenic Escherichia coli. Ph.D. dissertation. University of Michigan, Ann Arbor.
42. Zhang, L.,, B. Foxman,, S. D. Manning,, P. Tallman,, and C. F. Marrs. 2000. Molecular epidemiologic approaches to urinary tract infection gene discovery in uropathogenic Escherichia coli. Infect. Immun. 68:20092015.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error