Chapter 10 : Conjugation in Gram-Positive Bacteria

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Conjugation in Gram-Positive Bacteria, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817732/9781555812652_Chap10-1.gif /docserver/preview/fulltext/10.1128/9781555817732/9781555812652_Chap10-2.gif


This chapter discusses conjugative systems in various gram-positive genera, and includes some discussion of conjugative transposons insofar as they assume a plasmid-like (circular) intermediate structure during movement. The pheromone-responding plasmids, which frequently encode antibiotic resistance traits as well as the production of cytolysins or bacteriocins, are commonly found in . The plasmids that have been studied in the greatest detail with respect to regulation of the pheromone response are pADl, pCFlO, pPDl, and pAM373. The hemolysin/bactcriocin (cytolysin)-encoding plasmids exemplified by the well-characterized pADl represent a large and globally disseminated family of pheromone-responding plasmids. Analysis of the sequence suggests an important role for insertion sequence elements in its evolution insofar as the conjugation genes, bacteriocin production genes, and bacteriophage resistance and plasmid maintenance functions are organized in three different regions separated by insertion sequence elements. The mob-oriT region is essential for the pBC16 mobilization by several other conjugative plasmids, such as pLS20, pHT73, or pAW63, and represents functions generally required for the transfer of mobilizable plasmids by self-transmissible plasmids in gram-negative and other gram-positive bacteria. The growing problem of multiple antibiotic resistance among human and animal pathogens is a classic example of how quickly horizontal gene transfer can relate to serious health issues.

Citation: Clewell D, Francia M. 2004. Conjugation in Gram-Positive Bacteria, p 227-256. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch10

Key Concept Ranking

Conjugative Plasmids
Genetic Elements
Integrative and Conjugative Elements
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 10
Figure 10

Model illustrating apparent control circuitry that for similar behavior is exhibited by the pAD1 and pCF10 pheromone response. P is a primary promoter that is active to some extent even in the uninduced state, giving rise to m3 (for pAD1) and Qs (for pCF10), which are terminated at at t/IRS1 (noted as 1). Induction results in up-regulation from P, which gives rise to significant amounts of m3* (for pAD1) and QL (for pCF10), which are terminated at t/IRS2 (noted as 2). Induction also results in extension through t/IRS2 and into regions that include determinants that positively regulate conjugation genes. The positive regulators appear to differ significantly for the two plasmids. The short component of the leftward-reading transcript represents mD (for pAD1) and Qa (for pCF10), which are expressed under the P promoter and, at least in the case of pAD1, enhance termination at t. P is also believed to influence expression of TraA/PrgX, which negatively regulates expression from P and is able to bind to pheromone. Expression from P is down-regulated upon induction. Redrawn from reference with permission.

Citation: Clewell D, Francia M. 2004. Conjugation in Gram-Positive Bacteria, p 227-256. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Map of Tn (18 kb). The numbers refer to previously defined ORFs ( ). Apparent relationships with genes/ORFs in the database are noted and also discussed in reference .

Citation: Clewell D, Francia M. 2004. Conjugation in Gram-Positive Bacteria, p 227-256. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Abraham, L. J.,, and J. I. Rood, 1985. Cloning and analysis of the Clostridium perfringens tetracycline resistance plasmid, pCW3. Plasmid 13:155162.
2. Abraham, L. J.,, and J. I. Rood. 1985. Molecular analysis of transferable tetracycline resistance plasmids from Clostridium perfringens. J. Bacteriol. 161:636640.
3. Abraham, L. J.,, and J. I. Rood. 1987. Identification of Tn4451 and Tn4452, chloramphenicol resistance transposons from Clostridium perfringens. J. Bacteriol. 169:15791584.
4. Abraham, L. J.,, A. J. Wales,, and J. I. Rood. 1985. Worldwide distribution of the conjugative Clostridium perfringens tetracycline resistance plasmid, pCW3. Plasmid 14:3746.
5. Adams, J . N.,, and S. G. Bradley. 1963. Recombination events in the bacterial genus Nocardia. Science 140:13921394.
6. An, F. Y.,, and D. B. Clewell. 2002. Identification of the cAD1 sex pheromone precursor in Enterococcus faecalis. J. Bacteriol. 184:18801887.
7. An, F. Y., M, C. Sulavik, and D. B. Clewell. 1999. Identification and characterization of a determinant (eep) on the Enterococcus faecalis chromosome that is involved in production of the peptide sex pheromone cAD1. J. Bacteriol. 181:59155921.
8. Anderson, D. G.,, and L .L. Mckay. 1984. Genetic and physical characterization of recombinant plasmids associated with cell aggregation and high frequency conjugal transfer in S. lactis ML3 J. Bacteriol. 158:954962.
9. Andrup, L.,, H. H. Bendixen,, and G. B. Jensen. 1995. Mobilization of Bacillus thuringiensis plasmid pTXI4-3. Plasmid 33:159167.
10. Andrup, L.,, O. Jorgensen,, A. Wileks,, L. Smidt,, and G. B. Jensen. 1996. Mobilization of "nonmobilizable" plasmids by the aggregation-mediated conjugation system of Bacillus thuringiensis. Plasmid 36:7585.
11. Andrup, L.,, L. Smidt,, K. Andersen,, and L. Boe. 1998. Kinetics of conjugative transfer: a study of the plasmid pXO16 from Bacillus thuringiensis subsp. israelensis. Plasmid 40:3043.
12. Antiporta, M. H.,, and G. M. Dunny. 2002. ccfA, the genetic determinant for the cCF10 peptide pheromone in Enterococcus faecalis OGIRF. J. Bacteriol. 184:11551162.
13. Archer, G. L. 1988. Molecular epidemiology of multiresistant Staphylococcus epidermidis. J. Antimicrob. Chemother. 21(Suppl C):133138.
14. Archer, G. L.,, and J. L. Johnston. 1983. Self-transmissible plasmids in staphylococci that encode resistance to aminoglycosides. Antimicrob. Agents Chemother. 24:7077.
15. Archer, G. L.,, and J. Scott. 1991. Conjugative transfer genes in staphylococcal isolates from the United States. Antimicrob. Agents Chemother. 35:25002504.
16. Archer, G. L.,, and W. D. Thomas. 1990. Conjugative transfer of antimicrobial resistance genes between staphylococci, p. 112122. In R. P. Novick (ed.), Molecular Biology of the Staphylococci. VCH Publisher, New York, N.Y..
17. Arthur, M.,, and P. Courvalin. 1993. Genetics and mechanisms of glycopeptide resistance in enterococci. Antimicrob. Agents Chemother. 37:15631571.
18. Asch, D. K.,, R. V. Goering,, and E. A. Ruff. 1984. Isolation and preliminary characterization of a plasmid mutant dcrepressed for conjugal transfer in Staphylococcus aureus. Plasmid 12:197202.
19.Ayoubi, P, A. O. Kilic, and M. N. Vijayakumar. 1991. Tn5253, the pneumococcal ω (cat tet) BM6001 element, is a composite structure of two conjugative transposons Tn5251 and Tn5252. J. BacterioL 173:16171622.
20. Bae, T.,, and G. M. Dunny. 2001. Dominant-negative mutants of prgX: evidence for a role for PrgX dimerization in negative regulation of pheromone-inducible conjugation. Mol. Microbiol. 39:13071320.
21. Bae, T.,, B. Kozlowicz,, and G. M. Dunny. 2002. Two targets in pCF10 DNA for PrgX binding: their role in production of Qa and prgX mRNA and in regulation of pheromone-inducible conjugation. J. Mol. Biol. 315:9951007.
22. Bannam, T. L.,, P. K. Crellin,, and J. I. Rood. 1995. Molecular genetics of the chloramphenicol-resistancc transposon Tn4451 from Clostridium perfringens: the TnpX site-specific recombinase excises a circular transposon molecule. Mol. Microbiol. 16:535551.
23. Bastos, M. C , P. J . Mondino, M. L. Azevedo, K. R. Santos, M. Giambiagi-deMarval. 1999. Molecular characterization and transfer among Staphylococcus strains of a plasmid conferring high-level resistance to mupirocin. Eur. J . Clin. Microbiol. Infect. Dis. 18:393398.
24. Battisti, L.,, B. D. Green, and C B. Thorne. 1985. Mating system for transfer of plasmids among Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis. J. Bacteriol. 162:543550.
25. Begg, K. J.,, S. J. Dewar,, and W. D. Donachie. 1995. A new Escherichia coli cell division gene, ftsK. J. Bacteriol. 177:62116222.
26. Belliveau, B. H.,, and J. T. Trevors, 1990, Mercury resistance determined by a self-transmissible plasmid in Bacillus cereus. Biol. Met. 3:188196.
27. Bensing, B. A.,, and G. M. Dunny. 1993. Cloning and molecular analysis of genes affecting expression of binding substance, the recipient-encoded rcccptor(s) mediating mating aggregate formation in Enterococcus faecalis. J. Bacteriol. 175:74217429.
28. Berg, T.,, N. Firth,, S. Apisiridej,, A. Hettiaratchi,, A. Leelaporn,, and R. A. Skurray. 1998. Complete nucleotide sequence of pSK41: evolution of staphylococcal conjugative multiresistance plasmids. J. Bacteriol. 180:43504359.
29. Bernhard, K.,, H. Schrempf,, and W. Goebel. 1978. Bacteriocin and antibiotic resistance plasmids in Bacillus cereus and Bacillus subtilis. J. Bacteriol. 133:897903.
30. Biavasco, F.,, E. Giovanetti,, A. Miele, C Vignaroli, B. Facinelli, and P. E. Varaldo. 1996. In vitro conjugative transfer of VanA vancomycin resistance between enterococci and listeriae of different species. J. Clin. Microbiol. Infect. Dis. 15:5059.
31. Bibb, M. J.,, R. F. Freeman,, and D. A. Hopwood. 1977. Physical and genetical characterization of a second sex factor, SCP2, for Streptomyces coelicolor A3(2). Mol. Gen. Genet. 154:155166.
32. Bibb, M. J.,, J. M. Ward,, T. Kieser,, S. N. Cohen,, and D. A. Hopwood. 1981. Excision of chromosomal DNA sequences from Streptomyces coelicolor forms a novel family of plasmids detectable in Streptomyces lividans. Mol. Gen. Genet. 184:230240.
33. Bingham, A. H.,, C. J . Bruton,, and T. Atkinson. 1979. Isolation and partial characterization of four plasmids from antibiotic-resistant thermophilic bacilli. J. Gen. Microbiol. 114:401408.
34. Bolotin, A. P.,, A. V. Sorokin,, N. N. Aleksandrov,, V. N. Danilenko,, and Y. L. Kozlov. 1986. Nucleotide sequence of DNA of the actinomycete plasmid pSB24.2. Dokl. Biochem. 283:260263.
35. Bordcron, E.,, G. Bieth,, and T. Horodniceanu. 1982, Genetic and physical studies of Streptococcus faecalis hemolysin plasmids. FEMS Microbiol. Lett. 14:5155.
36. Bougueleret, L.,, G. Bieth,, and T. Horodniceanu. 1981. Conjugative R plasmids in group C and G streptococci. J. Bacteriol. 145:11021105.
37. Bozdogan, B.,, R. Leclercq,, A. Lozniewski,, and M. Weber. 1999. Plasmid-mediated coresistance to streptogramins and vancomycin in Enterococcus faecium HM1032. Antimicrob. Agents Chemother. 43:20972098.
38. Brefort, G.,, M. Magot,, H. Ionesco,, and M. Sebald. 1977. Characterization and transferability of Clostridium perfringens plasmids. Plasmid 1:5266.
39. Broadbent, J. R., W, E. Sandine, and J. K. Kondo. 1995. Characteristics of Tn5307 exchange and intergeneric transfer of genes associated with nisin production. Appl. Microbiol. Biotechnol. 44:139146.
40. Brown, M. S.,, J. Ye,, R. B. Rawson,, and J. L. Goldstein. 2000. Regulated intramembrane proteolysis; a control mechanism conserved from bacteria to humans. Cell 100:391398.
41. Brynestad, S.,, M. R. Sarker,, B. A. McClane,, P. E. Granurn,, and J. I. Rood. 2001. Enterotoxin plasmid from Clostridium perfringens is conjugative. Infect. Immun. 69:34833487.
42. Burdett, V. 1980. Identification of tetracycline-resistant R-plasmids in Streptococcus agalactiae (group B). Antimicrob. Agents Chemother. 18:753760.
43. Burdett, V. 1986, Streptococcal tetracycline resistance mediated at the level of protein synthesis. J. Bacteriol. 165:564569.
44. Burrus, V.,, G. Pavlovic,, B. Decaris,, and G. Guedon. 2002. Conjugative transposons: the tip of the iceberg. Mol. Microbiol. 46:601610.
45. Burtram, J.,, M. Stratz,, and P. Durre. 1991. Natural transfer of conjugative transposon Tn916 between gram-positive and gram-negative bacteria. J. Bacteriol. 173:443448.
46. Buu-Hoi, A.,, and T. Horodniceanu. 1980. Conjugative transfer of multiple antibiotic resistance markers in Streptococcus pneumonia. J. Bacteriol. 143:313320.
47. Byrne, M. E.,, M. T. Gillespie,, and R. A. Skurray. 1990. Molecular analysis of a gentamicin resistance transposon-like element on plasmids isolated from North American Staphylococcus aureus strains. Antimicrob. Agents Chemother. 34:21062113.
48. Caparon, M. G.,, and J. R. Scott. 1989. Excision and insertion of the conjugative transposon Tn916 involves a novel recombination mechanism. Cell 59:10271034.
49. Carias, L. L.,, S. D. Rudin,, C. J. Donskey,, and L. B. Rice. 1998. Genetic linkage and cotransfer of a novel, vanB-containing transposon (Tn5382) and a low-affinity penicillin-binding protein 5 gene in a clinical vancomycin-resistant Enterococcus faecium isolate. J. Bacteriol. 180:44264434.
50. Carlton, B. C.,, and J. M. Gonzalez,. 1985. The genetics and molecular biology of B. thuringiensis, pp. 211249 In D. A. Dubnau (ed.), The Molecular Biology of the Bacilli, vol. 2. Academic Press Inc., New York, N.Y..
51. Celli, J.,,and P. Trieu-Cuot. 1998. Circularization of Tn916 is required for expression of the transposon-encoded transfer functions: characterization of long tetracycline-inducible transcripts reading through the attachment site. Mol. Microbiol. 28:103117.
52. Chapman, J. S.,, and B. C. Carlton. 1985. Conjugal plasmid transfer in Bacillus thuringiensis. Basic Life Sci. 30:453467.
53. Charpentier, E.,, G. Gerbaud,, and P. Courvalin. 1999, Conjugative mobilization of the rolling-circle plasmid pIP823 from Listeria monocytogenes BM4293 among gram-positive and gram-negative bacteria. J. Bacteriol. 181:33683374.
54.Chen, C W., T. W. Yu, Y.S. Lin, H. M. Kieser, and D. A. Hopwood. 1993. The conjugative plasmid SLP2 of Streptomyces lividans is a 50 kb linear molecule. Mol. Microbiol. 7:925932.
55. Chen, H. Y.,, and J. D. Williams. 1985. Transferable resistance and aminoglycoside-modifying enzymes in enterococci. J. Med. Microbiol. 20:187196.
56. Chow, J. W.,, L. A. Thal,, M. B. Perri,, J. A. Vazquez,, S. M. Donabedian,, D. B. Clewell,, and M. J. Zervos. 1993. Plasmid-associatcd hemolysin and aggregation substance production contributes to virulence in experimental enterococcal endocarditis. Antimicrob. Agents Cbemother. 37:24742477.
57. Chow, J. W.,, M. J. Zervos,, S. A. Lerner,, L. A. Thai,, S. M. Donabedian,, D. D. Jaworski,, S. Tsai,, K. J. Shaw,, and D. B. Clewell. 1997. A novel gentamicin resistance gene in Enterococcus. Antimicrob. Agents Chemother. 41:511514.
58. Christie, P. J.,, R. Z. Korman,, S. A. Zahler,, J. C. Adsit,, and G. M. Dunny. 1987. Two conjugation systems associated with Streptococcus faecalis plasmid pCF10: identification of a conjugative transposon that transfers between S. faecalis and Bacillus subtilis. J. Bacteriol. 169:25292536.
59. Churchward, G., 2002. Conjugative transposons and related mobile elements, p. 177191. In N. L. Craig,, R. Craigie,, M. Gellert,, and A. M. Lambowitz (ed.), Mobile DNA 11. ASM Press, Washington, D.C..
60. Clermont, D.,, and T. Horaud. 1994. Genetic and molecular studies of a composite chromosomal element (Tn3705) containing a Tn916-modified structure (Tn3704) in Streptococcus anginosus F22. Plasmid 31:4048.
61. Clewell, D. B. 1981. Plasmids, drug resistance, and gene transfer in the genus Streptococcus. Microbiol. Rev. 45:401436.
62. Clewell, D. B. 1990. Movable genetic elements and antibiotic resistance in enterococci. Eur. J. Clin. Microbiol. Infect. Dis. 9:90102.
63. Clewell, D. B. 1993. Bacterial sex pheromone-induced plasmid transfer. Cell 73:912.
64. Clewell, D. B., 1993. Sex pheromones and the plasmid-encoded mating response in Enterococcus faecalis, p. 349367. In D. B. Clewell (ed.), Bacterial Conjugation. Plenum Press, New York, N.Y..
65. Clewell, D. B., 1999. Sex pheromone systems in enterococci, p. 4765. In G. M. Dunny, and S. C. Winans (ed.), Cell-Cell Signaling in Bacteria. ASM Press, Washington, D.C..
66. Clewell, D. B.,, F. Y. An,, S. F. Flannagan,, M. Antiporta,, and G. M. Dunny. 2000. Enterococcal sex pheromone precursors are part of signal sequences for surface lipoproteins. Mol. Microbiol. 35:246247.
67. Clewell, D. B.,, F. Y. An,, B. A. White,, and C. Gawron-Burke. 1985. Streptococcus faecalis sex pheromone (cAM373) also produced by Staphylococcus aureus and identification of a conjugative transposon (Tn918). J. Bacteriol. 162:12121220.
68. Clewell, D. B.,, and B. L. Brown. 1980. Sex pheromone cAD1 in Streptococcus faecalis: induction of a function related to plasmid transfer. J. Bacteriol. 143:10631065.
69. Clewell, D. B., and G. M,, Dunny. 2002. Conjugation and genetic exchange in enterococci, p. 265300. In M. S. Gilmore et al. (ed.), The Enterococci: Pathogenesis, Molecular Biology and Antibiotic Resistance. American Society for Microbiology, Washington, D.C..
70. Clewell, D. B.,, G. F. Fitzgerald,, L. Dempsey,, L. E. Pearce,, F, Y. An, B. A. White, Y. Yagi, and C. Gawron-Burke. 1985. Streptococcal conjugation: plasmids, sex pheromones, and conjugative transposons, p. 194203. In S. E. Mergenhagen, and B. Rosan (ed.), Molecular Basis of Oral Microbial Adhesion. American Society for Microbiology, Washington, D.C..
71. Clewell, D. B.,, and S. E. Flannagan,. 1993. The conjugative transposons of gram positive bacteria, p. 369393. In: D. B. Clewell (Ed.), Bacterial Conjugation, Plenum Press, New York..
72. Clewell, D. B.,, S. E. Flannagan,, Y. Ike,, J. M. Jones,, and C. Gawron-Burke. 1988. Sequence analysis of termini of conjugative transposon Tn916 J. Bacteriol. 170:30463052.
73.Clewell. D. B., S. E. Flannagan, and D. D. Jaworski. 1995. Unconstrained bacterial promiscuity: the Tn916-Tn1545 family of conjugative transposons. Trends Microbiol. 3:229236.
74. Clewell, D. B.,, S. E. Flannagan,, L. A. Zitzow,, Y. A. Su,, P. He,, E. Senghas,, and K. W. Weaver,. 1991. Properties of conjugative transposon Tn916, p. 3944. In G. M. Dunny,, P. Cleary,, and L. McKay, (ed.), Genetics and Molecular Biology of Streptococci, Lactococci, and Enterococci. American Society for Microbiology, Washington, D.C..
75. Clewell, D. B.,, M. V. Francia,, S. E. Flannagan,, and F. Y. An. 2002. Enterococcal plasmid transfer: sex pheromones, transfer origins, relaxases, and the Staphylococcus aureus issue, Plasmid 48:193201.
76. Clewell, D. B., and A, E, Franke. 1974. Characterization of a plasmid determining resistance to erythromycin, lincomycin, and vernamycin Bα in a strain Streptococcus pyogenes. Antimicrob. Agents Chemother. 5:534537.
77. Clewell, D. B.,, and C. Gawron-Burke. 1986. Conjugative transposons and the dissemination of antibiotic resistance in streptococci. Annu. Rev. Microbiol. 40:635659.
78. Clewell, D. B.,, L. T. Pontius,, F. Y. An,, Y. Ike,, A. Suzuki,, and J. Nakayama. 1990. Nucleotide sequence of the sex pheromone inhibitor (iAD1) determinant of Enterococcus faecalis conjugative plasmid pAD1. Plasmid 24:156161.
79.Clewell, D, B., P. K. Tomich, M. C. Gawron-Burke, A. E. Franke, Y. Yagi, and F. Y. An. 1982. Mapping of Streptococcus faecalis plasmids pAD1 and pAD2 and studies relating to transposition of Tn917 J. Bacteriol. 152:12201230.
80. Clewell, D. B.,, Y. Yagi,, and B. Bauer. 1975. Plasmid-determined tetracycline resistance in Streptococcus faecalis: evidence for gene amplification during growth in presence of tetracycline, Proc. Natl. Acad. Sci. USA 72:17201724.
81. Clewell, D. B.,, Y. Yagi,, G. M. Dunny,, and S. K. Schultz. 1974. Characterization of three plasmid deoxyribonucleic acid molecules in a strain of Streptococcus faecalis: identification of a plasmid determining erythromycin resistance. J. Bacteriol. 117:283289.
82. Clewell, D. B.,, Y. Yagi,, Y. Ike,, R. A. Craig,, B. L. Brown,, and F. An,. 1982. Sex pheromones in Streptococcus faecalis: multiple pheromone systems in strain DS5, similarities of pAD1 and pAMγ1, and mutants of pAD1 altered in conjugative properties, p. 97100. In D. Schlessinger (ed.), Microbiology—1982. American Society for Microbiology, Washington, D.C..
83. Climo, M. W.,, V. K. Sharma,, G. L. Archer. 1996. Identification and characterization of the origin of conjugative transfer (oriT) and a gene (ncs) encoding a single-stranded endonuclease on the staphylococcal plasmid pGO1. J. Bacteriol. 178:49754983.
84. Cohen, M. L.,, E. S. Wong,, and S. Falkow. 1982. Common R-plasmids in Staphylococcus aureus and Staphylococcus epidermidis during a nosocomial Staphylococcus aureus outbreak. Antimicrob. Agents Cbemother. 21:210215.
85.Colmar, L, and T. Horaud. 1987. Enterococcus faecalis hemolysin-bacteriocin plasmids belong to the same incompatibility group. Appl. Environ. Microbiol. 53:567570.
86. Coque, T. M.,, J. E. Patterson,, J. M. Stecketberg,, and B. E. Murray. 1995. Incidence of hemolysin, gelatinase, and aggregation substance among enterococci isolated from patients with endocarditis and other infections and from feces of hospitalized and community-based persons. J. Infect Dis. 171:12231229.
87. Courvalin, P.,, and C. Carlier. 1986. Transposablc multiple antibiotic resistance in Streptococcus pneumoniae. Mol. Gen. Genet. 205:291297.
88. Courvalin, P.,, C. Carlier,, O. Croissant,, and D. Blangy. 1974. Identification of two plasmids determining resistance to tetracycline and erythromycin in group D Streptococcus. Mol. Gen. Genet. 132:181192.
89. Courvalin, P.,, W. V. Shaw,, and A. E. Jacob. 1978. Plasmid-mediated mechanisms of resistance to aminoglycoside-aminocyclitol antibiotics and to chloramphenicol in group D streptococci. Antimicrob. Agents Chemother. 13:716725.
90. Crellin, P. K.,, and J. I. Rood. 1997. The resolvase/invertase domain of the site-specific recombinase TnpX is functional and recognizes a target sequence that resembles the junction of the circular form of the Clostridium perfringens transposon Tn4451. J. Bacteriol. 179:51485156.
91. Crespi, M.,, E. Messens,, A. B. Caplan,, M. Van Montagu,, and J. Desomer. 1992. Fascination induction by the phytopathogen Rhodococcus fascians depends upon linear plasmid encoding a cytikinin syntase gene. EMBO. J. 11:795804.
92. Crespi, M.,, D. Vereecke,, W. Temmerman,, M. Van Montagu,, and J. Desomer. 1994. The fas operon of Rhodococcus fascians encodes new genes required for efficient fascination of host plants. J. Bacteriol. 176:24922501.
93. Dabrok, B.,, M. Kesseler,, B. Averhoff,, and G. Gottschalk. 1994. Identification and characterization of a transmissible linear plasmid from Rhodococcus erythropolis BD2 that encodes isopropylbenzene and trichloroethene catabolism. Appl. Environ. Microbiol. 60:853860.
94. Davison, J. 1999. Genetic exchange between bacteria in the environment. Plasmid 42:7391.
95. De Boever, E. H.,, and D. B. Clewell. 2001. The Enterococcus faecalis pheromone-responsive plasmid pAM373 does not encode an entry exclusion function. Plasmid 45:5760.
96. De Boevcr, E. H.,, D. B. Clewell,, and C. M. Eraser. 2000. Enterococcus faecalis conjugative plasmid pAM373: complete nucleotide sequence and genetic analyses of sex pheromone response. Mol. Microbiol. 37:13271341.
97. Desomer, J.,, P. Dhaese,, and M. Van Montagu. 1988. Conjugative transfer of cadmiun resistance plasmids in Rhodococcus fascians strains. J. Bacteriol. 170:24012405.
98. Dougherty, B. A., C Hill, J. F. Weidman, D. R. Richardson, J. C. Venter, and R. P. Ross. 1998. Sequence and analysis of the 60 kb conjugative, bacteriocin-producing plasmid pMRC01 from Lactococcus lactis DPC3147. Mol. Microbiol. 29:10291038.
99.Duan, K, M. L. Harvey, C. Q. Liu, and N. W. Dunn. 1996. Identification and characterization of a mobilizing plasmid, pND300, in Lactococcus lactis M189 and its encoded nisin resistance determinant. J. Appl. Bacteriol. 81:493500.
100. Ducote, M. J.,, S. Prakash,, and G. S. Pettis. 2000. Minimal and contributing sequence determinants of the cis-acting locus of transfer (clt) of streptomycete plasmid pIJ101 occur within an intrinsically curved plasmid region. J. Bacteriol. 182:68346841.
101. Dunny, G. M.,, M. H. Antiporta,, and H. Hirt. 2001. Peptide pheromone-induced transfer of plasmid pCF10 in Enterococcus faecalis: probing the genetic and molecular basis for specificity of the pheromone response. Peptides 22:15291539.
102. Dunny, G. M.,, B. L. Brown,, and D. B. Clewell. 1978, Induced cell aggregation and mating in Streptococcus faecalis: evidence for a bacterial sex pheromone. Proc. Natl. Acad. Sci. USA 75:34793483.
103. Dunny, G. M.,, and D. B. Clewell. 1975. Transmissible toxin (hemolysin) plasmid in Streptococcus faecalis and its mobilization of a noninfectious drug resistance plasmid. J. Bacteriol. 124:784790.
104. Dunny, G. M.,, R. A. Craig,, R. L. Carron,, and D. B. Clewell. 1979. Plasmid transfer in Streptococcus faecalis: production of multiple sex pheromones by recipients. Plasmid 2:454465.
105. Dunny, G. M.,, C. Funk,, and J. Adsit. 1981. Direct stimulation of the transfer of antibiotic resistance by sex pheromones in Streptococcus faecalis. Plasmid 6:270278.
106. Dunny, G. M.,, and B. A. B. Leonard. 1997. Cell-cell communication in gram-positive bacteria. Annu. Rev. Microbiol. 51:527564.
107. Dutka-Malen, S.,, B. Blaimont,, G. Wauters,, and P. Courvalin. 1994. Emergence of high-level resistance to glycopeptides in Enterococcus gallinarum and Enterococcus casseliflavus. Antimicrob. Agents Chemother. 38:16751677.
108. Ehrenfeld, E. E.,, R. E. Kessler,, and D. B. Clewell. 1986. Identification of pheromone-induced surface proteins in Streptococcus faecalis and evidence of a role for lipoteichoic acid in formation of mating aggregates. J. Bacteriol. 168:612.
109. el Alami, N.,, C. Y. Boquien,, and G. Corrieu. 1992. Batch cultures of recombinant Lactococcus lactis subsp. lactis in a stirred fermentor. II. Plasmid transfer in mixed cultures. Appl. Microbiol. Biotechnol. 37:364368.
110. El-Solh, N.,, D. H. Bouanchaud,, T. Horodniceanu,, A. Roussel,, and Y. A. Chabbert. 1978. Molecular studies and possible relatedness between R plasmids from groups B and D streptococci. Antimicrob. Agents Chemother. 14:1923.
111. Engel, H. W.,, N. Soedirman,, J. A. Rost,, W. J. van Leeuwen,, and J. D. van Embden. 1980. Transferability of macrolide, lincomycin, and streptogramin resistances between group A, B, and D streptococci. Streptococcus pneumoniae, and Staphylococcus aureus. J. Bacteriol. 142:407413.
112. Evans, J.,, and K. G. Dyke. 1988. Characterization of the conjugation system associated with the Staphylococcus aureus plasmid pJEl J. Gen. Microbiol. 134:18.
113. Farias, M. E.,, and M. Espinosa. 2000. Conjugal transfer of plasmid pMV158: uncoupling of the pMV158 origin of transfer from the mobilization gene mobM, and modulation of pMV158 transfer in Escherichia coli mediated by IncP plasmids. Microbiology 146:22592265.
114. Ferretti, J. J.,, K. S. Gilmore,, and P. Courvalin. 1986. Nucleotide sequence analysis of the gene specifying the bifunctional 6'-aminog1ycoside acetyltransferase 2"-aminoglycoside phosphotransferase enzyme in Streptococcus faecalis and identification and cloning of gene regions specifying the two activities. J. Bacteriol. 167:631638.
115. Firth, N.,, T. Berg,, and R. A. Skurray. 1999. Evolution of conjugative plasmids from gram-positive bacteria. Mol. Microbiol. 31:15981600.
116. Firth, N.,, P. D. Fink,, L. Johnson,, and R. A. Skurray. 1994. A lipoprotein signal peptide encoded by the staphylococcal conjugative plasmid pSK41 exhibits an activity resembling that of Enterococcus faecalis pheromone cAD1. J. Bacteriol. 176:58715873.
117. Firth, N.,, K. P. Ridgway,, M. E. Byrne,, P. D. Fink,, L. Johnson,, I. T. Paulsen,, and R. A. Skurray. 1993. Analysis of a transfer region from the staphylococcal conjugative plasmid pSK41. Gene 136:1325.
118.Firth. N., and R. A. Skurray. 2000. Genetics: accessory elements and genetic exchange, p.326338. In V. A. Fischetti, et al. (ed.), Gram-Positive Pathogens. American Society for Microbiology, Washington, D.C..
119. Fitzgerald, G. F.,, and D. B. Clewell. 1985. A conjugative transposon (Tn919) in Streptococcus sanguis. Infect. Immun. 47:415420.
120. Fitzgerald, G. F.,, and M. J. Gasson. 1988, In vivo gene transfer systems and transposons. Biochimie 70:489-–502.
120.a. Flannagan, S. E.,, J. W. Chow,, S. M. Donabedian,, W. J. Brown,, M. B. Perri,, M. J. Zervos,, Y. Ozawa,, and D. B. Clewell. 2003. Plasmid content of a vancomycin-resistant Enterococcus faecalis isolate from a patient also colonized by Staphylococcus aureus with a VanA phenotype. Antimicrob. Agents Chemother. 47:39543959.
121. Flannagan, S. E.,, and D. B. Clewell. 1991. Conjugative transfer of Tn916 in Enterococcus faecalis: trans activation of homologous transposons. J. Bacteriol. 173:71367141.
122. Flannagan, S. E.,, and D. B. Clewell. 2002. Identification and characterization of genes encoding sex pheromone cAM373 activity in Enterococcus faecalis and Staphylococcus aureus. Mol. Microbiol. 44:803817.
123. Flannagan, S. E.,, L. A. Zitzow,, Y. A. Su,, and D. B. Clewell. 1994. Nucleotide sequence of the 18-kb conjugative transposon Tn916 from Enterococcus faecalis. Plasmid 32:350354.
124. Fletcher, H. M.,, L. Marri,, and L. Daneo-Moore. 1989. Transposon-916-like elements in clinical isolates of Enterococcus faecium. J. Gen. Microbiol. 135:30673077.
125. Forbes, B. A.,, and D. R. Schaberg. 1983. Transfer of resistance plasmids from Staphylococcus epidermidis to Staphylococcus aureus: evidence for conjugative exchange of resistance. J. Bacteriol. 153:627634.
126. Francia, M. V.,, and D. B. Clewell. 2002. Transfer origins in the conjugative Enterococcus faecalis plasmids pAD1 and pAM373. Identification of the pAD1 nic site, a specific relaxase and a possible TraG-like protein. Mol. Microbiol. 45:375395.
127. Francia, M. V.,, and D. B. Clewell. 2002. Amplification of the tetracycline-resistance determinant of pAMα1 in Enterococcus faecalis requires a site specific recombination event involving relaxase. J. Bacteriol. 184:51875193.
128. Francia, M. V.,, W. Haas,, R. Wirth,, E. Samberger,, A. Muscholl-Silberhorn,, M. S. Gilmore,, Y. Ike,, K. E. Weaver,, F. Y. An,, and D. B. Clewell. 2001. Completion of the nucleotide sequence of the Enterococcus faecalis conjugative virulence plasmid pAD1 and identification of a second transfer origin. Plasmid 46:117127.
128.a. Francia, M. V.,, A. Varsaki,, M. P. Garcillán-Barcia,, A. Latorre,, C Drainas,, and F. de la Cruz. A classification scheme for mobilization regions of bacterial plasmids. FEMS Microbiol. Rev., in press.
129. Francois, B.,, M. Charles,, and P. Courvalin. 1997. Conjugative transfer of tet(S) between strains of Enterococcus faecalis is associated with the exchange of large fragments of chromosomal DNA. Microbiology 143:21452154.
130. Franke, A. E.,, and D. B. Clewell. 1981. Evidence for a chromosome-borne resistance transposon (Tn916) in Streptococcus faecalis that is capable of "conjugal" transfer in the absence of a conjugative plasmid. J. Bacteriol. 145:494502.
131. Franke, A. E.,, G. M. Dunny,, B. L. Brown,, F. An,, D. R. Oliver,, S. P. Damle,, and D. B. Clewell,. 1978. Gene transfer in Streptococcus faecalis: evidence for the mobilization of chromosomal determinants by transmissible plasmids, p. 4547. In D. Schlessinger (ed.), Microbiology—1978. American Society for Microbiology, Washington, D.C..
132. Fujimoto, S.,, and D. B. Clewell. 1998. Regulation of the pAD1 sex pheromone response of Enterococctts faecalis by direct interaction between the cAD1 peptide mating signal and the negatively regulating, DNA-binding TraA protein. Proc. Natl. Acad. Sci. USA 95:64306435.
133. Fujimoto, S.,, H. Tomita,, E. Wakamatsu,, K. Tanimoto,, and Y. Ike. 1995, Physical mapping of the conjugative bacteriocin plasmid pPD1 of Enterococcus faecalis and identification of the determinant related to the pheromone response. J. Bacteriol. 177:55745581.
134. Galli, D.,, F. Lottspeich,, and R. Wirth. 1990. Sequence analysis of Enterococctts faecalis aggregation substance encoded by the sex pheromone plasmid pAD1. Mol. Microbiol. 4:895904.
135. Galli, D.,, and R. Wirth. 1991. Comparative analysis of Enterococcus faecalis sex pheromone plasmids identifies a single homologous DNA region which codes for aggregation substance. J. Bacteriol. 173:30293033.
136. Galli, D.,, R. Wirth,, and G. Wanner. 1989. Identification of aggregation substances of Enterococcus faecalis after induction by sex pheromones. Arch. Microbiol. 151:486490.
137. Garnier, F.,, S. Taourit,, P. Glaser,, P. Courvalin,, and M. Galimand. 2000. Characterization of transposon Tn1549, conferring VanB-type resistance in Enterococcus spp. Microbiology 146:14811489.
138. Gasson, M. J. 1983. Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J. Bacteriol. 154:19.
139. Gasson, M. J.,, and F. L. Davies. 1979. Conjugal transfer of lactose genes in group N streptococci. Soc. Gen. Microbiol. Quart. 6:87.
140. Gasson, M. J.,, and F. L. Davics. 1980. High-frequency conjugation associated with Streptococcus lactis donor cell aggregation. J. Bacteriol. 143:12601264.
141. Gasson, M. J.,, and G. F. Fitzgerald,. 1994. Gene transfer systems and transposition, p. 151. In M. J. Gasson, and W. M. de Vos (ed.), Genetics and Biotechnology of Lactic Acid Bacteria. Blackie Academic and Professional, London, United Kingdom.
142. Gasson, M. J.,, S. Swindell,, S. Maeda,, and H. M. Dodd. 1992. Molecular rearrangement of lactose plasmid DNA associated with high-frequency transfer and cell aggregation in Lactococcus lactis 712. Mol. Microbiol. 6:32133223.
143. Gawron-Burke, M. C.,, and D. B. Clewell. 1982. A transposon in Streptococcus faecalis with fertility properties. Nature 300:281284.
144. Gawron-Burke, M. C.,, and D. B. Clewell. 1984. Regeneration of insertionally inactivated streptococcal DNA fragments following excision of Tn916 in Escherichia coli. A strategy for targeting and cloning genes from gram-positive bacteria. J. Bacteriol. 159:214221.
145. Gennaro, M. L.,, J . Kornblum,, and R. P. Novick. 1987. A site-specific recombination function in Staphylococcus aureus plasmids. J. Bacteriol. 169:26012610.
146. Gilmore, M. S.,, P. S. Coburn,, S. R. Nallapareddy,, and B. E. Murray,. 2002. Enterococcal virulence, p. 301354. In M. S. Gilmore et al. (ed.), The Enterococci: Pathogenesis, Molecular Biology and Antibiotic Resistance. American Society for Microbiology, Washington, D.C..
147. Gocring, R. V.,, and E. A. Ruff. 1983. Comparative analysis of conjugative plasmids mediating gentamicin resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 24:450452.
148. Gonzalez, J. M.Jr.,, B. J. Brown,, and B. C Carlton. 1982. Transfer of Bacillus thuringiensis plasmids coding for delta-endotoxin among strains of B. thuringiensis and B. cereus. Proc. Natl. Acad. Sci. USA 79:69516955.
149. Gonzalez, J. M.,, H. T. Dulmage,, and B. C, Carlton. 1981. Correlation between specific plasmids and delta-cndotoxin production in Bacillus thuringiensis. Plasmid 5:351365.
150. Gowan, B.,, and E. R. Dabbs. 1994. Identification of DNA involved in Rhodococcus chromosomal conjugation and self-incompatibility. FEMS Microbiol. Lett. 115:4550.
151. Gravius, B.,, D. Glockcr,, J. Pigac,, K. Pandza,, D. Hranueli,, And J. Cullum. 1994. The 387 kb linear plasmid pPZG101 of Streptomyces rimosus and its interactions with the chromosome. Microbiology 140:22712277.
152. Grzeszik, C.,, M. Lubbers,, M. Reh,, and H. G. Schlegel. 1997. Genes encoding the NAD-reducing hydrogenase of Rhodococcus opacus MR11. Microbiology 143:12711286.
153. Guzman, L. M.,, and M. Espinosa. 1997. The mobilization protein, MobM, of the streptococcal plasmid pMV158 specifically cleaves supercoiled DNA at the plasmid oriT J. Mol. Biol. 266:688702.
154. Hadorn, K.,, H. Hachler,, A. Schaffner, and F, H. Kayser. 1993. Generic characterization of plasmid-encoded multiple antibiotic resistance in a strain of Listeria monocytogenes causing endocarditis. Eur. J. Clin. Microbiol. Infect. Dis. 12:928937.
155. Hagege, J. M.,, M. A. Brasch,, and S. N. Cohen. 1999. Regulation of transfer functions by the imp locus of the Streptomyces coelicolor plasmidogenic element SLP1. J. Bacteriol. 181:59765983.
156. Hagege, J.,, J. L. Pernodet,, G. Sezonov,, C. Gerbaud,, A. Friedmann,, and M. Guerineau. 1993. Transfer functions of the conjugative integrating clement pSAM2 from Streptomyces ambofaciens: characterization of a kil-kor system associated with transfer. J. Bacteriol. 175:55295538.
157. Handwerger, S.,, M. J. Pucci,, and A. Kolokathis. 1990. Vancomycin resistance is encoded on a pheromone response plasmid in Enterococcus faecium 228. Antimicrob. Agents Chemother. 34:358360.
158. Handwerger, S.,, and J. Skoble. 1995. Identification of chromosomal mobile element conferring high-level vancomycin resistance in Enterococcus faecium. Antimicrob. Agents Chemother. 39:24462453.
159. Harrington, A.,, and C. Hill. 1992. Plasmid involvement in the formation of a spontaneous bacteriophage insensitive mutant of Lactococcus lactis. FEMS Microbiol. Lett. 75:135141.
160. Hartley, D. L.,, K. R. Jones,, J. A. Tobian,, D. J. LeBlanc,, and F. L. Macrina. 1984. Disseminated tetracycline resistance in oral streptococci: implication of a conjugative transposon. Infect. Immun. 45:1317.
161. Hasman, H.,, and F. M. Aarestrup. 2002. tcrB, a gene conferring transferable copper resistance in Enterococcus faecium: occurrence, transferability, and linkage to macrolidc and glycopeptide resistance. Antimicrob. Agents Chemother. 46:14101416.
162. Hayakawa, T.,, N. Otake,, H. Yonehara,, T. Tanaka,, and K. Sakaguchi. 1979. Isolation and characterization of plasmids from Streptomyces. J. Antibiot. (Tokyo) 32:13481350.
163. Heath, D. G.,, F. Y. An,, K. E. Weaver,, and D. B. Clewell. 1995. Phase variation of Enterococcus faecalis pAD1 conjugation functions relates to changes in iteron sequence region. J. Bacteriol. 177:54535459.
164. Heaton, M. P.,, L. F. Discotto,, M. J. Pucci,, and S. Handwerger. 1996. Mobilization of vancomycin resistance by transposon-mediated fusion of a VanA plasmid with an Enterococcus faecium sex pheromone-response plasmid. Gene 171:917.
165. Heaton, M. P.,, and S. Handwerger. 1995. Conjugative mobilization of a vancomycin resistance plasmid by a putative Enterococcus faecium sex pheromone response plasmid. Microb. Drug Resist. 1:177183.
166. Heefner, D. L.,, C. H. Squires,, R. J. Evans,, B. J. Kopp,, and M. J, Yarus. 1984. Transformation of Clostridium perfringens. J. Bacteriol. 159:460464.
167. Hershfeld, V. 1979. Plasmids mediating multiple drug resistance in group B Streptococcus: transferability and molecular properties. Plasmid 2:137149.
168. Hickey, R. M.,, D. P. Twomey,, R. P. Ross,, and C. Hill. 2001. Exploitation of plasmid pMRC01 to direct transfer of mobilizable plasmids into commercial lactococcal starter strains. Appl. Environ. Microbiol. 67:28532858.
169. Higgins, D. L.,, R. B. Sanozky-Dawes,, and T. R. Klaenhammer. 1988. Restriction and modification activities from Streptococcus lactis ME2 are encoded by a self-transmissible plasmid, pTN20, that forms cointegrates during mobilization of lactose-fermenting ability. J. Bacteriol. 170:34353442.
170. Hill, C.,, and R. P. Ross,. 1998. Starter cultures for the dairy industry. In S. Roller, and S. Harlander (ed.), Genetic Modification in the Food Industry. Blackie Academic and Professional, London, United Kingdom.
171. Hirt, H.,, R. Wirth,, and A. Muscholl. 1996. Comparative analysis of 18 sex pheromone plasmids from Enterococcus faecalis: detection of a new insertion element on pPD1 and implications for the evolution of this plasmid family. Mol. Gen. Genet. 252:640647.
172. Hofner, H.,, R. Wirth,, R. Marre,, G. Wanner,, and E. Straube. 1995. Subinhibitory concentrations of daptomycin enhance adherence of Enterococcus faecalis to in vitro cultivated renal tubuloepithelial cells and induce a sex pheromone plasmid-encoded adhesin. Med. Microbiol. Lett. 4:140149.
173. Holloway, B. W. 1979. Plasmids that mobilize bacterial chromosome. Plasmid 2:119.
174. Hopwood, D. A.,, and T. Kiesser,. 1993. Conjugative plasmids of Streptomyces, p. 293311. In D. B. Clewell (ed.), Bacterial Conjugation. Plenum Press, New York, N.Y..
175. Hopwood, D. A.,, D. J. Lydiate,, F. Malpartida,, and H. M. Wright. 1985. Conjugative sex plasmids of Streptomyces. Basic Life Sci. 30:615634.
176. Horaud, T.,, G. de Cespedes,, D. Clermont,, F. David,, and F. Delbos,. 1991. Variability of chromosomal genetic elements in streptococci, p. 1620. In G. M. Dunny,, P. P. Cleary,, and L. L. McKay (ed.), Genetics and Molecular Biology of Streptococci, Lactococci, and Enterococci. American Society for Microbiology, Washington, D.C..
177. Horaud, T.,, C. Le Bouguenec,, and K. Pepper. 1985. Molecular genetics of resistance to macrolides, lincosamides and streptogramin B (MLS) in streptococci. J. Antimicrob. Chemother. 16A(Suppl.):111135.
178. Horii, T.,, H. Nagasawa,, and J. Nakayama. 2002. Functional analysis of TraA, the sex pheromone receptor encoded by pPD1, in a promoter region essential for the mating response in Enterococcus faecalis. J. Bacteriol. 184:63436350.
179. Horn, N.,, S. Swindell,, H. Dodd,, and M. Casson.1991. Nisin biosynthesis genes are encoded by a novel conjugative transposon. Mol. Gen. Genet. 228:129135.
180. Horodniceanu, T.,, D. H. Bouanchaud,, G. Bieth,, and Y. A. Chabbert. 1976. R plasmids in Streptococcus agalactiae (group B). Antimicrob Agents Chemother. 10:795801.
181. Horodniceanu, T.,, L. Bougueleret,, and G. Bieth. 1981. Conjugative transfer of multiple-antibiotic resistance markers in beta-hemolytic group A, B, F, and G streptococci in the absence of extrachromosomal deoxyribonucleic acid. Plasmid 5:127137.
182. Horodniceanu, T.,, L. Bouguelerct,, N. El-Solh,, D. H. Bouanchaud,, and Y. A. Chabbert. 1979, Conjugative R plasmids in Streptococcus agalactiae (group B). Plasmid 2:197206.
183. Huyckc, M. M.,, and M. S. Gilmore. 1995. Frequency of aggregation substance and cytolysin genes among enterococcal endocarditis isolates. Plasmid 34:152156.
184. Ike, Y.,, and D. B. Clewell. 1984. Genetic analysis of the pAD1 pheromone response in Streptococcus faecalis, using transposon Tn917 as an insertional mutagen. J. Bacteriol. 158:777783.
185. Ike, Y.,, and D. B. Clewell. 1992. Evidence that the hemolysin/bacteriocin phenotype of Enterococcus faecalis subsp. zymogenes can be determined by plasmids in different incompatibility groups as well as by the chromosome. J. Bacteriol 174:81728177.
186. Ike, Y.,, R. C. Craig,, B. A. White,, Y. Yagi,, and D. B. Clewell. 1983. Modification of Streptococcus faecalis sex pheromones after acquisition of plasmid DNA. Proc. Natl Acad. Sci. USA 80:53695373.
187. Ike, Y.,, S. E. Flannagan,, and D. B. Clewell. 1992. Hyperhemolytic phenomena associated with insertions of Tn916 into the hemolysin determinant of Enterococcus faecalis plasmid pAD1. J. Bacteriol 174:18011809.
188. Ike, Y.,, H. Hashimoto, and D, B. Clewell. 1984. Hemolysin of Streptococcus faecalis subspecies zymogenes contributes to virulence in mice. Infect. Immun. 45:528530.
189. Ike, Y.,, H. Hashimoto,, and D. B. Clewell. 1987. High incidence of hemolysin production by Enterococcus (Streptococcus) faecalis strains associated with human parenteral infections. J. Clin. Microbiol 25:15241528.
190. Ike, Y.,, K. Tanimoto,, H. Tomita, K Takeuchi, and S. Fujimoto. 1998. Efficient transfer of the pheromone-independent Enterococcus faecium plasmid pMG1 (Gm) (65.1 kilobases) to Enterococcus strains during broth mating. J. Bacteriol 180:48864892.
191. Inamine, J. M.,, and V. Burdett. 1985. Structural organization of a 67-kilobase streptococcal conjugative element mediating multiple antibiotic resistance. J. Bacteriol. 161:620626.
192. Ionesco, H. 1980. Transfert de la résistance à la tétracycline chez Clostridium difficile. Ann. Microbiol (Paris) 131A:171179.
193. lordanescu, S. 1993. Plasmid pT181-linked suppressors of the Staphylococcus aureus pcrA3 chromosomal mutation. J. Bacteriol 175:39163917.
194. Jacob, A. E.,, G. I. Douglas,, and S. J. Hobbs. 1975. Self-transferable plasmids determining the hemolysin and bacteriocin of Streptococcus faecalis var. zymogenes. J. Bacteriol. 121:863872.
195. Jacob, A. E.,, and S. Hobbs. 1974. Conjugal transfer of plasmid-bornne multiple antibiotic resistance in Streptococcus faecalis var. zymogenes. J. Bacteriol 117:360372.
196. Jaffe, H. W.,, H. M. Sweeney,, R. A. Weinstein,, S. A. Kabins,, C. Nathan,, and S. Cohen. 1982. Structural and phenotypic varieties of gentamicin resistance plasmids in hospital strains of Staphylococcus aureus and coagulase-negative staphylococci. Antimicrob. Agents Cbemother. 21:773779.
197. Janniere, L.,, A. Gruss,, and S. D. Ehrlich,. 1993. Plasmids, p. 625644. In A. L. Sonenshein,, J. A. Hoch,, and R. Losick (ed.), Bacillus subtilis and Other Gram-Positive Bacteria. American Society for Microbiology, Washington, D.C..
198. Jaworski, D. D.,, and D. B. Clewell. 1994. Evidence that coupling sequences play a frequency-determining role in conjugative transposition of Tn916 in Enterococcus faecalis. J. Bacteriol 176:33283335.
199. Jaworski, D. D.,, and D. B. Clewell. 1995. A functional origin of transfer (oriT) on the conjugative transposon Tn916. J. Bacteriol. 177:66446651.
200. Jaworski, D. D.,, S. E. Flannagan,, and D. B. Clewell. 1996. Analyses of traA, int-Tn, and xis-Tn mutations in the conjugative transposon Tn916 in Enterococcus faecalis. Plasmid 36:201208.
201. Jensen, G. B.,, L. Andrup, A, Wilcks, L. Smidt, and O. M. Poulsen. 1996. The aggregation-mediated conjugation system of Bacillus thuringiensis subsp. israelensis: host range and kinetics of transfer. Curr. Microbiol. 33:228236.
202. Jensen, G. B.,, A. Wilcks,, S. S. Petersen,, J. Damgaard,, J. A. Baum,, and L. Andrup. 1995. The genetic basis of the aggregation system in Bacillus thuringiensis subsp. israelensis is located on the large conjugative plasmid pXO16. J. Bacteriol. 177:29142917.
203. Jett, B. D.,, H. G. Jensen,, R. E. Nordquist,, and M. S. Gilmore. 1992. Contribution of the pAD1-encoded cytolysin to the severity of experimental Enterococcus faecalis endophthalmitis. Infect. Immun. 60:24452452.
204. Jones, J. M.,, S. C. Yost,, and P. A. Pattee. 1987. Transfer of conjugal tetracycline resistance transposon Tn916 from Streptococcus faecalis to Staphylococcus aureus and identification of some insertion sites in the staphylococci chromosome. J. Bacteriol. 169:21212131.
205. Kalkus, J.,, C. Dorrie,, D. Fischer,, M. Reh,, and H. G. Schlegel. 1993. The giant linear plasmid pHG207 from Rhodococcus sp. encoding hydrogen autotrophy-characterization of the plasmid and its termini. J. Gen. Microbiol. 139:20552065.
206. Kataoka, M.,, S. Kosono,, T. Seki,, and T. Yoshida. 1994. Regulation of the transfer genes of Streptomyces plasmid pSN22: in vivo and in vitro study of the interaction of TraR with promoter regions. J. Bacteriol. 176:72917298.
207. Kataoka, M.,, T. Seki,, and T. Yoshida. 1991. Five genes involved in self-transmission of pSN22, a Streptomyces plasmid. J. Bacteriol. 173:42204228.
208. Keen, C. L.,, S. Mendelovitz,, G. Cohen,, Y. Aharonowitz,, and K. L. Roy. 1988. Isolation and characterization of a linear DNA plasmid from Streptomyces clavuligerus. Mol. Gen. Genet. 212:172176.
209. Kendall, K. J.,, and S. N. Cohen. 1987, Plasmid transfer in Streptomyces lividans: identification of a kil-kor system associated with the transfer region of pIJ101. J. Bacteriol. 169:41774183.
210. Kendall, K. J.,, and S. N. Cohen. 1988. Complete nucleotide sequence of the Streptomyces lividans plasmid pIJ101 and correlation of the sequence with genetic properties. J. Bacteriol. 170:46344651.
211. Kesseler, M.,, E. R. Dabbs,, B. Averhoff,, and G. Gottschalk. 1996. Studies on the isopropylbenzene 2,3-dioxygenase and the 3-isopropylcatechol 2,3-dioxygenase genes encoded by the linear plasmid of Rhodococcus erythropolis BD2. Microbiology 142:32413251.
212. Kieser, T.,, D. A. Hopwood,, H. M. Wright,, and C. J. Thompson. 1982. pIJ101, a multi-copy broad host-range Streptomyces plasmid: functional analysis and development of DNA cloning vectors. Mol Gen. Gettet. 185:223228.
213. Kilic, A. O.,, M. N. Vijayakumar,, and S. F. al-Khaldi. 1994. Identification and nucleotide sequence analysis of a transfer-related region in the streptococcal conjugative transposon Tn5252. J. Bacteriol. 176:51455150.
214. Kinashi, H.,, M. Shimaji,, and A. Sakai. 1987. Giant linear plasmids in Streptomyces which code for antibiotic biosynthesis genes. Nature 328:454456.
215. Kirby, R.,, L. F. Wright,, and D. A. Hopwood. 1975. Plasmid determined antibiotic synthesis and resistance in Streptomyces coelicolor. Nature 254:265267.
216. Klaenhammer, T. R.,, and G. F. Fitzgerald,. 1994. Bacteriophages and bacteriophage resistance, p. 106168. In M. J. Gasson, and W. M. de Vos (ed.), Genetics and Biotechnology of Lactic Acid Bacteria. Blackie Academic and Professional, London, United Kingdom.
217. Klaenhammer, T. R.,, and R. B. Sanozky. 1985. Conjugal transfer from Streptococcus lactis ME2 of plasmids encoding phage resistance, nisin resistance and lactose fermenting ability: evidence for a high frequency conjugal plasmid responsible for abortive infection of virulent bacteriophage. J. Gen. Microbiol. 131:15311541.
218. Kloos, W. E.,, B. S. Orban,, and D. D. Walker. 1981. Plasmid composition of Staphylococcus species. Can. J. Microbiol. 27:271278.
219. Kobayashi, T.,, H. Shimotsu,, S. Horinouchi,, T. Uozumi,, and T. Beppu. 1984. Isolation and characterization of a pock-forming plasmid pTA4001 from Streptomyces lavendulae. J. Antibiot. (Tokyo) 37:368375.
220. Koehler, T. M.,, and C. B. Thorne. 1987. Bacillus subtilis (natto) plasmid pLS20 mediates interspecies plasmid transfer. J. Bacteriol. 169:52715278.
221. Kosono, S.,, M. Kataoka, T, Seki, and T. Yoshida. 1996. The TraB protein, which mediates the intermycelial transfer of the Streptomyces plasmid pSN22, has functional NTP-binding motifs and is localized to the cytoplasmic membrane. Mol. Microbiol. 19:397405.
222. Krah, E. R.,, and F. L. Macrina. 1989. Genetic analysis of the conjugal transfer determinants encoded by the streptococcal broad-host-range plasmid pIP501. J. Bacteriol. 171:60056012.
223. Kulakova, A. N.,, M. J. Larkin,, and L. A. Kulakov. 1997. Cryptic plasmid pKA22 isolated from the naphthalene degrading derivative of Rhodococcus rhodochrous NCIMB13064. Plasmid 38:6169.
224. Kulakova, A. N.,, T. M. Stafford,, M. J. Larkin,, and L. A. Kulakov. 1995. Plasmid pRTL controlling 1-chloroalkane degradation by Rhodococcus rhodochrous NCIMB13064. Plasmid 33:208217.
225. Kurenbach, B.,, D. Grothe,, M. E. Farias,, U. Szcwzyk,, and E. Grohmann. 2002. The tra region of the conjugative plasmid pIP501 is organized in an operon with the first gene encoding the relaxase. J. Bacteriol. 184:18011805.
226. Lacey, R. W. 1980. Evidence for two mechanisms of plasmid transfer in mixed cultures of Staphylococcus aureus. J. Gen. Microbiol. 119:423435.
227. Lanka, E.,, and B. M. Wilkins. 1995. DNA processing reactions in bacterial conjugation. Annu. Rev. Biochem. 64:141169.
228. Larkin, M. L.,, R. De Mot,, L. A. Kulakov,, and I. Nagy. 1998. Applied aspects of Rhodococcus genetics. Antonie Leeuwenhoek 74:133153.
229. Lazazzera, B. A, 2001. The intracellular function of extracellular signaling peptides. Peptides 22:15191527.
230. LeBlanc, D. J.,, Y. Y. Chen,, and L. N. Lee. 1993. Identification and characterization of a mobilization gene in the streptococcal plasmid, pVA380-1. Plasmid 30:296302.
231. LeBlanc, D. J.,, L. N. Lee,, D. B. Clewell,, and D. Behnke. 1983. Broad geographical distribution of a cytotoxin gene mediating beta-hemolysis and bacteriocin activity among Streptococcus faecalis strains. Infect. Immun. 40:10151022.
232. Le Bouguenec, C.,, G. de Cespedes,, and T. Horaud. 1988. Molecular analysis of a composite chromosomal conjugative element (Tn3701) of Streptococcus pyogenes, J. Bacteriol. 170:39303936.
233. Le Bouguenec, C.,, G. de Cespedes,, and T. Horaud. 1990, Presence of chromosomal elements resembling the composite structureTn3701 in streptococci. J. Bacteriol. 172:727