Chapter 20 : Methods of Studying Biofilms

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Methods of Studying Biofilms, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817718/9781555818944_Chap20-1.gif /docserver/preview/fulltext/10.1128/9781555817718/9781555818944_Chap20-2.gif


This chapter reviews many commonly used organisms, experimental approaches, and techniques used for the growth and study of biofilms. Here, the authors focus on commonly used approaches with a greater emphasis on currently used techniques. They have summarized several diverse techniques for growing and evaluating biofilms below. These include examples of biofilm techniques for exploring naturally occurring biofilms, medically important biofilms, industrial applications, laboratory biofilm techniques, imaging and spectroscopy techniques, and broad-based genetic techniques. Overall, the authors concentrate on several techniques that are presently used in current biofilm research. Included in this discussion are biofilm growth strategies, a brief mention of genetic strategies, imaging techniques, and data analysis. The authors hope that this discussion will serve as an informative reference for the biofilm research community. In the field of dental microbiology, the constant depth fermenter is a device in which oral microorganisms are cultured on hydroxyapatite disks that are coated with saliva. Such standardized methods will permit a meaningful and rational comparison of data among individual laboratories. Finally, microbiologists now realize the many diverse environments and situations in which biofilms occur. As a result, there will be a continuing need for innovation in the experimental designs used to study biofilms.

Citation: McLean R, Bates C, Barnes M, McGowin C, Aron G. 2004. Methods of Studying Biofilms, p 379-413. In Ghannoum M, O'Toole G (ed), Microbial Biofilms. ASM Press, Washington, DC. doi: 10.1128/9781555817718.ch20
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Schematic representation of growth in presence of a limiting nutrient. To ensure a linear response during chemostat culture, the limiting nutrient concentration should be restricted to the region within the box as shown.

Citation: McLean R, Bates C, Barnes M, McGowin C, Aron G. 2004. Methods of Studying Biofilms, p 379-413. In Ghannoum M, O'Toole G (ed), Microbial Biofilms. ASM Press, Washington, DC. doi: 10.1128/9781555817718.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Field studies of biofilms can be quite beautiful, yet challenging, as one may need to manipulate and collect samples using aseptic technique in a remote location such as Midwestern State University's Dalquest Research Site, near Big Bend National Park, Texas.

Citation: McLean R, Bates C, Barnes M, McGowin C, Aron G. 2004. Methods of Studying Biofilms, p 379-413. In Ghannoum M, O'Toole G (ed), Microbial Biofilms. ASM Press, Washington, DC. doi: 10.1128/9781555817718.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Photograph (A) and schematic representation (B) of Calgary biofilm device ( ). Planktonic cultures are placed in wells into which are inserted prongs (left arrow in A, schematic representation in Ba). Biofilms grown on inserted prongs can then be placed into antibioticcontaining wells (Bb) for susceptibility testing. Figure 3A provided courtesy of H. Ceri, University of Calgary.

Citation: McLean R, Bates C, Barnes M, McGowin C, Aron G. 2004. Methods of Studying Biofilms, p 379-413. In Ghannoum M, O'Toole G (ed), Microbial Biofilms. ASM Press, Washington, DC. doi: 10.1128/9781555817718.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

(A) The original Robbins' device (RD) ( ) consists of a brass pipe with removable sections of the wall from which biofilm samples may be acquired. (B) The modified RD (MRD) ( ) allowed biofilm testing to be conducted on a variety of materials (typically 7- mm-diameter plugs). (C) A further modification ( ) involving the use of a metal plug and platinum wire enables one to study the impact of electric fields on biofilm control.

Citation: McLean R, Bates C, Barnes M, McGowin C, Aron G. 2004. Methods of Studying Biofilms, p 379-413. In Ghannoum M, O'Toole G (ed), Microbial Biofilms. ASM Press, Washington, DC. doi: 10.1128/9781555817718.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5

Schematic representation of microtiter biofilm assay ( ). Cultures of wild-type (wt) and biofilm defective () mutant strains are grown in wells of microtiter plate. After growth, they are stained with crystal violet, the excess stain and planktonic cultures are removed, and then the stain is released from the wall-adherent biofilm by a solvent such as ethanol. The crystal violet stain intensity can be measured (optical density at 600 nm) and correlates with the amount of biofilm present.

Citation: McLean R, Bates C, Barnes M, McGowin C, Aron G. 2004. Methods of Studying Biofilms, p 379-413. In Ghannoum M, O'Toole G (ed), Microbial Biofilms. ASM Press, Washington, DC. doi: 10.1128/9781555817718.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6

Schematic representation (A) and photograph (B) of chemostat used for biofilm growth ( ). Nutrient-limited medium is pumped (P1) from a reservoir (R) into a chemostat (C). Once the culture is stabilized, it is pumped (P2) through a biofilm device such as an MRD, flow cell, or Tygon tubing as shown in panel B. Excess culture is removed to waste (W).

Citation: McLean R, Bates C, Barnes M, McGowin C, Aron G. 2004. Methods of Studying Biofilms, p 379-413. In Ghannoum M, O'Toole G (ed), Microbial Biofilms. ASM Press, Washington, DC. doi: 10.1128/9781555817718.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7

Example of a microscope flow cell commonly used for growing biofilms. As described in the text, we have noticed biofilms grown in a recirculating mode (A) to be much more evenly distributed within a flow cell than are those grown in a onceflowthrough design (B) (C. L. Bates and R. J. C. McLean, unpublished data). Flow cell was provided courtesy of K. Mathee, Florida International University, Miami, Fla.

Citation: McLean R, Bates C, Barnes M, McGowin C, Aron G. 2004. Methods of Studying Biofilms, p 379-413. In Ghannoum M, O'Toole G (ed), Microbial Biofilms. ASM Press, Washington, DC. doi: 10.1128/9781555817718.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Adams, J. L.,, and R. J. C. McLean. 1999. The impact of rpoS deletion on Escherichia coli biofilms. Appl. Environ. Microbiol. 65:42854287.
2. Allison, D. G.,, B. Ruiz,, C. SanJose,, A. Jaspe,, and P. Gilbert. 1998. Extracellular products as mediators of the formation and detachment of Pseudomonas fluorescens biofilms. FEMS Microbiol. Lett. 167:179184.
3. Amann, R. I.,, B. J. Binder,, R. J. Olson,, S. W. Chisholm,, R. Devereux,, and D. A. Stahl. 1990a. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56:19191925.
4. Amann, R. I.,, L. Krumholz,, and D. A. Stahl. 1990b. Fluorescent oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J. Bacteriol. 172:762770.
5. Amann, R. I.,, W. Ludwig,, and K. H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59:143169.
6. Amann, R. I.,, J. Stromley,, R. Devereux,, R. Key,, and D. A. Stahl. 1992. Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms. Appl. Environ. Microbiol. 58:614623.
7. Anderl, J. N.,, J. Zahler,, F. Roe,, and P. S. Stewart. 2003. Role of nutrient limitation and stationary-phase existence in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob. Agents Chemother. 47:12511256.
8. Andersen, J. B.,, A. Heydorn,, M. Hentzer,, L. Eberl,, O. Geisenberger,, B. B. Christensen,, S. Molin,, and M. Givskov. 2001. gfp-based N-acyl homoserine lactone sensor systems for detection of bacterial communication. Appl. Environ. Microbiol. 67:575585.
9. Andersen, J. B.,, C. Sternberg,, L. K. Poulsen,, S. P. Bjørn,, M. Givskov,, and S. Molin. 1998. New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl. Environ. Microbiol. 64:22402246.
10. Andersson, B.,, B. M. Gray, , H. C. Dillon, Jr.,, A. Bahrmand, , and C. Svanborg Edén. 1988. Role of adherence of Streptococcus pneumoniae in acute otitis media. Pediatr. Infect. Dis. J. 7:476480.
11. Arrage, A. A.,, N. Vasishtha,, D. Sundberg,, G. Bausch,, H. L. Vincent,, and D. C. White. 1995. On-line monitoring of antifouling and fouling- release surfaces using bioluminescence and fluorescence measurements during laminar flow. J. Ind. Microbiol. 15:277282.
12. Auerbach, I. D.,, C. Sorensen,, H. G. Hansma,, and P. A. Holden. 2000. Physical morphology and surface properties of unsaturated Pseudomonas putida biofilms. J. Bacteriol. 182:38093815.
13. Balzer, G. J.,, and R. J. C. McLean. 2002. The stringent response genes relA and spoT are important for Escherichia coli biofilms under slow-growth conditions. Can. J. Microbiol. 48:675680.
14. Bardouniotis, E.,, W. Huddleston,, H. Ceri,, and M. E. Olson. 2001. Characterization of biofilm growth and biocide susceptibility testing of Mycobacterium phlei using the MBEC assay system. FEMS Microbiol. Lett. 203:263267.
15. Battin, T. J.,, A. Wille,, B. Sattler,, and R. Psenner. 2001. Phylogenetic and funtional heterogeneity of sediment biofilms along environmental gradients in a glacial stream. Appl. Environ. Microbiol. 67: 799807.
16. Beachey, E. H.,, C. S. Giampapa,, and S. N. Abraham. 1988. Bacterial adherence. Adhesin receptor-mediated attachment of pathogenic bacteria to mucosal surfaces. Am. Rev. Respir. Dis. 138:S45S48.
17. Beveridge, T. J., 1989. The structure of bacteria, p. 165. In J. S. Poindexter, and E. R. Leadbetter (ed.), Bacteria in Nature, vol. 3. Plenum Publishing Corporation, New York, N.Y.
18. Blattner, F. R., , G. Plunkett III,, C. A. Bloch,, N. T. Perna,, V. Burland,, M. Riley,, J. Collado-Vides,, J. D. Glasner,, C. K. Rode,, G. F. Mayhew,, J. Gregor,, N. W. Davis,, H. A. Kirkpatrick,, M. A. Goeden,, D. J. Rose,, B. Mau,, and Y. Shao. 1997. The complete genome sequence of Escherichia coli K-12. Science 277:14531474.
19. Blenkinsopp, S. A.,, A. E. Khoury,, and J. W. Costerton. 1992. Electrical enhancement of biocide efficacy against Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol. 58:37703773.
20. Bond, P. L.,, S. P. Smriga,, and J. F. Banfield. 2000. Phylogeny of microorganisms populating a thick, subaerial, predominantly lithotrophic biofilm at an extreme acid mine drainage site. Appl. Environ. Microbiol. 66:38423849.
21. Borchardt, S. A.,, E. J. Allain,, J. J. Michels,, G. W. Stearns,, R. F. Kelly,, and W. F. McCoy. 2001. Reaction of acylated homoserine lactone bacterial signaling molecules with oxidized halogen antimicrobials. Appl. Environ. Microbiol. 67:31743179.
22. Bradshaw, D. J.,, P. D. Marsh,, K. M. Schilling,, and D. Cummins. 1996. A modified chemostat system to study the ecology of oral biofilms. J. Appl. Bacteriol. 80:124130.
23. Brink, D. E.,, I. Vance,, and D. C. White. 1994. Detection of Desulfobacter in oil field environments by non-radioactive DNA probes. Appl. Microbiol. Biotechnol. 42:469475.
24. Brock, T. D.,, M. T. Madigan,, J. M. Martinko,, and J. Parker. 1994. Biology of Microorganisms, 7th ed. Prentice Hall, Englewood Cliffs, N.J.
25. Brown, D. A.,, D. C. Kamineni,, J. A. Sawicki,, and T. J. Beveridge. 1994. Minerals associated with biofilms occurring on exposed rock in an granitic underground research laboratory. Appl. Environ. Microbiol. 60:31823191.
26. Brummer, I. H. M.,, W. Fehr,, and I. Wagner- Dobler. 2003. Biofilm community structure in polluted rivers: abundance of dominant phylogenetic groups over a complete annual cycle. Appl. Environ. Microbiol. 66:30783082.
27. Busalmen, J. P.,, and S. R. De Sanchez. 2003. Changes in the electrochemical interface as a result of the growth of Pseudomonas fluorescens biofilms on gold. Biotechnol. Bioeng. 82:619624.
28. Caldwell, D. E.,, D. R. Korber,, and J. R. Lawrence. 1993. Analysis of biofilm formation using 2D versus 3D digital imaging. J. Appl. Bacteriol. 74(Suppl):52S66S.
29. Camper, A. K.,, W. L. Jones,, and J. T. Hayes. 1996. Effect of growth conditions and substratum composition on the persistence of coliforms in mixed-population biofilms. Appl. Environ. Microbiol. 62:40144018.
30. Casamayor, E. O.,, H. Schäfer,, L. Bañeras,, C. Pedrós-Alió,, and G. Muyzer. 2000. Identification of and spatio-temporal differences between microbial assemblages from two neighboring sulfurous lakes: comparison by microscopy and denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 66:499508.
31. Ceri, H.,, M. E. Olson,, C. Stremick,, R. R. Read,, D. W. Morck,, and A. Buret. 1999. The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J. Clin. Microbiol. 37:17711776.
32. Chandra, J.,, D. M. Kuhn,, P. K. Mukherjee,, L. L. Hoyer,, T. McCormick,, and M. A. Ghannoum. 2001. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J. Bacteriol. 183: 53855394.
33. Cheng, K.-J.,, J. P. Fay,, R. N. Coleman,, L. P. Milligan,, and J. W. Costerton. 1981. Formation of bacterial microcolonies of feed particles in the rumen. Appl. Environ. Microbiol. 41:298305.
34. Chiang, S. L.,, J. J. Mekalanos,, and D. W. Holden. 1999. In vivo genetic analysis of bacterial virulence. Annu. Rev. Microbiol. 53:129154.
35. Choo-Smith, L. P.,, K. Maquelin,, T. van Vreeswijk,, H. P. Bruining,, G. J. Puppels,, N. A. Ngo Thi,, C. Kirchner,, D. Naumann,, D. Ami,, A. M. Villa,, F. Orsini,, S. M. Doglia,, H. Lamfarraj,, G. D. Sockalingum,, M. Manfait,, P. Allouch,, and H. P. Endtz. 2003. Investigating microbial (micro)colony heterogeneity by vibrational spectroscopy. Appl. Environ. Microbiol. 67:14611469.
36. Christensen, B. B.,, J. A. J. Haagensen,, A. Heydorn,, and S. Molin. 2002. Metabolic commensalism and competition in a two-species microbial consortium. Appl. Environ. Microbiol. 68:24952502.
37. Christensen, B. B.,, C. Sternberg,, J. B. Andersen, , R. J. Palmer, Jr.,, A. Toftgaard Nielsen, , M. Givskov, , and S. Molin. 1999. Molecular tools for study of biofilm physiology. Methods Enzymol. 310:2042.
38. Corbin, B. D.,, R. J. C. McLean,, and G. M. Aron. 2001. Bacteriophage T4 multiplication in a glucose-limited Escherichia coli biofilm. Can. J. Microbiol. 47:680684.
39. Costerton, J. W.,, K.-J. Cheng,, G. G. Geesey,, T. I. Ladd,, J. C. Nickel,, M. Dasgupta,, and T. J. Marrie. 1987. Bacterial biofilms in nature and disease. Annu. Rev. Microbiol. 41:435464.
40. Costerton, J. W.,, B. Ellis,, K. Lam,, F. Johnson,, and A. E. Khoury. 1994. Mechanism of electrical enhancement of efficacy of antibiotics in killing biofilm bacteria. Antimicrob. Agents Chemother. 38: 28032809.
41. Costerton, J. W.,, Z. Lewandowski,, D. E. Caldwell,, D. R. Korber,, and H. M. Lappin- Scott. 1995. Microbial biofilms. Annu. Rev. Microbiol. 49:711745.
42. Costerton, J. W.,, P. S. Stewart,, and E. P. Greenberg. 1999. Bacterial biofilms: a common cause of persistent infections. Science 284:13181322.
43. Cote, R. J.,, and R. L. Gherna,. 1994. Nutrition and media, p. 155178. In P. Gerhardt, , R. G. E. Murray, , W. A. Wood, , and N. R. Krieg (ed.), Methods for General and Molecular Bacteriology. American Society for Microbiology, Washington, D.C.
44. Cramton, S. E.,, C. Gerke,, N. F. Schnell,, W. W. Nichols,, and F. Götz. 1999. The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect. Immun. 67:54275433.
45. Cramton, S. E.,, M. Ulrich,, F. Götz,, and G. Döring. 2001. Anaerobic conditions induce expression of polysaccharide intracellular adhesin in Staphylococcus aureus and Staphylococcus epidermidis. Infect. Immun. 69:40794085.
46. Czerkawski, J. W.,, and G. Breckenridge. 1977. Design and development of a long-term rumen simulation technique (Rusitec). Br. J. Nutr. 38: 371384.
47. Danese, P. N.,, L. A. Pratt,, and R. Kolter. 2000. Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture. J. Bacteriol. 182:35933596.
48. Darby, C.,, J. W. Hsu,, N. Ghori,, and S. Falkow. 2002. Caenorhabditis elegans: plague bacteria biofilm blocks food intake. Nature 417:243244.
49. Davey, M. E.,, N. C. Caiazza,, and G. A. O’Toole. 2003. Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J. Bacteriol. 185:10271036.
50. Davies, D. G.,, M. R. Parsek,, J. P. Pearson,, B. H. Iglewski,, J. W. Costerton,, and E. P. Greenberg. 1998. The involvement of cell-tocell signals in the development of a bacterial biofilm. Science 280:295298.
51. de Beer, D.,, and A. Schramm. 1999. Micro-environments and mass transfer phenomena in biofilms studied with microsensors. Water Sci. Technol. 39: 173178.
52. de Beer, D.,, P. Stoodley,, and Z. Lewandowski. 1997. Measurement of local diffusion coefficients in biofilms by microinjection and confocal microscopy. Biotechnol. Bioeng. 53:151158.
53. De Kievit, T. R.,, M. D. Parkins,, R. J. Gillis,, R. Srikumar,, H. Ceri,, K. Poole,, B. H. Iglewski,, and D. G. Storey. 2001. Multidrug efflux pumps: expression patterns and contribution to antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemother. 45:17611770.
54. Donlan, R. M. 2001. Biofilms and device-associated infections. Emerg. Infect. Dis. 7:277281.
55. Donlan, R. M.,, and J. W. Costerton. 2002. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin.Microbiol.Rev. 15:167193.
56. Doolittle, M. M.,, J. J. Cooney,, and D. E. Caldwell. 1995. Lytic infection of Escherichia coli biofilms by bacteriophage T4. Can. J. Microbiol. 41:1218.
57. Doyle, R. J. 1999. Biofilms. Methods Enzymol. 310: 1720.
58. Doyle, R. J. 2001a. Microbial growth in biofilms. Part A: developmental and molecular biological aspects. Methods Enzymol. 336:1469.
59. Doyle, R. J. 2001b. Microbial growth in biofilms, Part B: special environments and physicochemical aspects. Methods Enzymol. 337:1469.
60. Egan, S.,, S. James,, C. Holmstrom,, and S. Kjelleberg. 2002. Correlation between pigmentation and antifouling compounds produced by Pseudoalteromonas tunicata. Environ. Microbiol. 4: 433442.
61. Egan, S.,, T. Thomas,, C. Holmstrom,, and S. Kjelleberg. 2000. Phylogenetic relationship and antifouling activity of bacterial epiphytes from the marine alga Ulva lactuca. Environ. Microbiol. 2: 343347.
62. Espinosa-Urgel, M.,, A. Salido,, and J. L. Ramos. 2000. Genetic analysis of functions involved in adhesion of Pseudomonas putida to seeds. J. Bacteriol. 182:23632369.
63. Ferris, F. G.,, W. S. Fyfe,, T. Witten,, S. Schultze,, and T. J. Beveridge. 1989a. Effect of mineral substrate hardness on the population density of epilithic microorganisms in two Ontario rivers. Can. J. Microbiol. 35:744747.
64. Ferris, F. G.,, S. Schultze,, T. C. Witten,, W. S. Fyfe,, and T. J. Beveridge. 1989b. Metal interactions with microbial biofilms in acidic and neutral pH environments. Appl. Environ. Microbiol. 55: 12491257.
65. Finelli, A.,, C. V. Gallant,, K. Jarvi,, and L. L. Burrows. 2003. Use of in-biofilm expression technology to identify genes involved in Pseudomonas aeruginosa biofilm development. J. Bacteriol. 185:27002710.
66. Flemming, H. C.,, T. Griebe,, and G. Schaule. 1996. Antifouling strategies in technical systems: a short review. Water Sci. Technol. 34:517524.
67. Flora, J. R. V.,, M. T. Suidan,, P. Biswas,, and G. D. Sayles. 1995. Modeling algal biofilms: Role of carbon, light, cell surface charge, and ionic species. Water Environ. Res. 67:8794.
68. Francois, P.,, P. Tu Quoc,, C. Bisognano,, W. L. Kelley,, D. P. Lew,, J. Schrenzel,, S. E. Cramton,, F. Gotz,, and P. Vaudaux. 2003. Lack of biofilm contribution to bacterial colonisation in an experimental model of foreign body infection by Staphylococcus aureus and Staphylococcus epidermidis. FEMS Immunol. Med. Microbiol. 35: 135140.
69. Frangeul, L.,, K. E. Nelson,, C. Buchrieser,, A. Danchin,, P. Glaser,, and F. Kunst. 1999. Cloning and assembly strategies in microbial genome projects. Microbiology 145:26252634.
70. Freeman, C.,, and M. A. Lock. 1995. Isotope dilution analysis and rates of 32P incorporation into phospholipid as a measure of microbial growth rates in biofilms. Water Res. 29:789792.
71. Friedmann, E. I.,, and R. Weed. 1987. Microbial trace fossil formation, biogenous, and abiotic weathering in the Antarctic cold desert. Science 236:703705.
72. Frirdich, E.,, B. Lindner,, O. Holst,, and C. Whitfield. 2003. Overexpression of the waaZ gene leads to modification of the structure of the inner core region of Escherichia coli lipopolysaccharide, truncation of the outer core, and reduction of the amount of O polysaccharide on the cell surface. J. Bacteriol. 185:16591671.
73. Gander, S.,, and P. Gilbert. 1997. The development of a small-scale biofilm model suitable for studying the effects of antibiotics on biofilms of gram-negative bacteria. J. Antimicrob. Chemother. 40:329334.
74. Geesey, G. G.,, R. Mutch,, J. W. Costerton,, and R. B. Green. 1978. Sessile bacteria: an important component of the microbial population in small mountain streams. Limnol. Oceanogr. 23:12141223.
75. Gerhardt, P.,, and S. W. Drew,. 1994. Liquid culture, p. 224247. In P. Gerhardt, , R. G. E. Murray, , W. A. Wood, , and N. R. Krieg (ed.), Methods for General and Molecular Bacteriology. ASM Press,
76. Gherna, R. L., 1994. Culture preservation, p. 278292. In P. Gerhardt, , R. G. E. Murray, , W. A. Wood, , and N. R. Krieg (ed.), Methods for General and Molecular Bacteriology. ASM Press, Washington, D.C.
77. Ghigo, J. M. 2001. Natural conjugative plasmids induce bacterial biofilm development. Nature 412: 442445.
78. Gibbs, J. T.,, and P. L. Bishop. 1995. A method for describing biofilm surface roughness using geostatistical techniques. Water Sci. Technol. 32:9198.
79. Gilbert, P.,, D. G. Allison,, D. J. Evans,, P. S. Handley,, and M. R. W. Brown. 1989. Growth rate control of adherent bacterial populations. Appl. Environ. Microbiol. 55:13081311.
80. Gristina, A. G. 1987. Biomaterial-centered infection: microbial adhesion versus tissue integration. Science 237:15881595.
81. Guo, D.,, Y. Wu,, and H. B. Kaplan. 2000. Identification and characterization of genes required for early Myxococcus xanthus developmental gene expression. J. Bacteriol. 182:45644571.
82. Hamadeh, H.,, and C. A. Afshari. 2000. Gene chips and functional genomics. Am. Sci. 88:508515.
83. Hamilton, W. A., 1987. Biofilms: microbial interactions and metabolic activities, p. 361385. In W. A. Hamilton (ed.), Ecology of Microbial Communities. University Press, Cambridge, United Kingdom.
84. Hatfield, G. W.,, S. P. Hung,, and P. Baldi. 2003. Differential analysis of DNA microarray gene expression data. Mol. Microbiol. 47:871877.
85. Hausner, M.,, and S. Wuertz. 1999. High rates of conjugation in bacterial biofilms as determined by quantitative in situ analysis. Appl. Environ. Microbiol. 65:37103713.
86. Hein, I.,, A. Lehner,, P. Rieck,, K. Klein,, E. Brandl,, and M. Wagner. 2001. Comparison of different approaches to quantify Staphylococcus aureus cells by real-time quantitative PCR and application of this technique for examination of cheese. Appl. Environ. Microbiol. 67:31223126.
87. Helmer, C.,, S. Kunst,, S. Juretschko,, M. C. Schmid,, K. H. Schleifer,, and M. Wagner. 1999. Nitrogen loss in a nitrifying biofilm system. Water Sci. Technol. 39:1321.
88. Hentzer, M.,, K. Riedel,, T. B. Rasmussen,, A. Heydorn,, J. B. Andersen,, M. R. Parsek,, S. A. Rice,, L. Eberl,, S. Molin,, N. Hoiby,, S. Kjelleberg,, and M. Givskov. 2002. Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology 148:87102.
89. Herles, S.,, S. Olsen,, J. Afflitto,, and A. Gaffar. 1994. Chemostat flow cell system: An in vitro model for the evaluation of antiplaque agents. J. Dent. Res. 73:17481755.
90. Heydorn, A.,, B. K. Ersbøll,, M. Hentzer,, M. R. Parsek,, M. Givskov,, and S. Molin. 2000a. Experimental reproducibility in flow-chamber biofilms. Microbiology 146:24092415.
91. Heydorn, A.,, B. K. Ersbøll,, J. Kato,, M. Hentzer,, M. R. Parsek,, T. Tolker-Nielsen,, M. Givskov,, and S. Molin. 2002. Statistical analysis of Pseudomonas aeruginosa biofilm development: impact of mutations in genes involved in twitching motility, cell-to-cell signaling, and stationary-phase sigma factor expression. Appl. Environ. Microbiol. 68:20082017.
92. Heydorn, A.,, A. T. Nielsen,, M. Hentzer,, C. Sternberg,, M. Givskov,, B. K. Ersbøll,, and S. Molin. 2000b. Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology 146:23952407.
93. Hibma, A. M.,, S. A. Jassim,, and M. W. Griffiths. 1997. Infection and removal of L-forms of Listeria monocytogenes with bred bacteriophage. Int. J. Food Microbiol. 34:197207.
94. Hogan, D. A.,, and R. Kolter. 2002. Pseudomonas- Candida interactions: an ecological role for virulence factors. Science 296:22292232.
95. Holden, P. A.,, M. G. LaMontagne,, W. G. Miller,, and S. E. Lindow. 2002. Assessing the role of Pseudomonas aeruginosa surface-active gene expression in hexadecane biodegradation in sand. Appl. Environ. Microbiol. 68:25092518.
96. Hoskins, B. C.,, L. Fevang,, P. D. Majors,, M. M. Sharma,, and G. Georgiou. 1999. Selective imaging of biofilms in porous media by NMR relaxation. J. Magn. Reson. 139:6773.
97. Huang, C. T.,, K. D. Xu,, G. A. McFeters,, and P. S. Stewart. 1998. Spatial patterns of alkaline phosphatase expression within bacterial colonies and biofilms in response to phosphate starvation. Appl. Environ. Microbiol. 64:15261531.
98. Huang, C. T.,, F. P. Yu,, G. A. McFeters,, and P. S. Stewart. 1995. Nonuniform spatial patterns of respiratory activity within biofilms during disinfection. Appl. Environ. Microbiol. 61:22522256.
99. Hughes, K. A.,, I. W. Sutherland,, and M. V. Jones. 1998. Biofilm susceptibility to bacteriophage attack: the role of phage-borne polysaccharide depolymerase. Microbiology 144:30393047.
100. Jolley, J. G.,, G. G. Geesey,, and M. R. Hankins. 1989. Auger electron and X-ray photoelectron spectroscopy study of the biocorrosion of copper by alginic acid polysaccharide. Appl. Surf. Sci. 37: 469480.
101. Jouenne, T.,, O. Tresse,, and G. A. Junter. 1994. Agar-entrapped bacteria as an in vitro model of biofilms and their susceptibility to antibiotics. FEMS Microbiol. Lett. 119:237242.
102. Kaplan, J. B.,, and D. H. Fine. 2002. Biofilm dispersal of Neisseria subflava and other phylogenetically diverse oral bacteria. Appl. Environ. Microbiol. 68:49434950.
103. Kinniment, S. L.,, J. W. T. Wimpenny,, D. Adams,, and P. D. Marsh. 1996. Development of a steady-state oral microbial biofilm community using the constant-depth film fermenter. Microbiology 142:631638.
104. Kolenbrander, P. E.,, R. N. Andersen,, K. Kazmerzak,, R. Wu, , and R. J. Palmer, Jr. 1999. Spatial organization of oral bacteria in biofilms. Methods Enzymol. 310:322332.
105. Konhauser, K. O.,, S. Schultze-Lam,, F. G. Ferris,, W. S. Fyfe,, F. J. Longstaffe,, and T. J. Beveridge. 1994. Mineral precipitation by epilithic biofilms in the Speed River, Ontario, Canada. Appl. Environ. Microbiol. 60:549553.
106. Korber, D. R.,, J. R. Lawrence,, B. Sutton,, and D. E. Caldwell. 1989. Effect of laminar flow velocity on the kinetics of surface recolonization by Mot+ and Mot Pseudomonas fluorescens. Microb. Ecol. 18:119.
107. Korber, D. R.,, G. M. Wolfaardt,, V. Brözel,, R. MacDonald,, and T. Niepel. 1999. Reporter systems for microscopic analysis of microbial biofilms. Methods Enzymol. 310:320.
108. Kurtz, H. D., Jr.,, and J. Smit. 1992. Analysis of a Caulobacter crescentus gene cluster involved in attachment of the holdfast to the cell. J. Bacteriol. 174:687694.
109. Lapaglia, C.,, and P. L. Hartzell. 1997. Stressinduced production of biofilm in the hyperthermophile Archaeoglobus fulgidus. Appl. Environ. Microbiol. 63:31583163.
110. Lappin-Scott, H. M., 2000. Claude E. ZoBell: his life and contributions to biofilm microbiology , p. 4550. In C. R. Bell, , M. Brylinsky, , and J. L. Johnson-Green (ed.), Proceedings of the 8th International Symposium on Microbial Ecology, Halifax. Atlantic Canada Society for Microbial Ecology.
111. Lappin-Scott, H. M.,, C. J. Bass,, K. M. McAlpine,, and P. F. Sanders. 1995. Survival mechanisms of hydrogen sulphide-producing bacteria isolated from extreme environments and their role in corrosion. Int. Biodeterior. Biodegrad. 34:305319.
112. Lappin-Scott, H. M.,, and J. W. Costerton. 1989. Bacterial biofilms and surface fouling. Biofouling 1:323342.
113. Lawrence, J. R.,, D. R. Korber,, B. D. Hoyle,, J. W. Costerton,, and D. E. Caldwell. 1991. Optical sectioning of microbial biofilms. J. Bacteriol. 173:65586567.
114. Lawrence, J. R.,, D. R. Korber,, G. M. Wolfaardt,, and D. E. Caldwell. 1995. Behavioral strategies of surface-colonizing bacteria. Adv. Microb. Ecol. 14:175.
115. Lawrence, J. R.,, D. R. Korber,, G. M. Wolfaardt,, and D. E. Caldwell,. 1997. Analytical imaging and microscopy techniques , p. 2951. In C. J. Hurst, , G. R. Knudsen, , M. J. McInerney, , L. D. Stetzenbach, , and M. V. Walter (ed.), Manual of Environmental Microbiology. ASM Press, Washington, D. C.
116. Lawrence, J. R.,, B. Scharf,, G. Packroff,, and T. R. Neu. 2003. Microscale evaluation of the effects of grazing by invertebrates with contrasting feeding modes on river biofilm architecture and composition. Microb. Ecol. 44:199207.
117. Lenski, R. E.,, J. A. Mongold,, P. D. Sniegowski,, M. Travisano,, F. Vasi,, P. J. Gerrish,, and T. M. Schmidt. 1998. Evolution of competitive fitness in experimental populations of E. coli: what makes one genotype a better competitor than another? Antonie van Leeuwenhoek 73:3547.
118. Lewandowski, Z.,, S. A. Altobelli,, and E. Fukushima. 1993. NMR and microelectrode studies of hydrodynamics and kinetics in biofilms. Biotechnol. Prog. 9:4045.
119. Li, Y. H.,, P. C. Y. Lau,, J. H. Lee,, R. P. Ellen,, and D. G. Cvitkovitch. 2001. Natural genetic transformation of Streptococcus mutans growing in biofilms. J. Bacteriol. 183:897908.
120. Li, Y. H.,, P. C. Y. Lau,, N. Tang,, G. Svensäter,, R. P. Ellen,, and D. G. Cvitkovitch. 2002. Novel two-component regulatory system involved in biofilm formation and acid resistance in Streptococcus mutans. J. Bacteriol. 18:63336342.
121. Little, B.,, and P. Wagner. 1996. An overview of microbiologically influenced corrosion of metals and alloys. Can. J. Microbiol. 42:367374.
122. Little, B.,, P. Wagner,, and F. Mansfeld. 1991. Microbiologically influenced corrosion of metals and alloys. Int. Mater. Rev. 36:253272.
123. Loo, C. Y.,, D. A. Corliss,, and N. Ganeshkumar. 2000. Streptococcus gordonii biofilm formation: identification of genes that code for biofilm phenotypes. J. Bacteriol. 182:13741382.
124. Luppens, S. B. I.,, M. W. Reij,, R. W. L. vander Heijden,, F. M. Rombouts,, and T. Abee. 2003. Development of a standard test to assess the resistance of Staphylococcus aureus biofilm cells to disinfectants. Appl. Environ. Microbiol. 68:41944200.
125. Mackie, E. B.,, K. N. Brown,, J. Lam,, and J. W. Costerton. 1979. Morphological stabilization of capsules of group B streptococci, types Ia, Ib, II, and III with specific antibody. J. Bacteriol. 138:609617.
126. MacLeod, F. A.,, H. M. Lappin-Scott,, and J. W. Costerton. 1988. Plugging of a model rock system by using starved bacteria. Appl. Environ. Microbiol. 54:13651372.
127. Manefield, M.,, R. de Nys,, N. Kumar,, R. Read,, M. Givskov,, P. Steinberg,, and S. Kjelleberg. 1999. Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein. Microbiology 145:283291.
128. Marrie, T. J.,, and J. W. Costerton. 1984. Morphology of bacterial attachment to cardiac pacemaker leads and power packs. J. Clin. Microbiol. 19:911914.
129. Marrie, T. J.,, and J. W. Costerton. 1985. Mode of growth of bacterial pathogens in chronic polymicrobial human osteomyelitis. J. Clin. Microbiol. 22: 924933.
130. Marshall, K. C. 1985. Bacterial adhesion in oligotrophic habitats. Microbiol. Sci. 2:321326.
131. Mattison, R. G.,, H. Taki,, and S. Harayama. 2002. The bacterivorous soil flagellate Heteromita globosa reduces bacterial clogging under denitrifying conditions in sand-filled aquifer columns. Appl. Environ. Microbiol. 68:45394545.
132. Mattsby-Baltzer, I.,, M. Sandin,, B. Ahlström,, S. Allenmark,, M. Edebo,, E. Falsen,, K. Pedersen,, N. Rodin,, R. A. Thompson,, and L. Edebo. 1989. Microbial growth and accumulation in industrial metal-working fluids. Appl. Environ. Microbiol. 55:26812689.
133. McCoy, W. F.,, J. D. Bryers,, J. Robbins,, and J. W. Costerton. 1981. Observations of fouling biofilm formation. Can. J. Microbiol. 27:910917.
134. McEldowney, S.,, and M. Fletcher. 1986. Variability of the influence of physicochemical factors affecting bacterial adhesion to polystyrene substrata. Appl. Environ. Microbiol. 52:460465.
135. McLean, R. J. C.,, and T. J. Beveridge,. 1990. Metal binding capacity of bacterial surfaces and their ability to form mineralized aggregates, p. 185222. In H. L. Ehrlich, and C. L. Brierley (ed.), Microbial Mineral Recovery. McGraw-Hill Book Co., New York, N.Y.
136. McLean, R. J. C.,, J. M. Cassanto,, M. B. Barnes,, and J. Koo. 2001. Bacterial biofilm formation under microgravity conditions. FEMS Microbiol. Lett. 195:115119.
137. McLean, R. J. C.,, A. A. Hussain,, M. Sayer,, P. J. Vincent,, D. J. Hughes,, and T. J. N. Smith. 1993. Antibacterial activity of multilayer silver copper surface films on catheter material. Can. J. Microbiol. 39:895899.
138. McLean, R. J. C.,, J. R. Lawrence,, D. R. Korber,, and D. E. Caldwell. 1991. Proteus mirabilis biofilm protection against struvite crystal dissolution and its implications in struvite urolithiasis. J. Urol. 146:11381142.
139. McLean, R. J. C.,, J. C. Nickel,, K.-J. Cheng,, and J. W. Costerton. 1988. The ecology and pathogenicity of urease-producing bacteria in the urinary tract. Crit. Rev. Microbiol. 16:3779.
140. McLean, R. J. C.,, M. Whiteley,, B. C. Hoskins,, P. D. Majors,, and M. M. Sharma. 1999. Laboratory techniques for studying biofilm growth, physiology, and gene expression in flowing systems and porous media. Methods Enzymol. 310:248264.
141. Mercier, J.,, and S. E. Lindow. 2000. Role of leaf surface sugars in colonization of plants by bacterial epiphytes. Appl. Environ. Microbiol. 66:369374.
142. Merritt, J.,, F. Qi,, S. D. Goodman,, M. H. Anderson,, and W. Shi. 2003. Mutation of luxS affects biofilm formation in Streptococcus mutans. Infect. Immun. 71:19721979.
143. Mireles, J. R., II,, A. Toguchi, , and R. M. Harshey. 2001. Salmonella enterica serovar typhimurium swarming mutants with altered biofilmforming abilities: surfactin inhibits biofilm formation. J. Bacteriol. 183:58485854.
144. Moeseneder, M. M.,, J. M. Arrieta,, G. Muyzer,, C. Winter,, and G. J. Herndl. 1999. Optimization of terminal-restriction fragment length polymorphism analysis for complex marine bacterioplankton communities and comparison with denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 65:35183525.
145. Møller, S.,, A. R. Pedersen,, L. K. Poulsen,, E. Arvin,, and S. Molin. 1996. Activity and threedimensional distribution of toluene-degrading Pseudomonas putida in a multispecies biofilm assessed by quantitative in situ hybridization and scanning confocal laser microscopy. Appl. Environ. Microbiol. 62:46324640.
146. Møller, S.,, C. Sternberg,, J. B. Andersen,, B. B. Christensen,, J. L. Ramos,, M. Givskov,, and S. Molin. 1998. In situ gene expression in mixedculture biofilms: evidence of metabolic interactions between community members. Appl. Environ. Microbiol. 64:721732.
147. Morris, C. E.,, M. B. Barnes,, and R. J. C. McLean,. 2002a. Biofilms on leaf surfaces: implications for the biology, ecology and management of populations of epiphytic bacteria, p. 139155. In S. E. Lindow, , E. I. Hecht-Poinar, , and V. J. Elliott (ed.), Phyllosphere Microbiology. American Phytopathology Society, St. Paul, Minn.
148. Morris, R. M.,, M. S. Rappe,, S. A. Connan,, K. L. Vergin,, W. A. Siebold,, C. A. Carlson,, and S. J. Giovannoni. 2002b. SAR11 clade dominates ocean surface bacterioplankton communities. Nature 420:806810.
149. Neu, T. R.,, and J. R. Lawrence. 1997. Development and structure of microbial biofilms in river water studied by confocal laser scanning microscopy. FEMS Microbiol. Ecol. 24:1125.
150. Nichols, P. D.,, J. M. Henson,, J. B. Guckert,, D. E. Nivens,, and D. C. White. 1985. Fourier transform-IR spectroscopic methods for microbial ecology analysis of bacteria, bacteria-polymer mixtures and biofilms. J. Microbiol. Methods 4:7994.
151. Nichols, W. W., 1989. Susceptibility of biofilms to toxic compounds, p. 321331. In W. G. Characklis, and P. A. Wilderer (ed.), Structure and Function of Biofilms. John Wiley & Sons, Inc., New York, N.Y.
152. Nickel, J. C.,, S. K. Grant,, K. Lam,, M. E. Olson,, and J. W. Costerton. 1991a. Bacteriologically stressed animal model of new closed catheter drainage system with microbicidal outlet tube. Urology 38:280289.
153. Nickel, J. C.,, M. E. Olson,, and J. W. Costerton. 1991b. Rat model of experimental prostatitis. Infection 19:S126S130.
154. Nickel, J. C.,, M. E. Olson,, R. J. C. McLean,, S. K. Grant,, and J. W. Costerton. 1987. An ecologic study of infected urinary stone genesis in an animal model. Br. J. Urol. 59:2130.
155. Nickel, J. C.,, I. Ruseska,, J. B. Wright,, and J. W. Costerton. 1985. Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material. Antimicrob. Agents Chemother. 27:619624.
156. Niedhardt, F. C.,, P. L. Bloch,, and D. F. Smith. 1974. Culture medium for Enterobacteria. J. Bacteriol. 119:736747.
157. Nivens, D. E.,, D. E. Ohman,, J. Williams,, and M. J. Franklin. 2001. Role of alginate and its O acetylation in formation of Pseudomonas aeruginosa microcolonies and biofilms. J. Bacteriol. 183:10471057.
158. Nivens, D. E., , R. J. Palmer, Jr.,, and D. C. White. 1995. Continuous nondestructive monitoring of microbial biofilms: A review of analytical techniques. J. Ind. Microbiol. 15:263276.
159. Nyholm, S. V.,, B. Deplanke,, H. R. Gaskins,, M. A. Apicella,, and M. J. McFall Ngai. 2002. Roles of Vibrio fischeri and nonsymbiotic bacteria in the dynamics of mucus secretion during symbiont colonization of the Euprymna scolopes light organ. Appl. Environ. Microbiol. 68:51135122.
160. Nyström, T.,, R. M. Olsson,, and S. Kjelleberg. 1992. Survival, stress resistance, and alterations in protein expression in the marine Vibrio sp. strain S14 during starvation for different individual nutrients. Appl. Environ. Microbiol. 58:5565.
161. Odham, G.,, A. Tunlid,, A. Valeur,, P. Sundin,, and D. C. White. 1986. Model system for studies of microbial dynamics at exuding surfaces such as the rhizosphere. Appl. Environ. Microbiol. 52: 191196.
162. Oosthuizen, M. C.,, B. Steyn,, D. Lindsay,, V. Brözel,, and A. von Holy. 2001. Novel method for the proteomic investigation of a dairy-associated Bacillus cereus biofilm. FEMS Microbiol. Lett. 194: 4751.
163. Oosthuizen, M. C.,, B. Steyn,, J. Theron,, P. Cosette,, D. Lindsay,, A. von Holy,, and V. Brözel. 2002. Proteomic analysis reveals differential protein expression by Bacillus cereus during biofilm formation. Appl. Environ. Microbiol. 68: 27702780.
164. Orvain, F.,, R. Galois,, C. Barnard,, A. Sylvestre,, G. Blanchard,, and P. G. Sauriau. 2003. Carbohydrate production in relation to microphytobenthic biofilm development: an integrated approach in a tidal mesocosm. Microb. Ecol. 45:237251.
165. Ostrowski, M.,, and A. Sklodowska. 1993. Bacterial and chemical leaching pattern on copper ores of sandstone and limestone type. World J. Microbiol. Biotechnol. 9:328331.
166. O’Toole, G. A.,, K. A. Gibbs,, P. W. Hager, , P. V. Phibbs, Jr.,, and R. Kolter. 2000a. The global carbon metabolism regulator Crc is a component of a signal transduction pathway required for biofilm development by Pseudomonas aeruginosa. J. Bacteriol. 182:425431.
167. O’Toole, G. A.,, H. B. Kaplan,, and R. Kolter. 2000b. Biofilm formation as microbial development. Annu. Rev. Microbiol. 54:4979.
168. O’Toole, G. A.,, and R. Kolter. 1998. Initiation of biofilm formation in Pseudomonas fluorescens WCS 365 proceeds via multiple, convergent signaling pathways: a genetic analysis. Mol. Microbiol. 28: 449461.
169. O’Toole, G. A.,, L. A. Pratt,, P. I. Watnick,, D. K. Newman,, V. B. Weaver,, and R. Kolter. 1999. Genetic approaches to study of biofilms. Methods Enzymol. 310:91109.
170. Owusu Ababio, G.,, J. A. Rogers,, D. W. Morck,, and M. E. Olson. 1995. Efficacy of sustained release ciprofloxacin microspheres against deviceassociated Pseudomonas aeruginosa biofilm infection in a rabbit peritoneal model. J. Med. Microbiol. 43: 368376.
171. Paerl, H. W.,, and J. L. Pinckney. 1996. A minireview of microbial consortia: Their roles in aquatic production and biogeochemical cycling. Microb. Ecol. 31:225247.
172. Palmer, R. J., Jr.,, K. Kazmerzak, , M. C. Hansen, , and P. E. Kolenbrander. 2001. Mutualism versus independence: strategies of mixed-species oral biofilms in vitro using saliva as the sole nutrient source. Infect. Immun. 69:57945804.
173. Parales, R. E.,, J. L. Ditty,, and C. S. Harwood. 2000. Toluene-degrading bacteria are chemotactic towards the environmental pollutants benzene, toluene, and trichloroethylene. Appl. Environ. Microbiol. 66:40984104.
174. Park, Y. S.,, and K. Toda. 1992. Multi-stage biofilm reactor for acetic acid production at high concentration. Biotechnol. Lett. 14:609612.
175. Parker, D. S.,, T. Jacobs,, E. Bower,, D. W. Stowe,, and G. Farmer. 1997. Maximizing trickling filter nitrification rates through biofilm control: research review and full scale application. Water Sci. Technol. 36:255262.
176. Parsek, M. R.,, and E. P. Greenberg. 2000. Acylhomoserine lactone quorum sensing in gramnegative bacteria: a signaling mechanism involved in associations with higher organisms. Proc. Natl. Acad. Sci. USA 97:87898793.
177. Perna, N. T., , G. Plunkett III,, V. Burland,, B. Mau,, J. D. Glasner,, D. J. Rose,, G. F. Mayhew,, P. S. Evans,, J. Gregor,, H. A. Kirkpatrick,, G. Posfai,, J. Hackett,, S. Klink,, A. Boutin,, Y. Shao,, L. Miller,, E. J. Grotbeck,, N. W. Davis,, A. Lim,, E. T. Dimalanta,, and K. D. Potamousis. 2001. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409:529533.
178. Perrot, F.,, M. Hébraud,, R. Charlionet,, G. A. Junter,, and T. Jouenne. 2000. Protein patterns of gel-entrapped Escherichia coli cells differ from those of free-floating organisms. Electrophoresis 21: 645653.
179. Phipps, D.,, G. Rodriguez,, and H. Ridgway. 1999. Deconvolution fluorescence microscopy for observation and analysis of membrane biofilm architecture. Methods Enzymol. 310:178194.
180. Potter, K.,, R. L. Kleinberg,, F. J. Brockman,, and E. W. McFarland. 1996. Assay for bacteria in porous media by diffusion-weighted NMR. J. Magn. Reson. B 113:915.
181. Prigent-Combaret, C.,, E. Brombacher,, O. Vidal,, A. Ambert,, P. Lejeune,, P. Landini,, and C. Dorel. 2001. Complex regulatory network controls initial adhesion and biofilm formation in Escherichia coli via regulation of the csgD gene. J. Bacteriol. 183:72137223.
182. Prigent-Combaret, C.,, G. Prensier,, T. T. Le Thi,, O. Vidal,, P. Lejeune,, and C. Dorel. 2000. Developmental pathway for biofilm formation in curli-producing Escherichia coli strains: role of flagella, curli and colanic acid. Environ. Microbiol. 2:450464.
183. Prigent-Combaret, C.,, O. Vidal,, C. Dorel,, and P. Lejeune. 1999. Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli. J. Bacteriol. 181:59936002.
184. Prosser, B. L.,, D. Taylor,, B. A. Dix,, and R. Cleeland. 1987. Method of evaluating effects of antibiotics on bacterial biofilm. Antimicrob. Agents Chemother. 31:15021506.
185. Prouty, A. M.,, W. H. Schwesinger,, and J. S. Gunn. 2002. Biofilm formation and interaction with the surfaces of gallstones by Salmonella spp. Infect. Immun. 70:26402649.
186. Purevdorj, B.,, J. W. Costerton,, and P. Stoodley. 2002. Influence of hydrodynamics and cell signaling on the structure and behavior of Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol. 68: 44574464.
187. Quignon, F.,, M. Sardin,, L. Kiene,, and L. Schwartzbrod. 1997. Poliovirus-1 inactivation and interaction with biofilm: a pilot-scale study. Appl. Environ. Microbiol. 63:978982.
188. Qureshi, F. M.,, M. Badar,, and N. Ahmed. 2001. Biosorption of copper by a bacterial biofilm on a flexible polyvinyl chloride conduit. Appl. Environ. Microbiol. 67:43494352.
189. Rachid, S.,, K. Ohlsen,, U. Wallner,, J. Hacker,, M. Hecker,, and W. Ziebuhr. 2000. Alternative transcription factor σB is involved in regulation of biofilm expression in a Staphylococcus aureus mucosal isolate. J. Bacteriol. 182:68246826.
190. Ramos, C.,, L. Mølbak,, and S. Molin. 2000. Bacterial activity in the rhizosphere analyzed at the single-cell level by monitoring ribosome contents and synthesis rates. Appl. Environ. Microbiol. 66: 801809.
191. Raskin, L.,, B. E. Rittmann,, and D. A. Stahl. 1996. Competition and coexistence of sulfate-reducing and methanogenic populations in anaerobic biofilms. Appl. Environ. Microbiol. 62:38473857.
192. Rippere-Lampe, K. E.,, M. Lang,, H. Ceri,, M. Olson,, H. A. Lockman,, and A. D. O’Brien. 2001. Cytotoxic necrotizing factor type 1-positive Escherichia coli causes increased inflammation and tissue damage to the prostate in a rat prostatitis model. Infect. Immun. 69:65156519.
193. Robinson, R. W.,, D. E. Akin,, R. A. Nordstedt,, M. V. Thomas,, and H. C. Aldrich. 1984. Light and electron microscopic examinations of methane-producing biofilms from anaerobic fixedbed reactors. Appl. Environ. Microbiol. 48:127136.
194. Rogers, J.,, A. B. Dowsett,, P. J. Dennis,, J. V. Lee,, and C. W. Keevil. 1994. Influence of plumbing materials on biofilm formation and growth of Legionella pneumophila in potable water systems. Appl. Environ. Microbiol. 60:18421851.
195. Rumbaugh, K. P.,, J. A. Griswold,, B. H. Iglewski,, and A. N. Hamood. 1999. Contribution of quorum sensing to the virulence of Pseudomonas aeruginosa in burn wound infections. Infect. Immun. 67:58545862.
196. Sambrook, J.,, E. F. Fritsch,, and T. Maniatis. 1989. Molecular Cloning: a Laboratory Manual, 2nd ed., p. 2.602.79. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
197. Sauer, K.,, and A. K. Camper. 2001. Characterization of phenotypic changes in Pseudomonas putida in response to surface-associated growth. J. Bacteriol. 183:65796589.
198. Schembri, M. A.,, K. Kjærgaard,, and P. Klemm. 2003. Global gene expression in Escherichia coli biofilms. Mol. Microbiol. 48:253267.
199. Shaw, J. C.,, B. Bramhill,, N. C. Wardlaw,, and J.W. Costerton. 1985. Bacterial fouling in a model core system. Appl. Environ. Microbiol. 49:693701.
200. Sibille, I.,, T. Sime-Ngando,, L. Mathieu,, and J. C. Block. 1998. Protozoan bacterivory and Escherichia coli survival in drinking water distribution systems. Appl. Environ. Microbiol. 64:197202.
201. Singh, P. K.,, M. R. Parsek,, E. P. Greenberg,, and M. J. Welsh. 2002. A component of innate immunity prevents bacterial biofilm development. Nature 417:552555.
202. Singh, P. K.,, A. L. Schaefer,, M. R. Parsek,, T. O. Moninger,, M. J. Welsh,, and E. P. Greenberg. 2000. Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407:762764.
203. Smibert, R. M.,, and N. R. Krieg,. 1994. Phenotypic characterization, p. 607654. In P. Gerhardt, , R. G. E. Murray, , W. A. Wood, , and N. R. Krieg (ed.), Methods for General and Molecular Bacteriology. American Society for Microbiology, Washington, D.C.
204. Stahl, D. A., 1997. Molecular approaches for the measurement of density, diversity, and phylogeny, p. 102114. In C. J. Hurst, , G. R. Knudsen, , M. J. McInerney, , L. D. Stetzenbach, , and M. V. Walter (ed.), Manual of Environmental Microbiology. ASM Press, Washington, D.C.
205. Stanley, N. R.,, R. A. Britton,, A. D. Grossman,, and B. A. Lazazzera. 2003. Identification of catabolite repression as a physiological regulator of biofilm formation by Bacillus subtilis by use of DNA microarrays. J. Bacteriol. 185:19511957.
206. Sternberg, C.,, B. B. Christensen,, T. Johansen,, A. T. Nielsen,, J. B. Andersen,, M. Givskov,, and S. Molin. 1999. Distribution of bacterial growth activity in flow-chamber biofilms. Appl. Environ. Microbiol. 65:41084117.
207. Stewart, P. S.,, F. Roe,, J. Rayner,, J. G. Elkins,, Z. Lewandowski,, U. A. Ochsner,, and D. J. Hassett. 2000. Effect of catalase on hydrogen peroxide penetration into Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol. 66:836838.
208. Steyn, B.,, M. C. Oosthuizen,, R. MacDonald,, J. Theron,, and V. S. Brözel. 2001. The use of glass wool as an attachment surface for studying phenotypic changes in Pseudomonas aeruginosa biofilms by two-dimensional gel electrophoresis. Proteomics 1:871879.
209. Stickler, D.,, and G. Hughes. 1999. Ability of Proteus mirabilis to swarm over urethral catheters. Eur. J. Clin. Microbiol. Infect. Dis. 18:206208.
210. Stickler, D. J.,, C. L. Clayton,, and J. C. Chawla. 1987. Assessment of antiseptic bladder washout procedures using a physical model of the catheterised bladder. Br. J. Urol. 60:413418.
211. Stickler, D. J.,, C. L. Clayton,, M. J. Harber,, and J. C. Chawla. 1988. Pseudomonas aeruginosa and long-term indwelling bladder catheters. Arch. Phys. Med. Rehabil. 69:2528.
212. Stickler, D. J.,, and R. J. C. McLean. 1995. Biomaterials associated infections: the scale of the problem. Cells Mater. 5:167182.
213. Stickler, D. J.,, N. S. Morris,, R. J. C. McLean,, and C. Fuqua. 1998. Biofilms on indwelling urinary catheters produce quorum-sensing signal molecules in situ and in vitro. Appl. Environ. Microbiol. 64:34863490.
214. Stoodley, P.,, D. deBeer,, and Z. Lewandowski. 1994. Liquid flow in biofilm systems. Appl. Environ. Microbiol. 60:27112716.
215. Stoodley, P.,, Z. Lewandowski,, J. D. Boyle,, and H. M. Lappin-Scott. 1999a. Structural deformation of bacterial biofilms caused by short-term fluctuations in fluid shear: An in situ investigation of biofilm rheology. Biotechnol. Bioeng. 65:8392.
216. Stoodley, P.,, Z. Lewandowski,, J. D. Boyle,, and H. M. Lappin-Scott. 1999b. The formation of migratory ripples in a mixed species bacterial biofilm growing in turbulent flow. Environ. Microbiol. 1:447455.
217. Stoodley, P.,, S. Wilson,, L. Hall-Stoodley,, J. D. Boyle,, H. M. Lappin-Scott,, and J. W. Costerton. 2001. Growth and detachment of cell clusters from mature mixed-species biofilms. Appl. Environ. Microbiol. 67:56085613.
218. Stover, C. K.,, X. Q. Pham,, A. L. Erwin,, S. D. Mizoguchi,, P. Warrener,, M. J. Hickey,, F. S. Brinkman,, W. O. Hufnagel,, D. J. Kowalik,, M. Lagrou,, R. L. Garber,, L. Goltry,, E. Tolentino,, S. Westbrock-Wadman,, Y. Yuan,, L. L. Brody,, S. N. Coulter,, K. R. Folger,, A. Kas,, K. Larbig,, R. Lim,, K. Smith,, D. Spencer,, G. K. Wong,, Z. Wu,, I. T. Paulsen,, J. Reizer,, M. H. Saier,, R. E. W. Hancock,, S. Lory,, and M. V. Olson. 2000. Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406:947948.
219. Suci, P. A.,, M. W. Mittelman,, F. P. Yu,, and G. G. Geesey. 1994. Investigation of ciprofloxacin penetration into Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemother. 38:21252133.
220. Suci, P. A.,, and B. J. Tyler. 2002. Action of chlorhexidine digluconate against yeast and filamentous forms in an early-stage Candida albicans biofilm. Antimicrob. Agents Chemother. 46:35223531.
221. Taylor, J. H.,, and J. T. Holah. 1996. A comparative evaluation with respect to the bacterial cleanability of a range of wall and floor surface materials used in the food industry. J. Appl. Bacteriol. 81: 262266.
222. Teitzel, G. M.,, and M. R. Parsek. 2003. Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Appl. Environ. Microbiol. 69:23132320.
223. Teplitski, M.,, J. B. Robinson,, and W. D. Bauer. 2000. Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol. Plant Microb. Interact. 13:637648.
224. Thar, R.,, M. Kühl,, and G. Holst. 2001. Fiberoptic fluorometer for microscale mapping of photosynthetic pigments in microbial communities. Appl. Environ. Microbiol. 67:28232828.
225. Todd, S. J.,, A. J. Moir,, M. J. Johnson,, and A. Moir. 2003. Genes of Bacillus cereus and Bacillus anthracis encoding proteins of the exosporium. J. Bacteriol. 185:33733378.
226. Toledo-Arana, A.,, J. Valle,, C. Solano,, M. J. Arrizubieta,, C. Cucarella,, M. Lamata,, B. Amorena,, J. Leiva,, J. R. Penades,, and I. Lasa. 2001. The enterococcal surface protein, Esp, is involved in Enterococcus faecalis biofilm formation. Appl. Environ. Microbiol. 67:45384545.
227. Tomlin, K. L.,, O. P. Coll,, and H. Ceri. 2001. Interspecies biofilms of Pseudomonas aeruginosa and Burkholderia cepacia. Can. J. Microbiol. 47:949954.
228. Tyler, B. 1997. XPS and SIMS studies of surfaces important in biofilm formation. Three case studies. Ann. N. Y. Acad. Sci. 831:114126.
229. Vallet, I.,, J. W. Olson,, S. Lory,, A. Lazdunski,, and A. Filloux. 2001. The chaperone/usher pathways of Pseudomonas aeruginosa: identification of fimbrial gene clusters (cup) and their involvement in biofilm formation. Proc. Natl. Acad. Sci. USA 98: 69116916.
230. van Loosdrecht, M. C. M.,, and S. J. Heijnen. 1993. Biofilm bioreactors for waste-water treatment. Trends Biotechnol. 11:117121.
231. von Canstein, H.,, Y. Li,, E. Haase,, A. Felske,, W.-D. Deckwer,, and I. Wagner-Dobler. 2002. Spatially oscillating activity and microbial succession of mercury-reducing biofilms in a technical- scale bioremediation system. Appl. Environ. Microbiol. 68:19381946.
232. Vroom, J. M.,, K. J. De Grauw,, H. C. Gerritsen,, D. J. Bradshaw,, P. D. Marsh,, G. K. Watson,, J. J. Birmingham,, and C. Allison. 1999. Depth penetration and detection of pH gradients in biofilms by two-photon excitation microscopy. Appl. Environ. Microbiol. 65:35023511.
233. Vuopio-Varkila, J.,, and G. K. Schoolnik. 1991. Localized adherence by enteropathogenic Escherichia coli is an inducible phenotype associated with the expression of new outer membrane proteins. J. Exp. Med. 174:11671177.
234. Walker, J. T.,, D. J. Bradshaw,, A. M. Bennett,, M. R. Fulford,, M. V. Martin,, and P. D. Marsh. 2000. Microbial biofilm formation and contamination of dental-unit water systems in general dental practice. Appl. Environ. Microbiol. 66: 33633367.
235. Walters, M. C., III,, F. Roe, , A. Bugnicourt, , M. J. Franklin, , and P. S. Stewart. 2003. Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob. Agents Chemother. 47:317323.
236. Watnick, P.,, and R. Kolter. 2000. Biofilm, city of microbes. J. Bacteriol. 182:26752679.