1887

Chapter 5 : Biofilm Development in

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Biofilm Development in , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817718/9781555818944_Chap05-1.gif /docserver/preview/fulltext/10.1128/9781555817718/9781555818944_Chap05-2.gif

Abstract:

The genus consists of an ever-expanding group of gram-positive cocci that have evolved to colonize specific environmental niches, including preferential human tissues and diverse mammalian species. The study of staphylococcal biofilms in vitro has the advantage that in vivo foreign body-associated infections are often colonized by what seems to be single strains or species. The capsular polysaccharide adhesin (PS/A) was isolated from biofilm-forming and shown to mediate binding of the bacteria to silastic catheter surfaces. More recently identified members of this family of autolysin/adhesins include the homologous autolysin, Aas, which was shown to bind fibronectin and sheep erythrocytes and to exhibit bacteriolytic properties. The presence of an icaA homolog has also been inferred in , , , , , and based on DNA cross-hybridization experiments. Some of the environmental stimuli that induce biofilm formation in vitro that have been identified so far are described in this chapter. Examination of temporal and spatial gene expression patterns within a biofilm may reveal a community of cells resembling a multicellular organism, with heterogeneous roles for diverse phenotypic cell types. The problem will remain, however, that a small portion of the population may be able to survive any treatment regimen and effective therapy may have to include a combination of targets. This scenario is all the more likely when one considers the diverse and redundant biofilm-forming mechanisms already known to be present in the staphylococcal arsenal.

Citation: Cramton S, Götz F. 2004. Biofilm Development in , p 64-84. In Ghannoum M, O'Toole G (ed), Microbial Biofilms. ASM Press, Washington, DC. doi: 10.1128/9781555817718.ch5
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Summary of factors that influence biofilm development in staphylococci. The bacteria produce factors that bind to the substrate surface, directly or indirectly (primary adhesion and bridging molecules) and to each other (cell-cell adhesion). Nonbacterial factors include molecules produced by the host and environmental signals to which bacterial regulatory systems respond. Many of these factors may be redundant in function, and many more are likely to be identified.

Citation: Cramton S, Götz F. 2004. Biofilm Development in , p 64-84. In Ghannoum M, O'Toole G (ed), Microbial Biofilms. ASM Press, Washington, DC. doi: 10.1128/9781555817718.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817718.chap5
1. Allignet, J.,, S. Aubert,, K. G. Dyke,, and N. El Solh. 2001. Staphylococcus caprae strains carry determinants known to be involved in pathogenicity: a gene encoding an autolysin-binding fibronectin and the ica operon involved in biofilm formation. Infect. Immun. 69: 712 718.
2. Allignet, J.,, P. England,, I. Old,, and N. El Solh. 2002. Several regions of the repeat domain of the Staphylococcus caprae autolysin, AtlC, are involved in fibronectin binding. FEMS Microbiol. Lett. 213: 193 197.
3. Allignet, J.,, J.-O. Galdbart,, A. Morvan,, K. G. H. Dyke,, P. Vaudaux,, S. Aubert,, N. Desplaces,, and N. El Sohl. 1999. Tracking adhesion factors in Staphylococcus caprae strains responsible for human bone infections following implantation of orthopaedic material. Microbiology 145: 2033 2042.
4. Arciola, C. R.,, L. Baldassarri,, and L. Montanaro. 2001. Presence of icaA and icaD genes and slime production in a collection of staphylococcal strains from catheter-associated infections. J. Clin. Microbiol. 39: 2151 2156.
5. Atmaca, S.,, S. Elci,, and N. O. Akpolat. 2000. Differential production of slime by Staphylococcus saprophyticus under aerobic and anaerobic conditions. J. Med. Microbiol. 49: 1051 1052.
6. Baird-Parker, A. C. 1965. The classification of staphylococci and micrococci from world-wide sources. J. Gen. Microbiol. 38: 363 387.
7. Balaban, N.,, A. Giacometti,, O. Cirioni,, Y. Gov,, R. Ghiselli,, F. Mocchegiani,, C. Viticci,, M. S. Del Prete,, V. Saba,, G. Scalise,, and G. Dell’ Acqua. 2003a. Use of the quorum-sensing inhibitor RNAIII-inhibiting peptide to prevent biofilm formation in vivo by drug-resistant Staphylococcus epidermidis. J. Infect. Dis. 187: 625 630.
8. Balaban, N.,, T. Goldkorn,, Y. Gov,, M. Hirshberg,, N. Koyfman,, H. R. Matthews,, R. T. Nhan,, B. Singh,, and O. Uziel. 2001. Regulation of Staphylococcus aureus pathogenesis via target of RNAIII-activating protein (TRAP). J. Biol. Chem. 276: 2658 2667.
9. Balaban, N.,, Y. Gov,, A. Bitler,, and J. R. Roelaert. 2003b. Prevention of Staphylococcus aureus biofilm on dialysis catheters ad adherence to human cells. Kidney Int. 63: 340 345.
10. Baldassarri, L.,, G. Donelli,, A. Gelosia,, M. C. Voglino,, A. W. Simpson,, and G. D. Christensen. 1996. Purification and characterization of the staphylococcal slime-associated antigen and its occurrence among Staphylococcus epidermidis clinical isolates. Infect. Immun. 64: 3410 3415.
11. Barker, L. P.,, W. A. Simpson,, and G. D. Christensen. 1990. Differential production of slime under aerobic and anaerobic conditions. J. Clin. Microbiol. 28: 2578 2579.
12. Bayston, R.,, and S. R. Penney. 1972. Excessive production of mucoid substance in staphylococcus SIIA: a possible factor in colonization of Holter shunts. Dev. Med. Child. Neurol. 14(Suppl. 27): 25 28.
13. Christensen, G. D.,, L. P. Barker,, T. P. Mawhinney,, L. M. Baddour,, and W. A. Simpson. 1990. Identification of an antigenic marker of slime production for Staphylococcus epidermidis. Infect. Immun. 58: 2906 2911.
14. Christensen, G. D.,, W. A. Simpson,, A. L. Bisno,, and E. H. Beachey. 1982. Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. Infect. Immun. 40: 407 410.
15. Christensen, G. D.,, W. A. Simpson,, J. J. Younger,, L. M. Baddour,, F. F. Barrett,, D. M. Melton,, and E. H. Beachey. 1985. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J. Clin. Microbiol. 22: 996 1006.
16. Conlon, K. M.,, H. Humphreys,, and J. P. O’Gara. 2002a. icaR encodes a transcriptional repressor involved in environmental regulation of ica operon expression and biofilm formation in Staphylococcus epidermidis. J. Bacteriol. 184: 4400 4408.
17. Conlon, K. M.,, H. Humphreys,, and J. P. O’Gara. 2002b. Regulation of icaR gene expression in Staphylococcus epidermidis. FEMS Microbiol. Lett. 216: 171 177.
18. Cramton, S. E.,, C. Gerke,, and F. Götz,. 2001a. In vitro methods to study staphylococcal biofilm formation, p. 239 255. In R. J. Doyle (ed.), Microbial Growth in Biofilms. Academic Press, New York, NY.
19. Cramton, S. E.,, C. Gerke,, N. F. Schnell,, W. W. Nichols,, and F. Götz. 1999. The intercellular adhesion ( ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect. Immun. 67: 5427 5433.
20. Cramton, S. E.,, N. F. Schnell,, F. Götz,, and R. Brückner. 2000. Identification of a new repetitive element in Staphylococcus aureus. Infect. Immun. 68: 2344 2348.
21. Cramton, S. E.,, M. Ulrich,, F. Götz,, and G. Döring. 2001b. Anaerobic conditions induce expression of the polysaccharide intercellular adhesin in Staphylococcus aureus and Staphylococcus epidermidis. Infect. Immun. 69: 4079 4085.
22. Cucarella, C.,, C. Soano,, J. Valle,, B. Amorena, Í. Lasa, and J. R. Penadés. 2001. Bap, a Staphylococcus aureus surface protein involved in biofilm formation. J. Bacteriol. 183: 2888 2896.
23. Cucarella, C.,, M. A. Tormo,, E. Knecht,, B. Amorena, Í. Lasa, T. J. Foster, and J. R. Penadés. 2002. Expression of the biofilm-associated protein interferes with host protein receptors of Staphylococcus aureus and alters the infective process. Infect. Immun. 70: 3180 3186.
24. Deighton, M.,, and R. Borland. 1993. Regulation of slime production in Staphylococcus epidermidis by iron limitation. Infect. Immun. 61: 4473 4479.
25. Dobinsky, S.,, K. Kiel,, H. Rohde,, K. Bartscht,, J. K.-M. Knobloch,, M. A. Horstkotte,, and D. Mack. 2003. Glucose-related dissociation between icaADBC transcription and biofilm expression by Staphylococcus epidermidis: evidence for an additional factor required for polysaccharide intercellular adhesin synthesis. J. Bacteriol. 185: 2879 2886.
26. Donlan, R. M. 2001. Biofilms and device-associated infections. Emerg. Infect. Dis. 7: 277 281.
27. Doyle, R. J. (ed.). 1999. Methods in Enzymology, vol. 310. Biofilms. Academic Press, San Diego, Calif.
28. Doyle, R. J. (ed.). 2001a. Methods in Enzymology, vol. 336. Microbial Growth in Biofilms. Part A. Developmental and Molecular Biological Aspects. Academic Press, San Diego, Calif.
29. Doyle, R. J. (ed.). 2001b. Methods in Enzymology, vol. 337. Microbial Growth in Biofilms. Part B. Special Environmental and Physiochemical Aspects. Academic Press, San Diego, Calif.
30. Dunne, W. M. 2002. Bacterial adhesion: seen any good biofilms lately? Clin. Microbiol. Rev. 15: 155 166.
31. Dunne, W. M., and Burd, E. M. 1992. The effects of magnesium, calcium, EDTA and pH on the in vitro adhesion of Staphylococcus epidermidis to plastic. Microbiol. Immmunol. 36: 1019 1027.
32. Evans E., , M. R. Brown, , and P. Gilbert. 1994. Iron chelator, exopolysaccharide and protease production in Staphylococcus epidermidis: a comparative study of the effects of specific growth rate in biofilm and planktonic culture. Microbiology 140: 153 157.
33. Fey, P. D.,, J. S. Ulphani,, F. Götz,, C. Heilmann,, D. Mack,, and M. E. Rupp. 1999. Characterization of the relationship between polysaccharide intercellular adhesin and hemagglutination in Staphylococcus epidermidis. J. Infect. Dis. 179: 1561 1564.
34. Fischer, W., 1997. Lipoteichoic acid and teichoic acid biosynthesis. Targets of new antibiotics?, p. 47 50. In R. Hackenbeck (ed.), New Targets for New Antimicrobial Agents. Spectrum Akademischer Verlag, Heidelberg, Germany.
35. Fitzpatrick, F.,, H. Humphreys,, E. Smyth,, C. A. Kennedy,, and J. P. O’Gara. 2002. Environmental regulation of biofilm formation in intensive care unit isolates of Staphylococcus epidermidis. J. Hosp. Infect. 42: 212 218.
36. Foster, S. J. 1995. Molecular characterization and functional analysis of the major autolysin of Staphylococcus aureus 8325/4. J. Bacteriol. 177: 5723 5725.
37. Foster, T. J.,, and M. Höök. 1998. Surface protein adhesins of Staphylococcus aureus. Trends Microbiol. 6: 484 488.
38. Fournier, B.,, and D. C. Hooper. 2000. A new two-component regulatory system involved in adhesion, autolysis and extracellular proteolytic activity of Staphylococcus aureus. J. Bacteriol. 182: 3955 3964.
39. Fowler, V. G.,, P. D. Fey,, L. B. Reller,, A. L. Chamis,, G. R. Corey,, and M. E. Rupp. 2001. The intercellular adhesin locus ica is present in cloinical isolates of Staphylococcus aureus from bacteremic patients with infected and uninfected prosthetic joints. Med. Microbiol. Immunol. 189: 127 131.
40. Francois, P.,, P. H. Tu Quoc,, C. Bisognano,, W. H. Kelley,, D. P. Lew,, J. Schrenzel,, S. E Cramton,, F. Götz,, and P. Vaudaux. 2003. Lack of biofilm contribution of bacterial colonisation in an experimental model of foreign body infection by Staphylococcus aureus and Staphylococcus epidermidis. FEMS Immunol. Med. Micriobiol. 35: 135 140.
41. Galdbart, J.-O.,, J. Allignet,, H.-S. Tung,, C. Rydèn,, and N. El Solh. 2000. Screening for Staphylococcus epidermidis markers discriminating betwen skin-flora strains and those responsible for infections of joint prostheses. J. Infect. Dis. 182: 351 355.
42. Gerke, C.,, A. Kraft,, R. Süβmuth,, O. Schweitzer,, and F. Götz. 1998. Characterization of the N-acetylglucosaminyltransferase activity involved in the biosynthesis of the Staphylococcus epidermidis polysaccharide intercellular adhesin (PIA). J. Biol. Chem. 273: 18586 18593.
43. Götz, F. 1990. Staphylococcus carnosus: a new host organism for gene cloning and protein production. Soc. Appl. Bacteriol. Symp. Ser. 19: 49S 53S.
44. Götz, F. 2002. Staphylococcus and biofilms. Mol. Microbiol. 43: 1367 1378.
45. Götz, F.,, and G. Peters,. 2000. Colonization of medical devices by coagulase-negative staphylococci, p. 55 88. In F. A. Waldvogel, and A. L. Bisno (ed.), Infections Associated with Indwelling Medical Devices. ASM Press, Washington, D.C.
46. Gov, Y.,, A. Bitler,, G. Dell’Acaua,, J. V. Torres,, and N. Balaban. 2001. RNAIII inhibiting peptide (RIP), a global inhibitor of Staphylococcus aureus pathogenesis: structure and function analysis. Peptides 22: 1609 1620.
47. Gross, M.,, S. E. Cramton,, F. Götz,, and A. Peschel. 2001. Key role of teichoic acid net charge in Staphylococcus aureus colonization of artificial surfaces. Infect. Immun. 69: 3423 3426.
48. Heilmann, C.,, C. Gerke,, F. Perdreau-Remington,, and F. Götz. 1996a. Characterization of Tn917 insertion mutants of Staphylococcus epidermidis affected in biofilm formation. Infect. Immun. 64: 277 282.
49. Heilmann, C.,, and F. Götz. 1998. Further characterization of Staphylococcus epidermidis transposon mutants deficient in primary attachment or intercellular adhesion. Zentbl. Bakteriol. 287: 69 83.
50. Heilmann, C.,, M. Hussain,, G. Peters,, and F. Götz. 1997. Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol. Microbiol. 24: 1013 1024.
51. Heilmann, C.,, O. Schweitzer,, C. Gerke,, N. Vanittanakom,, D. Mack,, and F. Götz. 1996b. Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Mol. Microbiol. 20: 1083 1091.
52. Hell, W.,, H. G. Meyer,, and S. G. Gatermann. 1998. Cloning of aas, a gene encoding a Staphylococcus saprophyticus surface protein with adhesive and autolytic properties. Mol. Microbiol. 29: 871 881.
53. Hussain, M.,, J. G. M. Hastings,, and P. J. White. 1992. Comparison of cell-wall teichoic acid with high-molecular-weight extracellular slime material from Staphylococcus epidermidis. J. Med. Microbiol. 37: 368 375.
54. Hussain, M.,, C. Heilmann,, G. Peters,, and M. Herrmann. 2001. Teichoic acid enhances adhesion of Staphylococcus epidermidis to immobilized fibronectin. Microb. Pathog. 31: 261 270.
55. Hussain, M.,, M. Herrmann,, C. von Eiff,, F. Perdreau-Remington,, and G. Peters. 1997. A 140-kilodalton extracellular protein is essential for the accumulation of Staphylococcus epidermidis strains on surfaces. Infect. Immun. 65: 519 524.
56. Hussain, M.,, M. H. Wilcox,, and P. J. White. 1993. The slime of coagulase-negative staphylococci: biochemistry and relation to adherence. FEMS Microbiol. Rev. 104: 191 208.
57. Jefferson, K. K.,, S. E. Cramton,, F. Götz,, and G. B. Pier. 2003. Identificaiton of a 5-nucleotide sequence that controls expression of the ica locus in Staphylococcus aureus and characterization of the DNA-binding properties of IcaR. Mol. Microbiol. 48: 889 899.
58. Joh, D.,, E. R. Wann,, B. Kreikemeyer,, P. Speziale,, and M. Höök. 1999. Role of fibronectin-binding MSCRAMMs in bacterial adherence and entry into mammalian cells. Matrix Biol. 18: 211 223.
59. Knobloch, J. K.-M.,, K. Bartscht,, A. Sabottke,, H. Rohde,, H.-H. Feucht,, and D. Mack. 2001. Biofilm formation by Staphylococcus epidermidis depends on functional RsbU, an activator of the sigB operon: differential activation mechanisms due to ethanol and salt stress. J. Bacteriol. 183: 2624 2633.
60. Knobloch, J. K.-M.,, M. A. Horstkotte,, H. Rohde,, P. M. Kaulfers,, and D. Mack. 2002. Alcoholic ingredients in skin disinfectants increase biofilm expression of Staphylococcus epidermidis. J. Antimicrob. Chemother. 49: 683 687.
61. König, C.,, S. Schwank,, and J. Blaser. 2001. Factors compromising antibiotic activity against biofilm of Staphylococcus epidermidis. Eur. J. Clin. Microbiol. Infect. Dis. 20: 20 26.
62. Kristian, S. A.,, T. Golda,, F. Ferracin,, S. E. Cramton,, B. Neumeister,, A. Peschel,, F. Götz,, and R. Landmann. Virulence of biofilm-negative Staphylococcus aureus and host response in a mouse tissue cage infection model. FEMS Immunol., in press.
63. Lewis, K. 2001. Riddle of biofilm resistance. Antimicrob. Agents Chemother. 45: 999 1007.
64. Lina, G.,, S. Jarraud,, G. Ji,, T. Greenland,, A. Pedraza,, J. Etienne,, R. P. Novick,, and F. Vandenesch. 1998. Transmembrane topology and histidine protein kinase activity of AgrC, the agr signal receptor in Staphylococcus aureus. Mol. Microbiol. 28: 655 662.
65. Mack, D. 1999. Molecular mechanisms of Staphylococcus epidermidis biofilm formation. J. Hosp. Infect. 43: S113 S125.
66. Mack, D.,, W. Fischer,, A. Krokotsch,, K. Leopold,, R. Hartmann,, H. Egge,, and R. Laufs. 1996a. The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear β-1,6-linked glucosaminoglycan: purification and structural analysis. J. Bacteriol. 178: 175 183.
67. Mack, D.,, M. Haeder,, N. Siemssen,, and R. Laufs. 1996b. Association of biofilm production of coagulase-negative staphylococci with expression of a specific polysaccharide intercellular adhesin. J. Infect. Dis. 174: 881 884.
68. Mack, D.,, M. Nedelmann,, A. Krokotsch,, A. Schwarzkopf,, J. Heesemann,, and R. Laufs. 1994. Characterization of transposon mutants of biofilm-producing Staphylococcus epidermidis impaired in the accumulation phase of biofilm production: genetic identification of a hexosamine-containing polysaccharide intercellular antigen. Infect. Immun. 62: 3244 3253.
69. Mack, D.,, J. Riedewald,, H. Rohde,, T. Magnus,, H. H. Feucht,, H.-S. Elsner,, R. Laufs,, and M. E. Rupp. 1999. Essential functional role of the polysaccharide intercellular adhesin of Staphylococcus epidermidis in hemagglutination. Infect. Immun. 67: 1004 1008.
70. Mack, D.,, H. Rohde,, S. Dobinsky,, J. Riedewald,, M. Nedelmann,, J. K.-M. Knobloch,, H.-A. Elsner,, and H. H. Feucht. 2000. Identification of three essential regulatory gene loci governing expression of Staphylococcus epidermidis polysaccharide intercellular adhesin and biofilm formation. Infect. Immun. 68: 3799 3807.
71. Mack, D.,, N. Siemssen,, and R. Laufs. 1992. Parallel induction by glucose of adherence and a polysaccharide antigen specific for plastic-adherent Staphylococcus epidermidis: evidence for functional relation to intercellular adhesion. Infect. Immun. 60: 2048 2057.
72. Mah, T.-F. C.,, and G. A. O’Toole. 2001. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 9: 34 39.
73. Maira-Litrán, T.,, A. Kropec,, C. Abeygunawardana,, J. Joyce,, G. Mark,, D. A. Goldmann,, and G. B. Pier. 2002. Immunochemical properties of the staphylococcal poly-N-acetylglucosamine surface polysaccharide . Infect. Immun. 70: 4433 4440.
74. McKenney, D.,, J. Hübner,, E. Muller,, Y. Wang,, D. A. Goldmann,, and G. B. Pier. 1998. The ica locus of Staphylococcus epidermidis encodes production of the capsular polysaccharide/adhesin. Infect. Immun. 66: 4711 4720.
75. McKenney, D.,, K. L. Pouliot,, Y. Wang,, V. Murthy,, M. Ulrich,, G. ,, J. C. Lee,, D. A. Goldmann,, and G. B. Pier. 1999. Broadly protective vaccine for Staphylococcus aureus based on an in vivo-expressed antigen. Science 284: 1523 1527.
76. McKenney, D.,, K. Pouliot,, Y. Wang,, V. Murthy,, M. Ulrich,, G. ,, J. C. Lee,, D. A. Goldmann,, and G. B. Pier. 2000. Vaccine potential of poly-1-6 β-D-N-succinylglucosamine, an immunoprotective surface polysaccaride of Staphylococcus aureus and Staphylococcus epidermidis. J. Biotechnol. 83: 37 44.
77. Modun, B.,, A. Cockayne,, R. Finch,, and P. Williams. 1998. The Staphylococcus aureus and Staphylococcus epidermidis transferrin-binding proteins are expressed in vivo during infection. Microbiology 144: 1005 1012.
78. Modun, B.,, J. Morrissey,, and P. Williams. 2000. The staphylococcal transferrin receptor: a glycolytic enzyme with novel functions. Trends Microbiol. 8: 231 237.
79. Morrissey, J. A.,, A. Cockayne,, P. J. Hill,, and P. Williams. 2000. Molecular cloning and analysis of a putative siderophore ABC transporter from Staphylococcus aureus. Infect. Immun. 68: 6281 6288.
80. Muller, E.,, J. Hübner,, N. Gutierrez,, S. Takeda,, D. A. Goldmann,, and G. B. Pier. 1993. Isolation and characterization of transposon mutants of Staphylococcus epidermidis deficient in capsular polysaccharide/adhesin and slime. Infect. Immun. 61: 551 558.
81. Novick, R. P.,, and T. W. Muir. 1999. Virulence gene regulation by peptides in staphylococci and other gram-positive bacteria. Curr. Opin. Microbiol. 2: 40 45.
82. O’Gara, J. P.,, and H. Humphreys. 2001. Staphylococcus epidermidis biofilms: importance and implications. J. Med. Microbiol. 50: 582 587.
83. Oshida, T.,, M. Sugai,, H. Komatsuzawa,, Y. Hong,, H. Suginaka,, and A. Tomasz. 1995. A Staphylococcus aureus autolysin that has an N-acetylmuramoyl-L-alanine amidase domain and an endo-β N-acetylglucosaminidase domain: cloning, sequence analysis, and characterization. Proc. Natl. Acad. Sci. USA 92: 285 289.
84. Otto, M. 2001. Staphylococcus aureus and Staphylococcus epidermidis peptide pheromones produced by the accessory gene regulator agr system. Peptides 22: 1603 1608.
85. Otto, M.,, R. Süssmuth,, G. Jung,, and F. Götz. 1998. Structure of the pheromone peptide of the Staphylococcus epidermidis agr system. FEBS Lett. 424: 89 94.
86. Peacock, S. J.,, C. E. Moore,, A. Justice,, M. Kantzanou,, L. Story,, K. Mackie,, G. O’Neill,, and N. P. Day. 2002. Virulent combination of adhesin and toxin genes in natural populations of Staphylococcus aureus. Infect. Immun. 70: 4987 4996.
87. Perdreau-Remington, F.,, M. A. Sande,, G. Peters,, and H. F. Chambers. 1998. The abilities of a Staphylococcus epidermidis wild-type strain and its slime-negative mutant to induce endocarditis in rabbits are comparable. Infect. Immun. 66: 2778 2781.
88. Pratten, J.,, S. J. Foster,, P. F. Chan,, M. Wilson,, and S. P. Nair. 2001. Staphylococcus aureus accessory regulators: expression witin biofilms and effect on adhesion. Microbes Infect. 3: 633 637.
89. Rachid, S.,, S. Cho,, K. Ohlsen,, J. Hacker,, and W. Ziebuhr. 2000. Induction of Staphylococcus epidermidis biofilm formation by environmental factors: the possible involvement of the alternative transcription factor SigB. Adv. Exp. Med. Biol. 485: 159 166.
90. Rachid, S.,, K. Ohlsen,, U. Wallner,, J. Hacker,, M. Hecker,, and W. Ziebuhr. 2000a. Alternative transcription factor σ B is involved in regulation of biofilm expression in a Staphylococcus aureus mucosal isolate. J. Bacteriol. 182: 6824 6826.
91. Rachid, S.,, K. Ohlsen,, W. Witte,, J. Hacker,, and W. Ziebuhr. 2000b. Effect of subinhibitory antibiotic concentrations on polysaccharide intercellular adhesin expression in biofilm-forming Staphylococcus epidermidis. Antimicrob. Agents Chemother. 44: 3357 3363.
92. Recsei, P.,, B. Kreiswirth,, M. O’Reilley,, P. Schlievert,, A. Gruss,, and R. P. Novick. 1986. Regulation of exoprotein gene expression in Staphylococcus aureus by agr. Mol. Gen. Genet. 202: 58 61.
93. Rohde, H.,, J. K. M. Knobloch,, M. A. Horstkotte,, and D. Mack. 2001. Correlation of Staphylococcus aureus icaADBC genotype and biofilm expression phenotype. J. Clin. Microbiol. 39: 4595 4596.
94. Rupp, M. E.,, P. D. Fey,, C. Heilmann,, and F. Götz. 2001. Characterization of the importance of Staphylococcus epidermidis autolysin and polysaccharide intercellular adhesin in the pathogenesis of intravascular catheter-associated infection in a rat model. J. Infect. Dis. 183: 1038 1042.
95. Rupp, M. E.,, J. S. Ulphani,, P. D. Fey,, K. Bartscht,, and D. Mack. 1999a . Characterization of the importance of polysaccharide intercellular adhesin/hemaglutinin of Staphylococcus epidermidis in the pathogenesis of biomaterial-based infection in a mouse foreign body infection model. Infect. Immun. 67: 2627 2632.
96. Rupp, M. E.,, J. S. Ulphani,, P. D. Fey,, and D. Mack. 1999b. Characterization of Staphylococcus epidermidis polysaccharide intercellular adhesin/ hemaglutinin in the pathogenesis of intravascular catheter-associated infection in a rat model. Infect. Immun. 67: 2656 2659.
97. Sakoulas, G.,, G. M. Eliopoulos,, R. C. Moellering,, C. Wennersten,, L. Venkataraman,, R. P. Novick,, and H. S. Gold. 2002. Accessory gene regulator ( agr) locus in geographically diverse Staphylococcus aureus isolates with reduced susceptibility to vancomycin. Antimicrob. Agents Chemother. 46: 1492 1502.
98. Schumacher-Perdreau, F.,, C. Heilmann,, G. Peters,, F. Götz,, and G. Pulverer. 1994. Comparative analysis of a biofilm-forming Staphylococcus epidermidis strain and its adhesion-positive, accumulation-negative mutant M7. FEMS Microbiol. Lett. 117: 71 78.
99. Shiro, H.,, E. Muller,, N. Gutierrez,, S. Boisot,, M. Grout,, T. D. Tosteson,, D. Goldmann,, and G. B. Pier. 1994. Transposon mutants of Staphylococcus epidermidis deficient in elaboration of capsular polysaccharide/adhesin and slime are avirulent in a rabbit model of endocarditis. J. Infect. Dis. 169: 1042 1049.
100. Smelzer, M. S.,, and A. F. Gillaspy. 2000. Molecular pathogenesis of staphylococcal osteomyelitis. Poultry Sci. 79: 1042 1049.
101. Stewart, P. S. 2002. Mechanisms of antibiotic resistance in bacterial biofilms. Int. J. Med. Microbiol. 292: 107 113.
102. Stewart, P. S.,, and J. W. Costerton. 2001. Antibiotic resistance of bacteria in biofilms. Lancet 358: 135 138.
103. Suller, M. T. E.,, and D. Lloyd. 2002. The antibacterial activity of vancomycin towards Staphylococcus aureus under aerobic and anaerobic conditions. J. Appl. Microbiol. 92: 866 872.
104. Timmerman, C. P.,, A. Fleer,, J. M. Besnier,, L. de Graaf,, F. Cremers,, and J. Verhoef. 1991. Characterization of a proteinaceous adhesin of Staphylococcus epidermidis which mediates attachment to polystyrene. Infect. Immun. 59: 4187 4192.
105. Tojo, M.,, N. Yamashita,, D. A. Goldmann,, and G. B. Pier. 1988. Isolation and characterization of a capsular polysaccharide adhesin from Staphylococcus epidermidis. J. Infect. Dis. 157: 713 722.
106. Vandecasteele, S. J.,, W. E. Peetermans,, R. R. Merckx,, B. J. A. Rijnders,, and J. Van Eldere. 2003. Reliability of the ica, aap and atlE genes in the discrimination between invasive, colonizing and contaminant Staphylococcus epidermidis isolates in the diagnosis of catheter-related infections. Clin. Microbiol. Infect. 9: 114 119.
107. Vandenesch, F.,, S. J. Projan,, B. Kreiswirth,, J. Etienne,, and R. P. Novick. 1993. Agr-related sequences in Staphylococcus lugdunensis. FEMS Microbiol. Lett. 111: 115 122.
108. Veenstra, G. J. C.,, F. F. M. Cremers,, H. van Dijk,, and A. Fleer. 1996. Ultrastructural organization and regulation of a biomaterial adhesin of Staphylococcus epidermidis. J. Bacteriol. 172: 537 541.
109. von Eiff, C.,, G. Peters,, and C. Heilmann. 2002. Pathogenesis of infections due to coagulase-negative staphylococci. Lancet Infect. Dis. 2: 677 685.
110. Vuong, C.,, H. Saenz,, F. Götz,, and M. Otto. 2000. Impact of the agr quorum-sensing system on adherence to polystyrene in Staphylococcus aureus. J. Infect. Dis. 182: 1688 1693.
111. Yamada, S.,, M. Sugai,, H. Komatsuzawa,, S. Nakashima,, T. Oshida,, A. Matsumoto,, and H. Suginaka. 1996. An autolysin ring associated with cell separation of Staphylococcus aureus. J. Bacteriol. 178: 1565 1571.
112. Ziebuhr, W.,, K. Dietrich,, M. Trautmann,, and M. Wilhelm. 2000a. Chromosomal rearrangements affecting biofilm production and antibiotic resistance in a Staphylococcus epidermidis strain causing shunt-associated ventriculitis. Int. J. Med. Micriobiol. 290: 115 120.
113. Ziebuhr, W.,, C. Heilmann,, F. Götz,, P. Meyer,, K. Wilms,, E. Straube,, and J. Hacker. 1997. Detection of the intercellular adhesin gene cluster (ica) and phase variation in Staphylococcus epidermidis blood culture strains and mucosal isolates. Infect. Immun. 65: 890 896.
114. Ziebuhr, W.,, V. Krimmer,, S. Rachid,, I. Lössner,, F. Götz,, and J. Hacker. 1999. A novel mechanism of phase variation of virulence in Staphylococcus epidermidis: evidence for control of the polysaccharide intercellular adhesin synthesis by alternating insertion and excision of the insertion sequence element IS256. Mol. Microbiol. 32: 345 356.
115. Ziebuhr, W.,, I. Lössner,, S. Rachid,, K. Dietrich,, F. Götz,, and J. Hacker. 2000b. Modulation of the polysaccharide intercellular adhesin (PIA) expression in biofilm forming Staphylococcus epidermidis. Analysis of genetic mechanisms. Adv. Exp. Med. Biol. 485: 151 157.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error