1887

Chapter 10 : A Sticky Business: the Extracellular Polymeric Substance Matrix of Bacterial Biofilms

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

A Sticky Business: the Extracellular Polymeric Substance Matrix of Bacterial Biofilms, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817718/9781555818944_Chap10-1.gif /docserver/preview/fulltext/10.1128/9781555817718/9781555818944_Chap10-2.gif

Abstract:

This chapter is divided into two sections. The first section addresses the different types of biopolymers, which represent the primary components of the extracellular polymeric substances (EPS) matrix. The second section discusses the different functions that EPS has shown or suggested to have in biofilm communities. This section describes some of the different biological macromolecules found in EPS. The chapter discusses two classes of proteins that have been suggested to play a biofilm-specific role in the context of EPS. Lectins are usually associated with cell surface structures, such as pili, peptidoglycan, and the outer membrane of gram-negative bacteria. Alginate lyases constitute a large group of enzymes found in several bacterial species. The biological function of these enzymes depends on the organism and is unclear in certain cases. In general, two functions can be carried out by these enzymes. The first is in eps biosynthesis, where these enzymes process the growing polymer and can regulate chain length. The second is in eps utilization. In this case, enzymatic activity is used to break down eps polymers for use as carbon and energy substrates for growth. Where there are electrostatic repulsive interactions, attachment can occur due to van der Waals interactions, H-bonding, hydrophobic interactions, and specific chemical interactions (such as complexation). The interplay between attractive and repulsive forces is governed by thermodynamics and is described by the landmark Derjaguin Landau-Verwey-Overbeek (DLVO) theory. As research of biofilm communities and EPS continues to advance, specific therapies for biofilm infections and biotechnology applications may emerge.

Citation: Starkey M, Parsek M, Gray K, Chang S. 2004. A Sticky Business: the Extracellular Polymeric Substance Matrix of Bacterial Biofilms, p 174-191. In Ghannoum M, O'Toole G (ed), Microbial Biofilms. ASM Press, Washington, DC. doi: 10.1128/9781555817718.ch10
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

A scanning electron microscopic view of VP-6 attached to a glass coverslip at its pole by means of its holdfast. Bar, 1 μm. Reproduced with permission from Langille and Weiner, 1998.

Citation: Starkey M, Parsek M, Gray K, Chang S. 2004. A Sticky Business: the Extracellular Polymeric Substance Matrix of Bacterial Biofilms, p 174-191. In Ghannoum M, O'Toole G (ed), Microbial Biofilms. ASM Press, Washington, DC. doi: 10.1128/9781555817718.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Comparative scanning confocal micrographs of nonmucoid and mucoid biofilms grown in a flow chamber apparatus. On the left is a nonmucoid wild-type strain of (PAO1) and on the right is a strain bearing a mutation in the gene rendering it mucoid (PDO300). The cells are constitutively tagged with green fluorescent protein. The large micrograph in the upper left of each panel represents a top-down view of the biofilm. A side view of the biofilm is presented below and to the right of each top-down view. Bar, 20 μm. Reprinted with permission from Hentzer et al., 2001.

Citation: Starkey M, Parsek M, Gray K, Chang S. 2004. A Sticky Business: the Extracellular Polymeric Substance Matrix of Bacterial Biofilms, p 174-191. In Ghannoum M, O'Toole G (ed), Microbial Biofilms. ASM Press, Washington, DC. doi: 10.1128/9781555817718.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

FIGURE 3 Scanning confocal micrographs of smooth (left) and rugrose (right) variants of 01 El Tor. The micrographs above show a top-down view of the biofilm and the micrographs below show side views of the biofilm. Bar, 10 μm. Reproduced with permission from Yildiz and Schoolnik, 1999.

Citation: Starkey M, Parsek M, Gray K, Chang S. 2004. A Sticky Business: the Extracellular Polymeric Substance Matrix of Bacterial Biofilms, p 174-191. In Ghannoum M, O'Toole G (ed), Microbial Biofilms. ASM Press, Washington, DC. doi: 10.1128/9781555817718.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817718.chap10
1. Aarons, S. J.,, I. W. Sutherland,, A. M. Chakrabarty,, and M. P. Gallagher. 1997. A novel gene, algK, from the alginate biosynthesis cluster of Pseudomonas aeruginosa. Microbiology 143(Part 2):641652.
2. Allison, D. G.,, B. Ruiz,, C. San Jose,, A. Jaspe,, and P. Gilbert. 1998. Extracellular products as mediators of the formation and detachment of Pseudomonas fluorescens biofilms. FEMS Microbiol. Lett. 167:179184.
3. Anderl, J. N.,, M. J. Franklin,, and P. S. Stewart. 2000. Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob. Agents Chemother. 44:18181824.
4. Beenken, K. E.,, J. S. Blevins,, and M. S. Smeltzer. 2003. Mutation of sarA in Staphylococcus aureaus limits biofilm formation. Infect. Immun. 71:42064211.
5. Bellemann, P.,, and K. Geider. 1992. Localization of transposon insertions in pathogenicity mutants of Erwinia amylovora and their biochemical characterization. J. Gen. Microbiol. 138(Part 5):931940.
6. Bomchil, N.,, P., Watnick,, and R. Kolter. 2003. Identification and characterization of a Vibrio cholerae gene, mbaA, involved in maintenance of biofilm architecture. J. Bacteriol. 185:13841390.
7. Bourgeau, G.,, and B. C. McBride. 1976. Dextranmediated interbacterial aggregation between dextran-synthesizing streptococci and Actinomyces viscosus. Infect. Immun. 13:12281234.
8. Boyd, A.,, and A. M. Chakrabarty. 1995. Pseudomonas aeruginosa biofilms: role of the alginate exopolysaccharide. J. Ind. Microbiol. 15:162168.
9. Chang, S. I.,, K. A. Gray,, and M. R. Parsek. 2003. Qualitative and quantitative analysis of the extracellular DNA from Pseudomonas aeruginosa biofilms by pyrolysis/GC/MS. . .
10. Christensen, B. B.,, C. Sternberg,, J. B. Andersen,, L. Eberl,, S. Moller,, M. Givskov,, and S. Molin. 1998. Establishment of new genetic traits in a microbial biofilm community. Appl. Environ. Microbiol. 64:22472255.
11. Christensen, B. E. 1989. The role of extracellular polysaccharides in biofilms. J. Biotechnol. 10:181182.
12. Christensen, B. E.,, J. Kjosbakken,, and O. Smidsrod. 1985. Partial chemical and physical characterization of two extracellular polysaccharides produced by marine, periphytic Pseudomonas sp. strain NCMB 2021. Appl. Environ. Microbiol. 50:837845.
13. Chu, L.,, T. B. May,, A. M. Chakrabarty,, and T. K. Misra. 1991. Nucleotide sequence and expression of the algE gene involved in alginate biosynthesis by Pseudomonas aeruginosa. Gene 107: 110.
14. Conlon, K. M.,, H. Humphreys,, and J. P. O’Gara. 2002. icaR encodes a transcriptional repressor involved in environmental regulation of ica operon expression and biofilm formation in Staphylococcus epidermidis. J. Bacteriol. 184:44004408.
15. Costerton, J. W.,, Z. Lewandowski,, D. E. Caldwell,, D. R. Korber,, and H. M. Lappin-Scott. 1995. Microbiol biofilms. Annu. Rev. Microbiol. 49:711745.
16. Costerton, J. W.,, P. S. Stewart,, and E. P. Greenberg. 1999. Bacterial biofilms: a common cause of persistent infections. Science 284:13181322.
17. Cramton, S. E.,, M. Ulrich,, F. Gotz,, and G. Doring. 2001. Anaerobic conditions induce expression of polysaccharide intercellular adhesin in Staphylococcus aureus and Staphylococcus epidermidis. Infect. Immun. 69:40794085.
18. Danese, P. N.,, L. A. Pratt,, and R. Kolter. 2000. Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture. J. Bacteriol. 182:35933596.
19. Davey, M. E.,, N. C. Caiazza,, and G. A. O’Toole. 2003. Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J. Bacteriol. 185:10271036.
20. Deretic, V.,, R. Dikshit,, W. M. Konyecsni,, A. M. Chakrabarty,, and T. K. Misra. 1989. The algR gene, which regulates mucoidy in Pseudomonas aeruginosa, belongs to a class of environmentally responsive genes. J. Bacteriol. 171:12781283.
21. Deretic, V.,, and W. M. Konyecsni. 1989. Control of mucoidy in Pseudomonas aeruginosa: transcriptional regulation of algR and identification of the second regulator gene, algQ. J. Bacteriol. 171: 36803688.
22. Fey, P. D.,, J. S. Ulphani,, F. Gotz,, C. Heilmann,, D. Mack,, and M. E. Rupp. 1999. Characterization of the relationship between polysaccharide intercellular adhesin and hemagglutination in Staphylococcus epidermidis. J. Infect. Dis. 179:15611564.
23. Fiorina, J. C.,, M. Weber,, and J. C. Block. 2000. Occurrence of lectins and hydrophobicity of bacteria obtained from biofilm of hospital catheters and water pipes. J. Appl. Microbiol. 89:494500.
24. Fletcher, M.,, and G. D. Floodgate. 1973. An electron-microscopic demonstration of an acidic polysaccharide involved in the adhesion of a marine bacterium to solid surfaces. J. Gen. Microbiol. 74:325334.
25. Franklin, M. J.,, C. E. Chitnis,, P. Gacesa,, A. Sonesson,, D. C. White,, and D. E. Ohman. 1994. Pseudomonas aeruginosa AlgG is a polymer level alginate C5-mannuronan epimerase. J. Bacteriol. 176:18211830.
26. Franklin, M. J.,, and D. E. Ohman. 1993. Identification of algF in the alginate biosynthetic gene cluster of Pseudomonas aeruginosa which is required for alginate acetylation. J. Bacteriol. 175:50575065.
27. Franklin, M. J.,, and D. E. Ohman. 1996. Identification of algI and algJ in the Pseudomonas aeruginosa alginate biosynthetic gene cluster which are required for alginate O acetylation. J. Bacteriol. 178:21862195.
28. Franklin, M. J.,, and D. E. Ohman. 2002. Mutant analysis and cellular localization of the AlgI, AlgJ, and AlgF proteins required for O acetylation of alginate in Pseudomonas aeruginosa. J. Bacteriol. 184: 30003007.
29. Gerke, C.,, A. Kraft,, R. Sussmuth,, O. Schweitzer,, and F. Gotz. 1998. Characterization of the N-acetylglucosaminyltransferase activity involved in the biosynthesis of the Staphylococcus epidermidis polysaccharide intercellular adhesin. J. Biol. Chem. 273:1858618593.
30. Gilboa-Garber, N. 1972. Purification and properties of hemagglutinin from Pseudomonas aeruginosa and its reaction with human blood cells. Biochim. Biophys. Acta 273:165173.
31. Gilboa-Garber, N.,, L. Mizrahi,, and N. Garber. 1977. Mannose-binding hemagglutinins in extracts of Pseudomonas aeruginosa. Can. J. Biochem. 55:975981.
32. Gilligan, P. H. 1991. Microbiology of airway disease in patients with cystic fibrosis. Clin. Microbiol. Rev. 4:3551.
33. Goldberg, J. B.,, and T. Dahnke. 1992. Pseudomonas aeruginosa AlgB, which modulates the expression of alginate, is a member of the NtrC subclass of prokaryotic regulators. Mol. Microbiol. 6:5966.
34. Gomez-Suarez, C.,, J. Pasma,, A. J. van der Borden,, J. Wingender,, H. C. Flemming,, H. J. Busscher,, and H. C. van der Mei. 2002. Influence of extracellular polymeric substances on deposition and redeposition of Pseudomonas aeruginosa to surfaces. Microbiology 148:11611169.
35. Gotz, F. 2002. Staphylococcus and biofilms. Mol. Microbiol. 43:13671378.
36. Govan, J. R.,, and V. Deretic. 1996. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol. Rev. 60:539574.
37. Hanna, A.,, M. Berg,, V. Stout,, and A. Razatos. 2003. Role of capsular colanic acid in adhesion of uropathogenic Escherichia coli. Appl. Environ. Microbiol. 69:44744481.
38. Hausner, M.,, and S. Wuertz. 1999. High rates of conjugation in bacterial biofilms as determined by quantitative in situ analysis. Appl. Environ. Microbiol. 65:37103713.
39. Heilmann, C.,, O. Schweitzer,, C. Gerke,, N. Vanittanakom,, D. Mack,, and F. Gotz. 1996. Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Mol. Microbiol. 20:10831091.
40. Hentzer, M.,, G. M. Teitzel,, G. J. Balzer,, A. Heydorn,, S. Molin,, M. Givskov,, and M. R. Parsek. 2001. Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J. Bacteriol. 183:53955401.
41. Hershberger, C. D.,, R. W. Ye,, M. R. Parsek,, Z. D. Xie,, and A. M. Chakrabarty. 1995. The algT (algU) gene of Pseudomonas aeruginosa, a key regulator involved in alginate biosynthesis, encodes an alternative sigma factor (sigma E) Proc. Natl. Acad. Sci. USA 92:79417945.
42. Jahn, A.,, and P. H. Nielsen. 1998. Cell biomass and exopolymer composition in sewer biofilms. Water Sci. Technol. 37:1724.
43. Jang, A.,, S. M. Kim,, S. Y. Kim,, S. G. Lee,, and I. S. Kim. 2001. Effects of heavy metals (Cu, Pb, and Ni) on the compositions of EPS in biofilms. Water Sci. Technol. 43:4148.
44. John, M.,, H. Rohrig,, J. Schmidt,, U. Wieneke,, and J. Schell. 1993. Rhizobium NodB protein involved in nodulation signal synthesis is a chitooligosaccharide deacetylase. Proc. Natl. Acad. Sci. USA 90:625629.
45. Kao, C. C.,, E. Barlow,, and L. Sequeira. 1992. Extracellular polysaccharide is required for wildtype virulence of Pseudomonas solanacearum. J. Bacteriol. 174:10681071.
46. Karthikeyan, S.,, and T. J. Beveridge. 2002. Pseudomonas aeruginosa biofilms react with and precipitate toxic soluble gold. Environ. Microbiol. 4: 667675.
47. Kato, J.,, T. K. Misra,, and A. M. Chakrabarty. 1990. AlgR3, a protein resembling eukaryotic histone H1, regulates alginate synthesis in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 87: 28872891.
48. Kennedy, L.,, K. R. McDowell,, and I. W. Sutherland. 1992. Alginases from azotobacter species. J. Gen. Microbiol. 138:24652471.
49. Kidambi, S. P.,, G. W. Sundin,, D. A. Palmer,, A. M. Chakrabarty,, and C. L. Bender. 1995. Copper as a signal for alginate synthesis in Pseudomonas syringae pv. syringae. Appl. Environ. Microbiol. 61:21722179.
50. Knobloch, J. K.,, K. Bartscht,, A. Sabottke,, H. Rohde,, H. H. Feucht,, and D. Mack. 2001. Biofilm formation by Staphylococcus epidermidis depends on functional RsbU, an activator of the sigB operon: differential activation mechanisms due to ethanol and salt stress. J. Bacteriol. 183: 26242633.
51. Langille, S. E.,, and R. M. Weiner. 1998. Spatial and temporal deposition of hyphomonas strain VP-6 capsules involved in biofilm formation. Appl. Environ. Microbiol. 64:29062913.
52. Lawman, P.,, and A. S. Bleiweis. 1991. Molecular cloning of the extracellular endodextranase of Streptococcus salivarius. J. Bacteriol. 173:74237428.
53. Leid, J. G.,, M. E. Shirtliff,, J. W. Costerton,, and A. P. Stoodley. 2002. Human leukocytes adhere to, penetrate, and respond to Staphylococcus aureus biofilms. Infect. Immun. 70:63396345.
54. Ma, M.,, and J. W. Eaton. 1992. Multicellular oxidant defense in unicellular organisms. Proc. Natl. Acad. Sci. USA 89:79247928.
55. Ma, S.,, D. J. Wozniak,, and D. E. Ohman. 1997. Identification of the histidine protein kinase KinB in Pseudomonas aeruginosa and its phosphorylation of the alginate regulator algB. J. Biol. Chem. 272:1795217960.
56. Mack, D.,, W. Fisher,, A. Krokotsch,, K. Leopold,, R. Hartmann,, H. Egge,, and R. Laufs. 1996. The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear beta-1,6-linked glucosaminoglycan: purification and structural analysis. J. Bacteriol. 178:175183.
57. Mack, D. J.,, Riedewald, , H. Rohde, , T. Magnus, , H. H. Feucht, , H. A. Elsner, , R. Laufs, , and M. E. Rupp. 1999. Essential functional role of the polysaccharide intercellular adhesin of Staphylococcus epidermidis in hemagglutination. Infect. Immun. 67:10041008.
58. Maharaj, R.,, T. B. May,, S. K. Wang,, and A. M. Chakrabarty. 1993. Sequence of the alg8 and alg44 genes involved in the synthesis of alginate by Pseudomonas aeruginosa. Gene 136:267269.
59. May, T. B.,, and A. M. Chakrabarty. 1994. Pseudomonas aeruginosa: genes and enzymes of alginate synthesis. Trends Microbiol. 2:151157.
60. Mayer, C.,, R. Moritz,, C. Kirschner,, W. Borchard,, R. Maibaum,, J. Wingender,, and H. C. Flemming. 1999. The role of intermolecular interactions: studies on model systems for bacterial biofilms. Int. J. Biol. Macromol. 26:316.
61. Mejia-Ruiz, H.,, J. Guzman,, S. Moreno,, G. Soberon-Chavez,, and G. Espin. 1997. The Azotobacter vinelandii alg8 and alg44 genes are essential for alginate synthesis and can be transcribed from an algD-independent promoter. Gene 199:271277.
62. Meluleni, G. J.,, M. Grout,, D. J. Evans,, and G. B. Pier. 1995. Mucoid Pseudomonas aeruginosa growing in a biofilm in vitro are killed by opsonic antibodies to the mucoid exopolysaccharide capsule but not by antibodies produced during chronic lung infection in cystic fibrosis patients. J. Immunol. 155:20292038.
63. Mitchell, E.,, C. Houles,, D. Sudakevitz,, M. Wimmerova,, C. Gautier,, S. Perez,, A. M. Wu,, N. Gilboa-Garber,, and A. Imberty. 2002. Structural basis for oligosaccharide-mediated adhesion of Pseudomonas aeruginosa in the lungs of cystic fibrosis patients. Nat. Struct. Biol. 9:918921.
64. Monday, S. R.,, and N. L. Schiller. 1996. Alginate synthesis in Pseudomonas aeruginosa: the role of AlgL (alginate lyase) and AlgX. J. Bacteriol. 178: 625632.
65. Nichols, W. W.,, S. M. Dorrington,, M. P. Slack,, and H. L. Walmsley. 1988. Inhibition of tobramycin diffusion by binding to alginate. Antimicrob. Agents Chemother. 32:518523.
66. Nichols, W. W.,, M. J. Evans,, M. P. Slack,, and H. L. Walmsley. 1989. The penetration of antibiotics into aggregates of mucoid and nonmucoid Pseudomonas aeruginosa. J. Gen. Microbiol. 135(Part 5):12911303.
67. Nickel, J. C.,, I. Ruseska,, J. B. Wright,, and J. W. Costerton. 1985. Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material. Antimicrob. Agents Chemother. 27:619624.
68. Nielsen, P. H.,, A. Jahn,, and R. Palmgren. 1997. Conceptual model for production and composition of exopolymers in biofilms. Water Sci. Technol. 36:1119.
69. Nimtz, M.,, A. Mort,, T. Domke,, V. Wray,, Y. Zhang,, F. Qui,, D. Coplin,, and K. Geider. 1996. Structure of amylovoran, the capsular exopolysaccharide from the fire blight pathogen Erwinia amylovora. Carbohydr. Res. 287:5976.
70. Nivens, D. E.,, D. E. Ohman,, J. Williams,, and M. J. Franklin. 2001. Role of alginate and its O acetylation in formation of Pseudomonas aeruginosa microcolonies and biofilms. J. Bacteriol. 183:10471057.
71. Ofek, I.,, D. L. Hasty,, and R. J. Doyle(ed.). 2003. Bacterial Adhesion to Animal Cells and Tissues. ASM Press, Washington, D.C.
72. Ott, C. M.,, D. F. Day,, D. W. Koenig,, and D. L. Pierson. 2001. The release of alginate lyase from growing Pseudomonas syringae pathovar phaseolicola. Curr. Microbiol. 42:7881.
73. Parad, R. B.,, C. J. Gerard,, D. Zurakowski,, D. P. Nichols,, and G. B. Pier. 1999. Pulmonary outcome in cystic fibrosis is influenced primarily by mucoid Pseudomonas aeruginosa infection and immune status and only modestly by genotype. Infect. Immun. 67:47444750.
74. Picout, D. R.,, and S. B. Ross-Murphy. 2003. Rheology of biopolymer solutions and gels. Sci. World J. 3:105121.
75. Pratten, J.,, S. J. Foster,, P. F. Chan,, M. Wilson,, and S. P. Nair. 2001. Staphylococcus aureus accessory regulators: expression within biofilms and effect of adhesion. Microbes Infect. 3:633637.
76. Rachid, S.,, K. Ohlsen,, U. Wallner,, J. Hacker,, M. Hecker,, and W. Ziebuhr. 2000. Alternative transcription factor sigma(B) is involved in regulation of biofilm expression in a Staphylococcus aureus mucosal isolate. J. Bacteriol. 182:68246826.
77. Rehm, B. H.,, and S. Valla. 1997. Bacterial alginates: biosynthesis and applications. Appl. Microbiol. Biotechnol. 48:281288.
78. Reverchon, S.,, and J. Robert-Baudouy. 1987. Regulation of expression of pectate lyase genes pe1A, pe1D, and pe1E in Erwinia chrysanthemi. J. Bacteriol. 169:24172423.
79. Rickard, A. H.,, S. A. Leach,, C. M. Buswell,, N. J. High,, and P. S. Handley. 2000. Coaggregation between aquatic bacteria is mediated by specific-growth-phase-dependent lectin-saccharide interactions. Appl. Environ. Microbiol. 66:431434.
80. Roychoudhury, S.,, T. B. May,, J. F. Gill,, S. K. Singh,, D. S. Feingold,, and A. M. Chakrabarty. 1989. Purification and characterization of guanosine diphospho-D-mannose dehydrogenase. A key enzyme in the biosynthesis of alginate by Pseudomonas aeruginosa. J. Biol. Chem. 264:93809385.
81. Rupp, M. E.,, P. D. Fey,, C. Heilmann,, and F. Gotz. 2001. Characterization of the importance of Staphylococcus epidermidis autolysin and polysaccharide intercellular adhesin in the pathogenesis of intravascular catheter-associated infection in a rat model. J. Infect. Dis. 183:10381042.
82. Rupp, M. E.,, J. S. Ulphani,, P. D. Fey,, K. Bartscht,, and D. Mack. 1999a. Characterization of the importance of polysaccharide intercellular adhesin/hemagglutinin of Staphylococcus epidermidis in the pathogenesis of biomaterial-based infection in a mouse foreign body infection model. Infect. Immun. 67:26272632.
83. Rupp, M. E.,, J. S. Ulphani,, P. D. Fey,, and D. Mack. 1999b. Characterization of Staphylococcus epidermidis polysaccharide intercellular adhesin/ hemagglutinin in the pathogenesis of intravascular catheter-associated infection in a rat model. Infect. Immun. 67:26562659.
84. Sabra, W.,, A. P. Zeng,, and W. D. Deckwer. 2001. Bacterial alginate: physiology, product quality and process aspects. Appl. Microbiol. Biotechnol. 56:315325.
85. Schembri, M. A.,, L. Hjerrild,, M. Gjermansen,, and P. Klemm. 2003. Differential expression of the Escherichia coli autoaggregation factor antigen 43. J. Bacteriol. 185:22362242.
86. Schlictman, D.,, M. Kubo,, S. Shankar,, and A. M. Chakrabarty. 1995. Regulation of nucleoside diphosphate kinase and secretable virulence factors in Pseudomonas aeruginosa: roles of algR2 and algH. J. Bacteriol. 177:24692474.
87. Schurr, M. J.,, H. Yu,, J. C. Boucher,, N. S. Hibler,, and V. Deretic. 1995. Multiple promoters and induction by heat shock of the gene encoding the alternative sigma factor AlgU (sigma E) which controls mucoidy in cystic fibrosis isolates of Pseudomonas aeruginosa. J. Bacteriol. 177:56705679.
88. Schurr, M. J.,, H. Yu,, J. M. Martinez-Salazar,, J. C. Boucher,, and V. Deretic. 1996. Control of AlgU, a member of the sigma E-like family of stress sigma factors, by the negative regulators MucA and MucB and Pseudomonas aeruginosa conversion to mucoidy in cystic fibrosis. J. Bacteriol. 178:49975004.
89. Shigeta, M.,, G. Tanaka,, H. Komatsuzawa,, M. Sugai,, H. Suginaka,, and T. Usui. 1997. Permeation of antimicrobial agents through Pseudomonas aeruginosa biofilms: a simple method. Chemotherapy 43:340345.
90. Skjak-Braek, G. 1992. Alginates: biosyntheses and some structure-function relationships relevant to biomedical and biotechnological applications. Biochem. Soc. Trans. 20:2733.
91. Sundin, G. W.,, S. Shankar,, S. A. Chugani,, B. A. Chopade,, A. Kavanaugh-Black,, and A. M. Chakrabarty. 1996. Nucleoside diphosphate kinase from Pseudomonas aeruginosa: characterization of the gene and its role in cellular growth and exopolysaccharide alginate synthesis. Mol. Microbiol. 20:965979.
92. Sutherland, I. 2001. Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147:39.
93. Sutherland, I. W. 1999. Polysaccharases for microbial exopolysaccharides. Carbohydr. Polym. 38: 319328.
94. Sutherland, I. W. 1995. Polysaccharide lyases. FEMS Microbiol. Rev. 16:323347.
95. Teitzel, G. M.,, and M. R. Parsek. 2003. Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Appl. Environ. Microbiol. 69:23132320.
96. Vrany, J. D.,, P. S. Stewart,, and P. A. Suci. 1997. Comparison of recalcitrance to ciprofloxacin and levofloxacin exhibited by Pseudomonas aeruginosa biofilms displaying rapid-transport characteristics. Antimicrob. Agents Chemother. 41:13521358.
97. Vuong, C.,, H. L. Saenz,, F. Gotz,, and M. Otto. 2000. Impact of the agr quorum-sensing system on adherence to polystyrene in Staphylococcus aureus. J. Infect. Dis. 182:16881693.
98. Walters, M. C., III,, F. Roe, , A. Bugnicourt, , M. J. Franklin, , and P. S. Stewart. 2003. Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob. Agents Chemother. 47:317323.
99. Webb, J. S.,, L. S. Thompson,, S. James,, T. Charlton,, T. Tolker-Nielsen,, B. Koch,, M. Givskov,, and S. Kjelleberg. 2003. Cell death in Pseudomonas aeruginosa biofilm development. J. Bacteriol. 185:45854592.
100. Whitchurch, C. B.,, R. A. Alm,, and J. S. Mattick. 1996. The alginate regulator AlgR and an associated sensor FimS are required for twitching motility in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 93:98399843.
101. Whitchurch, C. B.,, T. Tolker-Nielsen,, P. C. Ragas,, and J. S. Mattick. 2002. Extracellular DNA required for bacterial biofilm formation. Science 295:1487.
102. Whiteley, M.,, M. G. Bangera,, R. E. Bumgarner,, M. R. Parsek,, G. M. Teitzel,, S. Lory,, and E. P. Greenberg. 2001. Gene expression of Pseudomonas aeruginosa biofilms. Nature 413:860864.
103. Winzer, K.,, C. Falconer,, N. C. Garber,, S. P. Diggle,, M. Camara,, and P. Williams. 2000. The Pseudomonas aeruginosa lectins PA-IL and PAIIL are controlled by quorum sensing and by RpoS. J. Bacteriol. 182:64016411.
104. Worlitzsch, D.,, R. Tarran,, M. Ulrich,, U. Schwab,, A. Cekici,, K. C. Meyer,, P. Birrer,, G. Bellon,, J. Berger,, T. Weiss,, K. Botzenhart,, J. R. Yankaskas,, S. Randell,, R. C. Boucher,, and G. Doring. 2002. Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J. Clin. Invest. 109:317325.
105. Wozniak, D. J.,, T. J. Wyckoff,, M. Starkey,, R. Keyser,, P. Azadi,, G. A. O’Toole,, and M. R. Parsek. 2003. Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms. Proc. Natl. Acad. Sci. USA 100:79077912.
106. Xie, Z. D.,, C. D. Hershberger,, S. Shankar,, R. W. Ye,, and A. M. Chakrabarty. 1996. Sigma factor-anti-sigma factor interaction in alginate synthesis: inhibition of AlgT by MucA. J. Bacteriol. 178:49904996.
107. Yildiz, F. H.,, and G. K. Schoolnik. 1999. Vibrio cholerae O1 El Tor: identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation. Proc. Natl. Acad. Sci. USA 96: 40284033.
108. Yu, H.,, M. Mudd,, J. C. Boucher,, M. J. Schurr,, and V. Deretic. 1997. Identification of the algZ gene upstream of the response regulator algR and its participation in control of alginate production in Pseudomonas aeruginosa. J. Bacteriol. 179:187193.
109. Zheng, Z.,, and P. S. Stewart. 2002. Penetration of rifampin through Staphylococcus epidermidis biofilms. Antimicrob. Agents Chemother. 46:900903.
110. Ziebuhr, W.,, K. Dietrich,, M. Trautmann,, and M. Wilhelm. 2000. Chromosomal rearrangements affecting biofilm production and antibiotic resistance in a Staphylococcus epidermidis strain causing shunt-associated ventriculitis. Int. J. Med. Microbiol. 290:115120.
111. Ziebuhr, W.,, V. Krimmer,, S. Rachid,, I. Lossner,, F. Gotz,, and J. Hacker. 1999. A novel mechanism of phase variation of virulence in Staphylococcus epidermidis: evidence for control of the polysaccharide intercellular adhesin synthesis by alternating insertion and excision of the insertion sequence element IS256. Mol. Microbiol. 32:345356.
112. Ziebuhr, W.,, I. Lossner,, S. Rachid,, K. Dietrich,, F. Gotz,, and J. Hacker. 2000. Modulation of the polysaccharide intercellular adhesin (PIA) expression in biofilm forming Staphylococcus epidermidis. Analysis of genetic mechanisms. Adv. Exp. Med. Biol. 485:151157.
113. Zielinski, N. A.,, A. M., Chakrabarty,, and A. Berry. 1991. Characterization and regulation of the Pseudomonas aeruginosa algC gene encoding phosphomannomutase. J. Biol. Chem. 266:97549763.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error