1887

Chapter 12 : The Symbiotic Plasmids of the

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

The Symbiotic Plasmids of the , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817732/9781555812652_Chap12-1.gif /docserver/preview/fulltext/10.1128/9781555817732/9781555812652_Chap12-2.gif

Abstract:

The , with around 18,000 species, is the largest plant family on Earth; its ecological success owes much to the existence of nitrogen-fixing symbioses with prokaryotes. These symbioses occur mainly with members of the family (belonging to the a-proteobacteria). Clearly, research in the molecular biology of rhizobia- legume interactions has illuminated the ways in which bacteria and eukaryotes interact in a symbiotic process. However, this research also showed, almost from the start, the existence of novel forms of genome organization in prokaryotes, such as the finding of multiple large plasmids. Conversely, elimination of the pSym impairs both nodulation and nitrogen fixation of the original bacterial strain. Plasmids p42c, p42e, and p42f influence successful competitiveness between strains for nodulation, while p42f is needed for nitrogen fixation; only the self-conjugative plasmid p42a appears to be dispensable for symbiosis. As everything in biology, the current revolution in genomics has changed the way in which one addresses these problems. On the backbone, genes for nodulation are located in three noncontiguous clusters, which are separate and far apart from three clusters of nitrogen fixation genes. Control by quorum-sensing systems has dominated the study of conjugation in the . However, it must be stressed that conjugative transfer may be modulated by other environmental cues, such as nutritional factors.

Citation: Romero D, Brom S. 2004. The Symbiotic Plasmids of the , p 271-290. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch12

Key Concept Ranking

Type III Secretion System
0.42522123
Restriction Fragment Length Polymorphism
0.4219603
0.42522123
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Maps of sequenced pSyms and symbiotic islands. Note that the scale is different between the maps. Abbreviations are defined in the text. Numbers on each map indicate the scale (in kb). References used for each map are as follows: pSymA ( and http://sequence.toulouse.inra.fr/meliloti.html); pNGR234a ( and http://genome.imb-jena.de/other/cfreiber/ pNGR234a2.html); symbiotic island R7A ( and http://sequence.toulouse.inra.fr/msi); symbiotic island MAFF303099 ( and http://www.kazusa.or.jp/rhizobase/). To facilitate comparisons between the symbiotic islands, orientation of the symbiotic island MAFF303099 was reversed from the orientation that appears in the corresponding reference.

Citation: Romero D, Brom S. 2004. The Symbiotic Plasmids of the , p 271-290. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Schematic organization of systems. Direction of transcription is indicated by arrows. The promoter of the operon is marked with an arrowhead labeled P. The positions of the possible centromere-like sequence αand replication origin βin rhizobial systems are indicated by boxes of different shadings. Possible boxes are shown as a stippled box. Proposed regulatory interactions are also indicated; +, activation; − repression.

Citation: Romero D, Brom S. 2004. The Symbiotic Plasmids of the , p 271-290. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Comparison of regions involved in conjugal transfer of pSyms and symbiotic islands. (A) Possible regions providing the Dtr functions in rhizobial systems, compared to the corresponding region in pTiC58. Direction of transcription for each gene is indicated by arrows. Empty boxes mark the location of or/T-like sequences. (B) Possible regions providing the Mpf functions in rhizobial systems, compared to the corresponding region in pTiC58. Symbols are as in (A). Interrupted lines connecting two maps mark genes that are absent. See text for details. References for each region are as follows: pTiC58 (25); pNGR234a ( and http://genome.imb-jena.de/other/cfreiber/pNGR234a2.html); symbiotic island R7A ( and http://sequencc.toulouse.inra.fr/msi); symbiotic island MAFF303099 ( and http://www.kazusa.or.jp/ rhizobase/); pSymA ( and http://sequence.toulouse.inra.fr/meliloti. html); pMLb ( and http://www.kazusa.or.jp/ rhizobase/).

Citation: Romero D, Brom S. 2004. The Symbiotic Plasmids of the , p 271-290. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Location and orientation of identical repeats in sequenced pSyms and symbiotic islands. The sequence of the corresponding pSyms or islands was analyzed using the program Miropeats (86) (available at http://www.jparsons.uklinux.net/bioinf/) running in the intramolecular repeats mode at two different thresholds (300 bp and 1,000 bp, as indicated). All the maps were oriented with the start of the sequence on the left side of the page. Identical repeats are joined by arcs of variable height (lower for direct repeats, higher for inverse repeats). GenBank accession numbers for the sequences analyzed are: pSymA, NC003037; pNGR234a, NC000914; symbiotic island R7A, AL672111. For the symbiotic island MAFF303099, a subfile containing only the sequence of the island was generated from the chromosomal sequence (NC002678); orientation of the subfile was reversed to facilitate comparison with the symbiotic island R7A. Large-scale graphics and analysis tables are available upon request.

Citation: Romero D, Brom S. 2004. The Symbiotic Plasmids of the , p 271-290. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817732.chap12
1. Baldani, J. I.,, R. W. Weaver,, M. F. Hynes,, and B. D. Eardly. 1992. Utilization of carbon substrates, electrophoretic enzyme patterns and symbiotic performance of plasmid-cured clover rhizobia. Appl. Environ. Microbiol. 58: 2308 2314.
2. Barnett, M. J.,, R. F. Fisher,, T. Jones,, C. Komp,, A. P. Abola,, F. Barloy-Hubler,, L. Bowser,, D. Capela,, F. Galibert,, J. Gouzy,, M. Gurjal,, A. Hong,, L. Huizar,, R. W. Hyman,, D. Kahn,, M. L. Kahn,, S. Kalman,, D. H. Keating,, C. Palm,, M. C. Peck,, R. Surzycki,, D. H. Wells,, K. C. Yeh,, R. W. Davis,, N. A. Federspiel,, and S. R. Long. 2001. Nucleotide sequence and predicted functions of the entire Sinorbizobium meliloti pSymA megaplasmid. Proc. Natl. Acad. Sci. USA 98: 9883 9888.
3. Barnett, M. J.,, B. G. Rushing,, R. F. Fisher,, and S. R. Long. 1996. Transcription start sites for syrM and nodD3 flank an insertion sequence relic in Rhizobium meliloti. J. Bacteriol. 178: 1782 1787.
4. Baron, C.,, D. O'Callaghan,, and E. Lanka. 2002. Bacterial secrets of secretion: EuroConference on the biology of type IV secretion processes. Mol. Microbiol. 43: 1359 1365.
5. Barran, L. R.,, N. Ritchot,, and E. S. Bromfield. 2001. Sinorbizobium meliloti plasmid pRmll32f replicates by a rolling-circle mechanism. J. Bacteriol. 183: 2704 2708.
6. Bartosik, D.,, J. Baj,, and M. Wlodarczyk. 1998. Molecular and functional analysis of pTAV320, a repABC-type replicon of the Paracoccus versutus composite plasmid pTAVl. Microbiology 144: 3149 3157.
7. Bartosik, D.,, M. Szymanik,, and E. Wysocka. 2001. Identification of the partitioning site within the repABC-type replicon of the composite Paracoccus versutus plasmid pTAVl. J. Bacteriol. 183: 6234 6243.
8. Bever, J. D.,, and E. L. Simms. 2000. Evolution of nitrogen fixation in spatially structured populations of Rhizobium. Heredity 85: 366 372.
9. Bignell, C.,, and C. M. Thomas. 2001. The bacterial ParA-ParB partitioning proteins. J. Biotechnol. 91: 1 34.
10. Bittinger, M. A.,, J. A. Gross,, J. Widom,, J. Clardy,, and J. Handelsman. 2000. Rhizobium etli CE3 carries vir gene homologs on a self-transmissible plasmid. Mol. Plant- Microbe Interact. 13: 1019 1021.
11. Brewin, N. J.,, J. E. Beringer,, and A. W. B. Johnston. 1980. Plasmid mediated transfer of host-range specificity between two strains of Rhizobium leguminosarum. J. Gen. Microbiol. 120: 413 420.
12. Brom, S.,, A. Garcia-de los Santos,, L. Cervantes,, R. Palacios,, and D. Romero. 2000. In Rhizobium etli symbiotic plasmid transfer, nodulation competitivity and cellular growth require interaction among different replicons. Plasmid 44: 34 43.
13. Brom, S.,, A. Garcia de los Santos,, M. L. Girard,, G. Davila,, R. Palacios,, and D. Romero. 1991. High-frequency rearrangements in Rhizobium leguminosarum bv. phaseoli plasmids. J. Bacteriol. 173: 1344 1346.
14. Brom, S.,, A. Garcia de los Santos,, T. Stepkowski,, M. Flores,, G. Davila,, D. Romero and, R. Palacios. 1992. Different plasmids of Rhizobium leguminosarum bv. phaseoli are required for optimal symbiotic performance. J. Bacteriol. 174: 5183 5189.
15. Brom, S.,, L. Girard,, A. Garcia-de los Santos,, J. M. Sanjuan- Pinilla,, J. Olivares,, and J. Sanjuan. 2002. Conservation of plasmid-encoded traits among bean-nodulating Rhizobium species. Appl. Environ. Microbiol. 68: 2555 2561.
16. Cao, T. B.,, and M. H. Saier, Jr. 2001. Conjugal type IV macromolecular transfer systems of gram-negative bacteria: organismal distribution, structural constraints and evolutionary conclusions. Microbiology 147: 3201 3214.
17. Castillo, M.,, M. Flores,, P. Mavingui,, E. Martinez-Romero,, R. Palacios,, and G. Hernandez. 1999. Increase in alfalfa nodulation, nitrogen fixation and plant growth by specific DNA amplification in Sinorbizobium meliloti. Appl. Environ. Microbiol. 65: 2716 2722.
18. Cevallos, M. A.,, H. Porta,, J. Izquierdo,, C. Tun-Garrido,, A. Garcia-dc-los-Santos,, G. Davila,, and S. Brom. 2002. Rhizobium etli CFN42 contains at least three plasmids of the repABC family: a structural and evolutionary analysis. Plasmid 48: 104 116.
19. Charles, T. C.,, and T. M. Finan. 1991. Analysis of a 1600- kilobase Rhizobium meliloti megaplasmid using defined deletions generated in vivo. Genetics 127: 5 20.
20. Chen, L.,, Y. Chen,, D. W. Wood, and E, W. Nester. 2002. A new type IV secretion system promotes conjugal transfer in Agrobacterium tumefaciens. J. Bacteriol. 184: 4838 4845.
20.a. Chen, W. M.,, L. Moulin,, C. Bontemps,, P. Vandamme,, G. Bena,, and C. Boivin-Masson. 2003. Legume symbiotic nitrogen fixation by beta-proteobacteria is widespread in nature. J. Bacteriol 185: 7266 7272.
21. Christensen, A. H.,, and K. R. Schubert. 1983. Identification of a Rhizobium trifolii plasmid coding for nitrogen fixation and nodulation genes and its interaction with pJB5JI, a Rhizobium leguminosarum plasmid. J. Bacteriol. 156: 592 599.
22. De la Cruz, F.,, and E. Lanka,. 1998. Function of the Ti-plasmid vir proteins: T-complex formation and transfer to the plant cell, p. 282 301. In H. P. Spaink,, A. Kondorosi,, and P. J. J. Hooykaas (ed.), The Rhizobiaceae: Molecular Biology of Model Plant-Associated Bacteria. Kluwer Academic Publishers, Amsterdam, The Netherlands.
23. Denison, R. F., 2000. Legume sanctions and the evolution of symbiotic cooperation by rhizobia. Am. Nat. 156: 567 576.
24. Falla, T. J., and L. Chopra. 1999. Stabilization of Rhizobium symbiosis plasmids. Microbiology 145: 515 516.
25. Farrand, S. K., 1998. Conjugal plasmids and their transfer, p. 199 233. In H. P. Spaink,, A. Kondorosi,, and P. J. J. Hooykaas (ed.), The Rhizobiaceae: Molecular Biology of Model Plant-Associated Bacteria. Kluwer Academic Publishers, Amsterdam, The Netherlands.
26. Farrand, S. K.,, I. Hwang,, and D. M. Cook. 1996. The tra region of the nopaline-type Ti plasmid is a chimera with elements related to the transfer systems of RSF1010, RP4 and F. J. Bacteriol. 178: 4233 4247.
27. Farrand, S. K.,, P. B. van Berkum,, and P. Oger, 2003. Agrobacterium is a definable genus of the family Rhizobiaceae. Int. J. Syst. Evol. MicrobioL 53: 1681 1687.
28. Fellay, R.,, X. Perret,, V. Viprey,, W. J. Broughton,, and S. Brenner. 1995. Organization of host-inducible transcripts on the symbiotic plasmid of Rhizobium NGR234. Mol. Microbiol. 16: 657 667.
29. Finan, T. M.,, S. Weidner,, K. Wong,, J. Buhrmester,, P. Chain,. F. J. Vorholter,, I. Hernandez-Lucas,, A. Becker,, A. Cowie,, J. Gouzy,, B. Golding,, and A. Puhler. 2001. The complete sequence of the 1,683-kb pSymB megaplasmid from the N 2- fixing endosymbiont Sinorhizobium meliloti. Proc. Natl. Acad. Sci. USA 98: 9889 9894.
30. Fischer, H. M. 1994. Genetic regulation of nitrogen fixation in rhizobia. Microbiol Rev. 58: 352 386.
31. Flores, M.,, S. Brom,, T. Stepkowski,, M. I. Girard,, G. Davila,, D. Romero,, and R. Palacios. 1993. Gene amplification in Rhizobium: identification and in vivo cloning of discrete amplifiable DNA regions (amplicons) from Rhizobium leguminosarum biovar phaseoli. Proc. Natl. Acad. Sci. USA 90: 4932 4936.
32. Flores, M.,, V. Gonzalez,, S. Brom,, E. Martinez,, D. Piñero,, D. Romero,, G. Davila,, and R. Palacios. 1987. Reiterated DNA sequences in Rhizobium and Agrobacterium. J. Bacteriol. 169: 5782 5788.
33. Flores, M.,, P. Mavingui,, L. Girard,, X. Perret,, W. J. Broughton,, E. Martinez-Romero,, G. Davila,, and R. Palacios. 1998. Three replicons of Rhizobium sp. strain NGR234 harbor symbiotic gene sequences. J. Bacteriol. 180: 6052 6053.
34. Flores, M.,, P. Mavingui,, X. Perret,, W. J. Broughton,, D. Romero,, G. Hernandez,, G. Davila,, and R. Palacios. 2000. Prediction, identification and artificial selection of DNA rearrangements in Rhizobium: toward a natural genomic design. Proc. Natl. Acad. Sci. USA 97: 9138 9146.
35. Freiberg, C.,, R. Fellay,, A. Bairoch,, W. J. Broughton,, A. Rosenthal,, and X. Perret. 1997. Molecular basis of symbiosis between Rhizobium and legumes. Nature 387: 394 401.
36. Galibert, F.,, T. M. Finan,, S. R. Long,, A. Puhler,, P. Abola,, F. Ampe,, F. Barloy-Hubler,, M. J. Barnett,, A. Becker,, P. Boistard,, G. Bothe,, M. Boutry,, L. Bowser,, J. Buhrmester,, E. Cadieu,, D. Capela,, P. Chain,, A. Cowie,, R. W. Davis,, S. Dreano,, N. A. Federspiel,, R. F. Fisher,, S. Gloux,, T. Godrie,, A. Goffcau,, B. Golding,, J. Gouzy,, M. Gurjal,, I. Hernandez- Lucas,, A. Hong,, L. Huizar,, R. W. Hyman,, T. Jones,, D. Kahn,, M. L. Kahn,, S. Kalman,, D. H. Keating,, E. Kiss,, C. Komp,, V. Lelaure,, D. Masuy,, C. Palm, M. C. Peck,, T. M. Pohl,, D. Portetelle,, B. Purnelle,, U. Ramsperger,, R. Surzycki,, P. Thebault,, M. Vandenbol,, F. J. Vorholter,, S. Weidner,, D. H. Wells,, K. Wong,, K. C. Yeh,, and Je. Batut. 2001. The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293: 668 672.
37. Garcia-de los Santos, A.,, and S. Brom. 1997. Characterization of two plasmid-borne Ipsβ loci of Rhizobium etli required for lipopolysaccharidc synthesis and for optimal interaction with plants. Mol. Plant-Microbe Interact. 10: 891 902.
38. Garcia-de los Santos, A.,, S. Brom,, and D. Romero. 1996. Rhizobium plasmids in bacteria-legume interactions. World J. Microbiol. Biotechnol. 12: 119 125.
39. Gcelen, D.,, K. Goethals,, M. Van Montagu,, and M. Holsters. 1995. The nodD locus from Azorhizobium caulinadans is flanked by two repetitive elements. Gene 164: 107 111.
40. Geniaux, E.,, M. Flores,, R. Palacios,, and E. Martinez. 1995. Presence of megaplasmids in Rhizobium tropici and further evidence of differences between the two R. tropici subtypes. Int. J. Syst. Bacteriol. 45: 392 394.
41. Gerdes, K.,, S. Ayora,, I. Canosa,, p. Ceglowski,, R. Diaz- Orejas,, T. Franch,, A. P. Gultyaev,, R. B. Jensen,, I. Kobayashi,, C. Macpherson,, D. Summers,, C. M. Thomas,, and U. Zielenkiewiez,. 2000. Plasmid maintenance systems, p. 49 85. In C. M. Thomas (ed.), The Horizontal Gene Pool: Bacterial Plasmids and Gene Spread. Harwood Academic Publishers, Amsterdam, The Netherlands.
42. Gerdes, K.,, J. Muller-Jensen,, and R. B. Jensen. 2000. Plasmid and chromosome partitioning: surprises from phylogeny. Mol. Microbiol. 37: 455 466.
43. Girard, L.,, S. Brom,, A. Davalos,, O. Lopez,, M. Soberon,, and D. Romero. 2000. Differential regulation of fixN reiterated genes in Rhizobium etli by a novel fixL-fixK cascade. Mol. Plant-Microbe Interact. 13: 1283 1292.
44. Girard, L.,, B. Valderrama,, R. Palacios,, D. Romero,, and G. Davila. 1996. Transcriptional activity of the symbiotic plasmid of Rhizobium etli is affected by different environmental conditions. Microbiology 142: 2847 2856.
44.a. Gonzalez, V.,, P. Bustos,, M. A. Ramirez-Romero,, A. Medrano-Soto,, H. Salgado,, I. Hernandez-Gonzalez,, J. C. Hernandez-Celis,, V. Quintero,, G. Moreno-Hagelsieb,, L. Girard,, O. Rodriguez,, M. Flores,, M. A. Cevallos,, J. Collado-Vides,, D. Romero,, and G. Davila. 2003. The mosaic structure of the symbiotic plasmid of Rhizobium etli and its relation with other symbiotic genome compartments. Genome Biol. 4: R36. ( http://genomebiology.eom/2003/4/6/R36).
45. Goodner, B.,, G. Hinkle,, S. Gattung,, N. Miller,, M. Blanchard,, B. Qurollo,, B. S. Goldman,, Y. Cao,, M. Askenazi,, C. Hailing,, L. Mullin,, K. Houmiel,, J. Gordon,, M. Vaudtn,, O. lartchouk,, A. Epp,, F. Liu,, C. Wollam,, M. Allingcr,, D. Doughty,, C. Scott,, C. Lappas,, B. Markelz,, C. Flanagan,, C. Crowcll,, J. Gurson,, C. Lomo,, C. Sear,, G. Strub,, C. Cielo,, and S. Slater. 2001. Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58, Science 294: 2323 2328.
46. Gottfert, M.,, S. Rothlisberger,, C. Kundig,, C. Beck,, R. Marty,, and H. Hennecke. 2001. Potential symbiosis-specific genes uncovered by sequencing a 410-kilobase DNA region of the Bradyrhizobium japonicum chromosome. J. Bacterial. 183: 1405 1412.
46.a. Guo, X.,, M. Flores,, P. Mavingui,, S. I. Fuentes,, G. Hernandez,, G. Davila,, and R. Palacios. 2003. Natural genomic design in Sinorhizobium meliloti: novel genomic architectures. Genome Res. 13: 1810 1817.
47. Gutierrez-Zamora, M. L., and E. Martinez-Romero. 2001. Natural endophytic association between Rhizobium etli and maize (Zea mays L.) .J. Biotechnol. 91: 117 126.
48.. Hahn, M.,, and H. Hennecke. 1987. Mapping of a Bradyrhizobium japonicum DNA region carrying genes for symbiosis and an asymmetric accumulation of reiterated sequences. Appl. Environ. Microbiol. 53: 2247 2252.
48.a. He, X.,, W. Chang,, D. L. Pierce,, L. O. Seib,, J. Wagner, and C. Fuqua. 2003. Quorum sensing in Rhizobium sp. strain NGR234 regulates conjugal transfer (tra) gene expression and influences growth rate. J. Bacteriol. 185: 809 822.
49. Herrera-Cervera, J. A.,, J. Olivares,, and J. Sanjuan. 1996. Ammonia inhibition of plasmid pRmeGR4a conjugal transfer between Rhizobium meliloti strains. Appl. Environ. Microbial. 62: 1145 1150.
50. Herrera-Cervera, J. A.,, J. M. Sanjuan-Pinilla,, J. Olivares,, and J. Sanjuan. 1998. Cloning and identification of conjugative transfer origins in the Rhizobium meliloti genome. J. Bacteriol. 180: 4583 4590.
51. Hooykaas, P. J. J.,, H. den Dulk-Ras,, A. J. G. Regensburg- Tuink,, A. A. N, van Brussel, and R, A. Schilperoort. 1985. Expression of a Rhizobium phaseoli Sym plasmid in Rhizobium trifolii and Agrobacterium tumefaciens: income patibility with a Rhizobium trifolii Sym plasmid. Plasmid 14: 47 52.
52. Hooykaas, P. I. J.,, A. A. N. Van Brussel,, H. Den Dulk-Ras,, G. M. S. Von Slogteren,, and R. A. Schilperoort. 1981. Symplasmid of Rhizobium trifolii expressed in different rhizobial species and in Agrobacterium tumefaciens. Nature 291: 351 353.
53. Huguet, T.,, C. Rosenberg,, F. Casse-Delbart,, P. De Lajudie,, L. Jouanin,, J. Batut,, P. Boistard,, J.-S. Julliot,, and J. Denarie,. 1983. Studies on Rhizobium meliloti plasmids and on their role in the control of nodule formation and nitrogen fixation: the pSym megaplasmids and the other large plasmids, p. 36 45. In A. Puhler (ed.), Molecular Genetics of the Bacteria- Plant Interaction. Springer-Verlag, Berlin, Germany.
54. Hynes, M. F.,, K. Brucksch,, and U. B. Priefer. 1988. Melanin production encoded by a cryptic plasmid in a Rhizobium leguminosarum strain. Arch. Microbiol. 150: 326 332.
55. Hynes, M. F.,, and N. F. McGregor. 1990. Two plasmids other than the nodulation plasmid are necessary for formation of nitrogen-fixing nodules by Rhizobium leguminosarum. Mol. Microbiol. 4: 567 574.
56. Hynes, M. F.,, R. Simon,, and A. Puhler. 1985. The development of plasmid-free strains of Agrobacterium tumefaciens by using incompatibility with a Rhizobium meliloti plasmid to eliminate pAtC58. Plasmid 13: 99 105.
57. Innes, R. W.,, M. A. Hirose,, and P. L. Kuempel. 1988. Induction of nitrogen-fixing nodules on clover requires only 32 kilobase pairs of DNA from the Rhizobium trifolii symbiosis plasmid. J. Bacteriol. 170: 3793 3802.
58. Jaworski, D. D., and D. B. Clewell. 1995. A functional origin of transfer (oriT) on the conjugative transposon Tn916. J. Bacteriol. 177: 6644 6651.
59. Johnston, A. W. B.,, J. L. Beynon,, A. V. Buchanan-Wollaston,, S. M. Setchell,, P. R. Hirsch,, and J. E. Beringer. 1978. High frequency transfer of of nodulating ability between strains and species of Rhizobium. Nature 276: 634 636.
60. Johnston, A. W. B.,, G. Hombrecher,, N. J. Brewin,, and M. C. Cooper. 1982. Two transmissible plasmids in Rhizobium leguminosarum strain 300. J. Gen. Microbiol. 128: 85 93.
61. Kahng, L. S.,, and L. Shapiro. 2001. The CcrM DNA methyltransferase of Agrobacterium tumefaciens is essential, and its activity is cell cycle regulated. J. Bacteriol. 183: 3065 3075.
61.a. Kahng, L. S.,, and L. Shapiro. 2003. Polar localization of replicon origins in the multipartite genomes of Agrobacterium tumefaciens and Sinorbizobium meliloti. J. Bacteriol. 185: 3384 3391.
62. Kaneko, T.,, Y. Nakamura,, S. Sato,, E. Asamizu,, T. Kato,, S. Sasamoto,, A. Watanabe,, K. Idesawa,, A. Ishikawa,, K. Kawashima,, T. Kimura,, Y. Kishida,, C. Kiyokawa,, M. Kohara,, M. Matsumoto,, A. Matsuno,, Y. Mochizuki,, S. Nakayama,, N. Nakazakt,, S. Shimpo,, M. Sugimoto,, C. Takeucbi,, M. Yamada,, and S. Tabata. 2000. Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorbizobium loti. DNA Res. 7: 331 338.
62.a. Kaneko, T.,, Y. Nakamura,, S. Sato,, K. Minamisawa,, T. Uchiumi,, S. Sasamoto,, A. Watanabe,, K. Idesawa,, M. Iriguchi,, K. Kawashima,, M. Kohara,, M. Matsumoto,, S. Shimpo,, H. Tsuruoka,, T. Wada,, M. Yamada,, and S. Tabata. 2002. Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrbizobium japonicum USD A110. DNA Res. 9: 189 197.
63. Kucey, R. M. N.,, and M. F. Hynes. 1989. Populations of Rhizobium leguminosarum biovars phaseoli and viceae in fields after bean or pea in rotation with nonlegumcs. Can. J. Microbiol. 35: 661 667.
64. Lai, E.-M.,, and C. I. Kado. 2000. The T-pilus of Agrobacterium tumefaciens. Trends Microbiol. 8: 361 369.
65. Lamb, J. W.,, G. Hombrecher,, and A. W. B. Johnston. 1982. Plasmid-determined nodulation and nitrogen fixation abilities in Rhizobium phaseoli. Mol. Gen. Genet. 186: 449 452.
66. Li, P. L.,, and S. K. Farrand. 2000. The replicator of the nopaline-type Ti plasmid pTiC58 is a member of the repABC family and is influenced by the TraR-dependent quorum-sensing regulatory system. J. Bacteriol. 182: 179 188.
67. Li, P. L.,, H. Hwang,, H. Miyagi,, H. True,, and S. K. Farrand. 1999. Essential components of the Ti plasmid trb system, a type IV macromolecular transporter. J. Bacteriol. 181: 5033 5041.
68. Lithgow, J. K.,, A. Wilkinson,, A. Hardman,, B. Rodelas,, F. Wisniewski-Dye,, P. Williams,, and J. A. Downie. 2000. The regulatory locus cinRl in Rhizobium leguminosarum controls a network of quorum-sensing loci. Mol. Microbiol. 37: 81 97.
69. Marketon, M. M.,, and J. E. Gonzalez. 2002. Identification of two quorum-sensing systems in Sinorbizobium meliloti. J. Bacteriol. 184: 3466 3475.
70. Martinez, E.,, R. Palacios,, and F. Sanchez. 1987. Nitrogen-fixing nodules induced by Agrobacterium tumefaciens harboring Rhizobium phaseoli plasmids. J. Bacteriol. 169: 2828 2834.
71. Martinez-Romero, E., 2000. Dinitrogen-fixing prokaryotes, p. 1 12. In A. Balows,, H. G. Truper,, M. Dworkin,, W. Harder,, and K. H. Schleifer (ed.), The Prokaryotes: an Electronic Resource for the Microbiological Community. Springer-Verlag, Berlin, Germany. ( http://link.springer-ny. com/link/service/books/10125/index.htm).
72. Masterson, R. V.,, and A. G. Atherly. 1986. The presence of repeated DNA sequences and partial restriction map of the pSym of Rhizobium fredii USDA193. Plasmid 16: 37 44.
73. Mavingui, P.,, M. Flores,, X. Guo,, G. Davila,, X. Perret,, W. J. Broughton,, and R. Palacios. 2002. Dynamics of genome architecture in Rhizobium sp. strain NGR234. J. Bacteriol. 184: 171 176.
74. Mavingui, P.,, M. Flores,, D. Romero,, E. Martinez-Romero,, and R. Palacios. 1997. Generation of Rhizobium strains with improved symbiotic properties by random DNA amplification (RDA). Nature Biotecbnol. 15: 564 569.
75. Mavingui, P.,, T. Lacremans,, M. Flores,, D. Romero,, E. Martinez-Romero,, and R. Palacios. 1998. Genes essential for Nod factor production and nodulation are located on a symbiotic amplicon (AMP Rtr CFN299pc60) in Rhizobium tropici. J. Bacteriol. 180: 2866 2874.
76. Mercado-Blanco, J.,, and J. Olivares. 1993. Stability and transmissibility of the cryptic plasmids of Rhizobium meliloti GR4. Arch. Microbiol. 160: 477 485.
77.. Mercado-Blanco, J.,, and J. Olivares. 1994. The large non-symbiotic plasmid pRmcGR4a of Rhizobium meliloti GR4 encodes a protein involved in replication that has homology with the RepC protein of Agrobacterium plasmids. Plasmid 32: 75 79.
78. Mercado-Blanco, J.,, and J. Olivares. 1994. A protein involved in stabilization of a large non-symbiotic plasmid of Rbizobiutn meliloti shows homology to eukaryotic cytoskeletal proteins and DNA-binding proteins. Gene 139: 133 134.
79. Mercado-Blanco, J.,, and N. Toro. 1996, Plasmids in Rhizobia: the role of nonsymbiotic plasmids. Mol. Plant- Microbe Interact. 9: 535 545,
80. Moriguchi, K.,, Y. Maeda,, M. Satou,, N. S. N. Hardayani,, M. Kataoka,, N. Tanaka,, and K. Yoshida. 2001. The complete nucleotide sequence of a plant root-inducing (Ri) plasmid indicates its chimeric structure and evolutionary relationship between tumor-inducing (Ti) and symbiotic (Sym) plasmids in Rbizobiaceae. J. Mol. Biol. 307: 771 784.
81. Moulin, L.,, A. Munive,, B. Dreyfus,, and C. Boivin-Masson. 2001. Nodulation of legumes by members of the β-subclass of proteobacteria. Nature 411: 948 950.
82. Nishiguchi, R.,, M. Takanami,, and A. Oka. 1987. Characterization and sequence determination of the hairy root inducing plasmid pRiA4b. Mol. Gen. Genet. 206: 1 8.
83. O'Connell, M. P.,, M. F. Hynes,, and A. Puchler. 1987. Incompatibility between a Rhizobium Sym plasmid and a Ri plasmid of Agrobacterium. Plasmid 18: 156 163.
84. Oresnik, I. J.,, S. L. Liu,, C. K. Yost,, and M. F. Hynes. 2000. Megaplasmid pRme2011 a of Sinorhizobium meliloti is not required for viability. J. Bacteriol. 182: 3582 3586.
85. Oresnik, I.J.,, L. A. Pacarynuk,, S. A,, P. O'Brien,, C. K. Yost,, and M. F. Hynes. 1998. Plasmid-encoded catabolic genes in Rhizobium leguminosarum bv. trifolii: evidence for a plant-inducible rhamnose locus involved in competition for nodulation. Mol. Plant-Microbe Interact. 11: 1175 1185.
86. Parsons, J.D. 1995. Miropeats: graphical DNA sequence comparisons. Comput. Appl. Biol. Sci. 11: 615 619.
87. Paulsen, I. T.,, R. Seshadri,, K. E. Nelson,, J. A. Eisen,, J. F. Heidelberg,, T. D. Read,, R. J. Dodson,, L. Umayam,, L. M. Brinkac,, M. J. Beanan,, S. C. Daugherty,, R. T. Deboy,, A. S. Durkin,, J. F. Kolonay,, R. Madupu,, W. C. Nelson,, B. Ayodeji,, M. Kraul,, J. Shetty,, J. Malek,, S. E. Van Aken,, S. RiedmuIIer,, H. Tettelin,, S. R. Gill,, O. White,, S. L. Salzberg,, D. L. Hoover,, L. E. Lindler,, S. M. Hailing,, S. M. Boyle,, and C. M. Fraser. 2002. The Brucella suis genome reveals fundamental similarities between animal and plant pathogens and symbionts. Proc. Natl. Acad. Sci. USA 99: 13148 13153.
88. Perret, X.,, C. Freiberg,, A. Rosenthal,, W. J. Broughton,, and R. Fellay. 1999. High-resolution transcriptional analysis of the symbiotic plasmid of Rhizobium NGR234. Mol. Microbiol. 32: 415 425.
89. Perret, X.,, V. Viprey,, C. Freiberg,, and W. J. Broughton. 1997. Structure and evolution of NGRRS-1, a complex, repeated element in the genome of Rhizobium sp. strain NGR234. J. Bacteriol. 179: 7488 7496.
90. Quintero, V.,, M. A. Cevallos,, and G. Davila. 2002. A site-specific recombinase (RinQ) is required to exert incompatibility towards the symbiotic plasmid of Rhizobium etli. Mol. Microbiol. 46: 1023 1032.
91. Ramirez-Romero, M. A.,, P. Bustos,, M. L. Girard,, O. Rodriguez,, M. A. Cevallos,, and G. Davila. 1997. Sequence, localization and characteristics of the replicator region of the symbiotic plasmid of Rhizobium etli. Microbiology 143: 2825 2831.
92. Ramirez-Romero, M. A.,, N. Soberon,, A. Perez-Oseguera,, J. Tellez-Sosa,, and M. A. Cevallos. 2000. Structural elements required for replication and incompatibility of the Rhizobium etli symbiotic plasmid. J. Bacterial. 182: 3117 3124.
93. Ramirez-Romero, M. A.,, J. Tellez-Sosa,, H. Barrios,, A. Perez-Oseguera,, V. Rosas,, and M. A. Cevallos. 2001. RepA negatively autoregulates the transcription of the repABC operon of the Rhizobium etli symbiotic plasmid basic replicon. Mol. Microbiol. 42: 195 204.
94. Rao, J. R.,, M. Fenton,, and B. D. W. Jarvis. 1994. Symbiotic plasmid transfer in Rhizobium leguminosarum bv. trifolii and competition between the inoculant strain ICMP2163 and transconjugant soil bacteria. Soil Biol. Biocbem. 26: 339 351.
95. Rigottier-Gois, L.,, S. L. Turner,, J. P. W. Young,, and N. Amarger. 1998. Distribution of repC plasmid-replication sequences among plasmids and isolates of Rhizobium leguminosarum bv. viciae from field populations. Microbiology 144: 771 780.
96. Rivas, R.,, E. Velazquez,, A. Willems,, N. Vizcaino,, N. S. Subba-Rao,, P. F. Matcos,, M. Gillis,. F. B. Dazzo,, and E. Martinez-Molina. 2002. A new species of Devosia that forms a unique nitrogen-fixing root-nodule symbiosis with the aquatic legume Neptunia natans (L.f.) Druce. Appl. Environ. Microbiol. 68: 5217 5222.
97. Rochepeau, P.,, L. B., Selinger,, and M. F. Hynes. 1997. Transposon-like structure of a new plasmid-encoded restriction- modification system in Rhizobium leguminosarum VF39SM. Mol. Gen. Genet. 256: 387 396.
98. Rodionov, O.,, M. Lobocka,, and M. Yarmolinsky. 1999. Silencing of genes flanking the PI plasmid centromere. Science 283: 546 549.
99. Rodriguez, C.,, and D. Romero. 1998. Multiple recombination events maintain sequence identity among members of the nitrogenase multigene family in Rhizobium etli. Genetics 149: 785 794.
100. Romero, D.,, S. Brom,, J. Martinez-Salazar,, M. L. Girard,, R. Palacios,, and G. Davila. 1991. Amplification and deletion of a nod-nif region in the symbiotic plasmid of Rhizobium phaseoli. J. Bacterial. 173: 2435 2441.
101. Romero, D.,, G. Davila,, and R. Palacios,. 1998. The dynamic genome of Rhizobium, p. 153 161. In F. J. de Bruijn,, J. R. Lupski,, and G. Weinstock (ed.), Bacterial Genomes: Physical Structure and Analysis. Chapman & Hall, New York, N.Y..
102. Romero, D.,, J. Martinez-Salazar,, L. Girard,, S. Brom,, G. Davila,, R. Palacios,, M. Flores,, and C. Rodriguez. 1995. Discrete amplifiable regions (amplicons) in the symbiotic plasmid of Rhizobium etli CFN42. J. Bacteriol. 177: 973 980.
103. Romero, D.,, J. Martinez-Salazar,, E. Ortiz,, C. Rodriguez,, and E. Valencia-Morales. 1999. Repeated sequences in bacterial chromosomes and plasmids: a glimpse from sequenced genomes. Res. Microbiol. 150: 735 743.
104. Romero, D.,, and R. Palacios. 1997. Gene amplification and genomic plasticity in prokaryotes. Ann. Rev. Genet. 31: 91 111.
105. Schofield, P. R.,, A. H. Gibson,, W. F. Dudman,, and J. M. Watson. 1987. Evidence for genetic exchange and recombination of Rhizobium symbiotic plasmids in a soil population. Appl. Environ. Microbiol. 53: 2942 2947.
106. Schwedock, J.,, and S. R. Long. 1994. An open reading frame downstream of Rhizobium meliloti nodQI shows nucleotide sequence similarity to an Agrobacterium tumefaciens insertion sequence. Mol. Plant-Microbe Interact. 7: 151 153.
107. Segovia, L.,, J. P. W. Young,, and E. Martinez-Romero. 1993. Reclassification of American Rhizobium leguminosarum biovar phaseoli type I strains as Rhizobium etli sp. nov. Int. J. Syst. Bacteriol. 43: 374 377.
108. Simms, E. L.,, and J. D. Bever. 1998. Evolutionary dynamics of rhizopine within spatially structured Rhizobium populations. Proc. Roy. Soc. Lond. B 265: 1713 1719.
109. Spaink, H. P. 2000. Root nodulation and infection factors produced by rhizobial bacteria. Annu. Rev. Microbiol. 54: 257 288.
110. Squartini, A.,, P. Struffi,, H. Doring,, S. Selenska-Pobell,, E. Tola,, A. Giacomini,, E. Vendramin,, E. Velazquez,, P. F. Mateos,, E. Martinez-Molina,, F. B. Dazzo,, S. Casella,, and M. P. Nuti. 2002. Rhizobium sullae sp. nov. (formerly "Rhizobium hedysari) the root-nodule microsymbiont of Hedysarum coronarium L. Int. J. Syst. Evol. Microbiol. 52: 1267 1276.
111. Sullivan, J. T.,, H. N. Patrick,, W. L. Lowther,, D. B., Scott,, and C. W. Ronson. 1995. Nodulating strains of Rhizobium loti arise through chromosomal symbiotic gene transfer in the environment. Proc. Natl. Acad. Sci. USA 92: 8985 8989.
112. Sullivan, J. T.,, and C. W. Ronson. 1998. Evolution of rhizobia by acquisition of a 500-kb symbiosis island that integrates into a phe-tRNA gene. Proc. Natl. Acad. Sci. USA 95: 5145 5149.
113. Sullivan, J. T.,, J. R. Trzebiatowski,, R. W. Cruickshank,, J. Gouzy,, S. D. Brown,, R. M. Elliot,, D. J. Fleetwood,, N. G. McCallum,, U. Rossbach,, G. S. Stuart,, J. E. Weaver,, R. J. Webby,, F. J. de Bruijn,, and C. W, Ronson. 2002. Comparative sequence analysis of the symbiosis island of Mesorbizobmm loti strain R7A. J. Bacteriol. 184: 3086 3095.
114. Suzuki, K.,, Y. Hattori,, M. Uraji,, N. Ohta,, K. Iwata,, K. Murata,, A. Katoh,, and K. Yoshida. 2000. Complete nucleotide sequence of a plant tumor-inducing Ti plasmid. Gene 242: 331 336.
115. Tabata, S.,, P. J. J. Hooykaas,, and A. Oka. 1989. Sequence determination and characterization of the replicator region in the tumor-inducing plasmid pTiB6S3. J. Bacteriol. 171: 1665 1672.
116. Timmers, A. C.,, E. Soupene,, M. C. Auriac,, F. de Billy,, J. Vasse,, P. Boistard,, and G. Truchet. 2000. Saprophytic intracellular rhizobia in alfalfa nodules. Mol. Plant-Microbe Interact. 13: 1204 1213.
117. Tomalsky, M. E.,, S. Colloms,, G. Blakely,, and D.J. Sherratt. 2000. Stability by multimer resolution of pJHCMW1 is due to the Tn 1331 resolvase and not to the Escherichia coli Xer system. Microbiology 146: 581 589.
118. Tun-Garrido, C.,, P. Bustos,, V. Gonzalez,, and S. Brom. 2003. Conjugative transfer of p42a from Rhizobium etli CFN42, which is required for mobilization of the symbiotic plasmid, is regulated by quorum sensing. J. Bacteriol. 185: 1681 1692.
119. Turner, S. L.,, L. Rigottier-Gois,, R. S. Power,, N. Amarger,, and J. P. W. Young. 1996. Diversity of repC plasmid-replication sequences in Rhizobium leguminosarum. Microbiology 142: 1705 1713.
120. Turner, S. L.,, and J. P. W. Young. 1995. The replicator region of the Rhizobium leguminosarum cryptic plasmid pRL8JI. FEMS Microbiol. Lett. 133: 53 58.
121. Turner, S. L.,, and J. P. W. Young. 2001. Evolutionary divergence of the repC family of plasmid replication genes. Plasmid 45: 163 164.
122. Valdes, A. M.,, and D. Piñero. 1992. Phylogenetic estimation of plasmid exchange in bacteria. Evolution 46: 641 656.
123. Valencia-Morales, E.,, and D. Romero. 2000. Recombination enhancement by replication (RER) in Rhizobium etli. Genetics 154: 971 983.
124. Van Berkum, P.,, and B. D. Eardly,. 1998. Molecular evolutionary systematics of the Rhizobiaceae, p. 1 24. In H. P. Spaink,, A. Kondorosi,, and P. J. J. Hooykaas (ed.), The Rhizobiaceae: Molecular Biology of Model Plant-Associated Bacteria. Kluwer Academic Publishers, Amsterdam, The Netherlands.
125. Van Borm, S.,, A. Buschinger,, J. J. Boomsma,, and J. Billen. 2002. Tetraponera ants have gut symbionts related to nitrogen- fixing root-nodule bacteria. Proc. Roy. Soc. Lond. B 269: 2023 2027.
126. Velazquez, E.,, J. M. Igual,, A. Willems,, M. P. Fernandez,, E. Muñoz,, P. F. Mateos,, A. Abril,, N. Toro,, P. Normand,, E. Cervantes,, M. Gillis,, and E. Martinez-Molina. 2001. Mesorhizobium chacoense sp. nov., a novel species that nodulates Prosopis alba in the Chaco Arido region (Argentina). Int. J. Syst. Evol. Microbiol. 51: 1011 1021.
127. Viprey, V.,, A. Del Greco,, W. Golinowski,, W. J. Broughton,, and X. Perret. 1998. Symbiotic implications of type III protein secretion machinery in Rhizobium. Mol. Microbiol. 28: 1381 1389.
128. Wang, E. T.,, J. Martinez-Romero,, and E. Martinez-Romero. 1999. Genetic diversity of rhizobia from Leucaena leucocephala nodules in Mexican soils. Mol. Ecol. 8: 711 724.
129. Wang, E. T.,, M. A. Rogel,, A. Garcia-de los Santos,, J. Martinez- Romero,, M. A. Cevallos,, and E. Martinez-Romero. 1999 , Rhizobium etli bv. mimosae, a novel biovar isolated from Mimosa affinis. Int. J. Syst. Bacteriol. 49: 1479 1491.
130. Wang, E.-T.,, Z. Y. Tan,, A. Willems,, M. Fernandez-Lopez,, B. Reinhold-Hurek,, and E. Martinez-Romero. 2002. Sinorhizobium morelense sp. nov., a Leucaena leucocephala-associated bacterium that is highly resistant to multiple antibiotics. Int. J. Syst. Evol. Microbiol. 52: 1687 1693.
131. Wang, E. T.,, P. Van Berkum,, D. Beyene,, X. H. Sui,, O. Dorado,, W. X. Chen,, and E. Martinez-Romero. 1998. Rhizobium huautlense sp. nov., a symbiont of Sesbania herbacea that has a close phylogenetic relationship with Rhizobium galegae. Int. J. Syst. Bacteriol. 48: 687 699.
132. Wang, E. T.,, P. Van Berkum,, X. H. Sui,, D. Beyene,, W. X. Chen,, and E. Martinez-Romero. 1999. Diversity of rhizobia associated with Amorpha fruticosa isolated from chinese soils and description of Mesorhizohium amorpbae sp. nov. Int. J. Syst. Bacteriol. 49: 51 65.
133. Wernergreen, J. J.,, and M. A. Riley. 1999. Comparison of the evolutionary dynamics of symbiotic and housekeeping loci: a case for the genetic coherence of rhizobial lineages. Mol. Biol. Evol. 16: 98 t13.
134. Wilkinson, A.,, V. Danino,, F. Wisniewski-Dye,, J. K. Lithgow,, and J. A. Downie. 2002. N-acyl-homoserine lactone inhibition of rhizobial growth is mediated by two quorum-sensing genes that regulate plasmid transfer. J. Bacteriol. 184: 4510 4519.
135. Wood, D. W.,, J. C. Setubal,, R. Kaul,, D. E. Monks,, J. P. Kitajima,, V. K. Okura,, Y. Zhou,, L. Chen,, G. E. Wood,, N. F. Almeida Jr,., L. Woo,, Y. Chen,, I. T. Paulsen,, J. A. Eisen,, P. D. Karp,, D. Bovee Sr.,, P. Chapman,, J. Clendenning,, G. Deatherage,, W. Gillet,, C. Grant,, T. Kutyavin,, R. Levy,, M. J. Li,, E. McClelland,, A. Palmieri,, C. Raymond,, G. Rouse,, C. Saenphimmachak,, Z. Wu,, P. Romero,, D. Gordon,, S. Zhang,, H. Yoo,, Y. Tao,, P. Biddle,, M. Jung,, W. Krespan,, M. Perry,, B. Gordon-Kamm,, L. Liao,, S. Kim,, C. Hendrick,, Z. Y. Zhao,, M. Dolan,, F. Chumley,, S. V. Tingey,, J. F. Tomb,, M. P. Gordon,, M. V. Olson,, and E. W. Nester, 2001. The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science 294: 2317 2323.
136. Young, J. M.,, L. D. Kuykendall,, E. Martinez-Romero,, A. Kerr,, and H. Sawada. 2001. A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudic et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. Int. J. Syst. Evol. MicrobioL 51: 89 103.
137. Young, J. P. W.,, and M. Wexler. 1988. Sym plasmid and chromosomal genotypes arc correlated in field populations of Rhizobium leguminosarum. J. Gen. Microbiol. 134: 2731 2739.
138. Zechner, E. L.,, F. De la Cruz,, R. Eisenbrandt,, A. M. Grahn,, G. Koraimann,, E. Lanka,, G. Muth,, W. Pansegrau,, C. M. Thomas,, B. M. Wilkins,, and M. Zatyka. 2000. Conjugative DNA transfer processes, p. 87 174. In C. M. Thomas (ed.), The Horizontal Gene Pool: Bacterial Plasmids and Gene Spread. Harwood Academic Publishers, Amsterdam, The Netherlands.
139. Zhang, X.-X.,, B. Kosier,, and U. B. Priefer. 2001. Symbiotic plasmid rearrangement in Rhizobium leguminosarum bv. viciae VF39SM. J. Bacteriol. 183: 2141 2144.
140. Zhu, J.,, P. M. Oger,, B. Schrammeijer,, P. J. J. Hooykaas,, S. K. Farrand,, and S. C Winans. 2000. The bases of crown gall tumorigenesis. J. Bacteriol. 182: 3885 3895.

Tables

Generic image for table
Table 1

Distribution of symbiotic plasmids (pSyms) in the family

Citation: Romero D, Brom S. 2004. The Symbiotic Plasmids of the , p 271-290. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch12
Generic image for table
Table 2

replicons in the family

Citation: Romero D, Brom S. 2004. The Symbiotic Plasmids of the , p 271-290. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch12

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error