Chapter 14 : The 2μm Plasmid of

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

The 2μm Plasmid of , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817732/9781555812652_Chap14-1.gif /docserver/preview/fulltext/10.1128/9781555817732/9781555812652_Chap14-2.gif


The first part of this chapter is devoted to the 2µm circle partitioning system, a critical component of the plasmid's strategy for stable maintenance in yeast populations. The second part deals with plasmid copy number control, special attention being paid to the Flp recombination system that is believed to trigger a DNA amplification process. The chapter compares the 2µm plasmid with 2µm-like plasmids found in yeast and dwells briefly on the degree and the significance of conservation of structure and function among them. Binary fluorescence tagging of two separate plasmids in the same cell by using cyan fluorescence protein (CFP)-Lac repressor/Lac operators in one case and yellow fluorescent protein (YFP)-Tet repressor/Tet operators in the other is also feasible. Chromatin immunoprecipitation assays revealed that the integral cohesin component Mcd1p associates specifically with the STB DNA in a Rep1p- and Rep2p-dependent manner. Rank and colleagues have characterized 2µm plasmids from several amphiploid industrial strains of and analyzed their sequence divergence with respect to plasmids from standard haploid laboratory strains. The Flp-FRT site-specific recombination system complements the partitioning system in the dual strategy by which stable high-copy maintenance of the 2μm plasmid is achieved. Plasmids lacking STB tend to dissociate from these sites and wander toward the nuclear periphery. These observations would be in line with the models for plasmid segregation considered in this chapter.

Citation: Jayaram M, Yang X, Mehta S, Voziyanov Y, Velmurugan S. 2004. The 2μm Plasmid of , p 303-324. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch14

Key Concept Ranking

DNA Synthesis
Genetic Recombination
Type IB Topoisomerase
Origin Recognition Complex
Type IB Topoisomerase
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Structural and functional organization of the 2μm plasmid. (A) The double-stranded circular plasmid is shown in the standard dumbbell form in which it is normally represented. The parallel lines (the handle of the dumbbell) indicate the inverted repeats (IRs) of the plasmid. The open reading frames are highlighted, with the arrowheads pointing in the direction of their transcription. The cis-acting DNA elements in the plasmid are the replication origin (ORI), the partitioning locus (.STB), and the Flp recombination target sites (FRT). (B) The STB element, contained between the indicated PstI and sites, can be subdivided into two regions: proximal and distal with respect to STB-proximal contains the tandem array of five to six copies of a 62-bp consensus sequence and is central to plasmid partitioning. STB-distal is important in maintaining the “active configuration” of .STB-proximal, which is subject to context effects. Two plasmid transcripts (,650 nucleotides [nt], 700 nt) directed toward the OR/ are terminated within .STB-distal. A third transcript ,950 nt) runs in the opposite direction and traverses the STB-distal region. The shaded box within .STB-distal represents a “silencer sequence” that can suppress the activity of a promoter placed in its vicinity in an orientation-independent manner ( ). It is believed that the directional termination of transcription within .STB-distal is required for the functional integrity of the partitioning locus. (C) The site consists of three 13-bp Hp-binding elements, la, I′a, and I′b, whose orientations are denoted by the horizontal arrows. The elements la and I′a, together with the 8-bp spacer region included between them, constitute the sequences directly relevant to the recombination reaction (the minimal site). The points at which strand cleavage and exchange occur arc indicated by the vertical arrows.

Citation: Jayaram M, Yang X, Mehta S, Voziyanov Y, Velmurugan S. 2004. The 2μm Plasmid of , p 303-324. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Requirement of the Rep proteins and spindle integrity for plasmid compactness. In the Z-series confocal microscopy, 20 consecutive sections (each 0.25 μm in thickness) are scanned. Every alternate section is shown here. The top row shows the pattern of an STB-containing reporter plasmid in a [cir+] strain (Rep1 and Rep2 proteins derived from the native 2um circles). Note the increase in the width of the plasmid residence zone in the absence of the Rep proteins ([cir+]; bottom row) or the absence of an intact spindle even when the Rep proteins are present ([cir+] treated with nocodazole; middle row).

Citation: Jayaram M, Yang X, Mehta S, Voziyanov Y, Velmurugan S. 2004. The 2μm Plasmid of , p 303-324. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Association of the yeast cohesin complex with the 2u.m plasmid. The chromatin immunoprecipitations are done with antibodies to the cohesin component Mcd1p fused to the HA epitope. The lanes are arranged as the positive controls WCF. (whole cell extract), the experimental samples (ChIP), and the mock-precipitated negative controls (beads only). (A) Mcd1p associates with STB and a cohesin-binding site on chromosome V (lane 2) but not with an ARS sequence (lane 5). (B) Mcd1p- STB association in a [cir0] strain does not occur in the presence of Rep1p alone (lane 2) or Rep2p alone (lane 5) but requires the presence of both proteins (lane 8). (C) When integral cohesin components Smc1p and Smc3p are inactivated by T mutations, Med I p fails to bind to STB, as it does to a chromosomal binding site (compare lane 2 to lane 5 and lane 8 to lane 11).

Citation: Jayaram M, Yang X, Mehta S, Voziyanov Y, Velmurugan S. 2004. The 2μm Plasmid of , p 303-324. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Recruitment of the cohesin complex by the 2μm plasmid as a function of the cell cycle. Cells arrested in GI by a factor are released from pheromone arrest at time zero and followed by chromatin immunoprecipitation (using Mcd1p-directed antibodies), light microscopy (DIC), and FACS analysis. During each cell cycle, association of cohesin with the STB element occurs early in S phase and lasts until late G2/M. Note the nearly perfect synchrony between the chromosomes and the plasmid in cohesin association and dissociation.

Citation: Jayaram M, Yang X, Mehta S, Voziyanov Y, Velmurugan S. 2004. The 2μm Plasmid of , p 303-324. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Noncleavable Mcd1p blocks the separation of duplicated plasmid clusters. Small budded cells harboring a copy of the native MCD1 gene and one of the noncleavable version (MCD1-nc) under GAL promoter are transferred from dextrose to galactose at time zero. They are followed for 150 min by time-lapse fluorescence microscopy to monitor a tagged chromosome (top two rows), an STB reporter plasmid (central two rows), or an ARS plasmid (bottom two rows). Of the 10 cells examined in each case (and arrested at the large budded state), the fractions exhibiting one chromosomal dot versus two dots and one plasmid cluster versus two clusters are indicated.

Citation: Jayaram M, Yang X, Mehta S, Voziyanov Y, Velmurugan S. 2004. The 2μm Plasmid of , p 303-324. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Plausible models for cohesin-mediated 2μm plasmid segregation. (A) The plasmid cluster is bridged by cohesin to its sister cluster following or concomitant with duplication. The two clusters in turn are tethered to a pair of sister chromatids. The tethering agent is unlikely to be cohesin itself. Upon cleavage of Mcd1p, the two clusters ride with the chromosomes to opposite cell poles. (B) The duplicated plasmid clusters are held together by cohesin as in A. However, their migration to opposite cell poles following cohesin disassembly is independent of chromosomes.

Citation: Jayaram M, Yang X, Mehta S, Voziyanov Y, Velmurugan S. 2004. The 2μm Plasmid of , p 303-324. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

A recombination-mediated amplification mechanism proposed by Futcher ( ). Bidirectional replication starting at the origin in a plasmid molecule (a) duplicates the proximal FRT site before the distal one (b). A Flp-mediated inversion (c) results in two replication forks oriented in the same direction (d). Movement of the two forks around the circular template amplifies copy number (e). A second recombination event (f) restores bidirectional fork movement (g). The products of replication are a template copy (i) and an amplified moiety containing multiple tandem copies of the plasmid (h). The tandem multimer can be resolved by Flp recombination into plasmid monomers (j, k). The diagram of the Futcher model shown here follows its representation by Broach and Volkcrt ( ).

Citation: Jayaram M, Yang X, Mehta S, Voziyanov Y, Velmurugan S. 2004. The 2μm Plasmid of , p 303-324. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8
Figure 8

Geometry, chemistry, and dynamics of the Flp recombination reaction. Two DNA substrates (L1RI and L2R2), each bound by two Flp monomers, are brought together in antiparallel orientation with respect to each other. I. and R refer to the left and right DNA arms, with the suffix 1 or 2 indicating substrate 1 or substrate 2, respectively. One active site is assembled on each DNA partner (the left arms, as diagrammed here). Strand cleavage and exchange (indicated by the small arrowheads) result in the formation of the Holliday intermediate H1. During isomerization, the DNA arms flex to produce the H2 geometry. Cleavage pockets are now assembled on the right arms. Strand cutting and exchange resolve H2 into the recombinants L1R2 and L2R1. In reality, the Holliday intermediate of recombination has a nearly square planar configuration. The difference in the angles included between a given DNA arm and its adjacent partners in HI and H2 (between R1 and LI and LI and R2, for example) is exaggerated here to highlight the isomerization step. In the first strand-exchange reaction, an active dimer is formed by Flp monomers bound to the same DNA molecule (two darkly shaded Flps in one case and the two lightly shaded Flps in the other). In the second strand-exchange step, an active dimer is formed between a darkly shaded Flp and a lightly shaded one. The long continuous arcs ending in small circles indicate the catalytically relevant dimer interactions. The corresponding short discontinuous arcs indicate inactive dimer interactions.

Citation: Jayaram M, Yang X, Mehta S, Voziyanov Y, Velmurugan S. 2004. The 2μm Plasmid of , p 303-324. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9
Figure 9

Positive and negative controls of gene expression in the 2μm plasmid. The schematic diagram depicting 2μm circle gene regulation is adapted from Som et al. ( ). The putative bipartite regulator Replp-Rep2p (R1-R2) negatively controls expression of the FLP (Flp), RAF1 (D), and REP1 (Rl). As a result, the level of the R1-R2 repressor is controlled as a function of the copy number, and at steady state, the amplification system is essentially turned off. The product of the RAF1 gene (D) antagonizes RI-R2, permitting rapid triggering of recombination-mediated amplification when plasmid copy number needs a boost. The REP2 locus appears to be free from repression by R1-R2. Aside from their role in controlling plasmid gene expression, the Rep1 and Rep2 proteins interact with the STB DNA to bring about equal segregation of the plasmid molecules at cell division.

Citation: Jayaram M, Yang X, Mehta S, Voziyanov Y, Velmurugan S. 2004. The 2μm Plasmid of , p 303-324. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Ahn, Y. T.,, X. L. Wu,, S. Biswal,, S. Velmurugan,, F. C. Volkert,, and M. Jayaram. 1997. The 2 ��m-plasmid-encoded Rep1 and Rep2 proteins interact with each other and colocalize to the Saccharomyces cerevisiae nucleus. J. Bacteriol. 179:74977506.
2. Aladjcm, M. I.,, L. L. Brody,, S. O'Gorman,, and G. M. Wahl. 1997. Positive selection of FLP-mediated unequal sister chromatid exchange products in mammalian cells. Mol. Cell Biol. 17:857861.
2.a. Ansan, A.,, and M. R. Gartenberg. 1997. The yeast silent information regulator Sir4p anchors and partitions plasmids. Mol Cell Biol 17:70617068.
3. Araki, H.,, A. Jearnpipatkul,, H. Tatsumi,, T. Sakurai,, K. Ushio,, T. Muta,, and Y. Oshima. 1985. Molecular and functional organization of yeast plasmid pSR1. J. Mol. Biol. 182:191203.
4. Azaro, M. A.,, and A. Landy,. 2002. �� integrase and the �� int family, p. 118148. In N. L. Craig,, R. Craigie,, M. Gellert,, and A. M. Lambowitz (ed.), Mobile DNA II ASM Press, Washington, D.C..
5. Ballcstas, M. E.,, P. A. Chatis,, and K. M. Kayc. 1999. Efficient persistence of extrachromosomal KSHV DNA mediated by latency-associated nuclear antigen. Science 284:641644.
6. Bethke, B. D.,, and B. Sauer. 2000. Rapid generation of isogenic mammalian cell lines expressing recombinant transgenes by use of Cre recombinase. Methods Mol. Biol. 133:7584.
7. Biggins, S.,, F. F. Scvcrin,, N. Bhalla,, I. Sassoon,, A. A. Hyman,, and A. W. Murray. 1999. The conserved protein kinase Ipl1 regulates microtubule binding to kinetochores in budding yeast. Genes Dev. 13:532544.
8. Blaisonneau, J.,, F. Sor,, G. Cheret,, D. Yarrow,, and H. Fukuhara. 1997. A circular plasmid from the yeast Torulaspora delbrueckii. Plasmid 38:202209.
9. Blakcly, G.,, and D. Sherratt. 1996. Determinants of selectivity in Xer site-specific recombination. Genes Dev. 10:762773.
10. Breaker, R. R.,, and G. F. Joyce. 1994. Emergence of a replicating species from an in vitro RNA evolution reaction. Proc. Natl. Acad. Sci. USA 91:60936097.
11. Brewer, B. J.,, and W. L. Fangman. 1987. The localization of replication origins on ARS plasmids in S. cerevisiae. Cell 51:463471.
12. Broach, J. R.,, and F. C. Volkert,. 1991. Circular DNA plasmids of yeasts, p. 297331. In J. R. Broach,, J. R. Pringle,, and E. W. Jones (ed.), The Molecular Biology of the Yeast Saccharomyces. Genome Dynamics, Protein Synthesis and Energetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, N.Y..
13. Buchholz, F.,, P. O. Angrand,, and A. F. Stewart. 1998. Improved properties of FLP recombinase evolved by cycling mutagenesis. Nat. Biotechnol. 16:657662.
14. Buchholz, F.,, and A. F. Stewart. 2001. Alteration of Cre recombinase site specificity by substrate-linked protein evolution. Nat. Biotechnol. 19:10471052.
15. Carson, D. R.,, and M. F. Christman. 2001. Evidence that replication fork components catalyze establishment of cohesion between sister chromatids. Proc. Natl. Acad. Sci. USA 98:82708275.
16. Chan, C. S.,, and D. Botstein. 1993. Isolation and characterization of chromosome-gain and increase-in-ploidy mutants in yeast. Genetics 135:677691.
17. Chen, J. W.,, B. R. Evans,, S. H. Yang,, H. Araki,, Y. Oshima,, and M. Jayaram. 1992. Functional analysis of box I mutations in yeast site-specific recombinases Flp and R: pairwisc complementation with recombinase variants lacking the active-site tyrosine. Mol. Cell. Biol. 12:37573765.
18. Chen, J. W.,, J. Lee,, and M. Jayaram. 1992. DNA cleavage in trans by the active site tyrosine during Flp recombination: switching protein partners before exchanging strands. Cell 69:647658.
19. Chen, X. J.,, M. Saliola,, C. Falcone,, M. M. Bianchi,, and H. Fukuhara. 1986. Sequence organization of the circular pinsmid pKD1 from the yeast Kluyveromyces drosophilarum. Nucleic Acids Res. 14:44714481.
20. Chen, Y.,, U. Narendra,, L. E. Iype,, M. M. Cox,, and P. A. Rice. 2000. Crystal structure of a Flp recombinase-Holliday junction complex: assembly of an active oligomer by helix swapping. Mol Cell 6:885897.
21. Cotter, M. A. 2nd,, and E. S. Robertson. 1999. The latency-associated nuclear antigen tethers the Kaposi's sarcoma-associated herpesvirus genome to host chromosomes in body cavity-based lymphoma cells. Virology 264:254264.
22. Cox, M. M., 1989. DNA inversion in the 2 micron plasmid of Saccharomyces cerevisiae, p. 661670. In D. E. Berg, and M. M. Howe (ed.), Mobile DNA. ASM Press, Washington, D.C..
23. Dobson, M.,, A. B. Futcher,, and B. S. Cox. 1980. Loss of 2 micron DNA from Saccbaromyces cerevisiae transformed with the chimaeric plasmid pJDB219. Curr. Genet. 2:201205.
24. Dohcny, K. F.,, P. K. Sorger,, A. A. Hyman,, S. Tugendreich,, F. Spencer,, and P. Hieter. 1993. Identification of essential components of the S. cerevisiae kinetochore. Cell 73:761774.
25. Esposito, D.,, and J. J. Scocca. 1997. The integrase family of tyrosine recombinases: evolution of a conserved active site domain. Nucleic Acids Res. 25:36053614.
26. Fagrelius, T. J.,, A. D. Strand,, and D. M. Livingston. 1987. Changes in the DNase 1 sensitivity of DNA sequences within the yeast 2 micron plasmid nucleoprotein complex effected by plasmid-encoded products. J. Mol. Biol. 197:415423.
27. Freeman, L.,, L. Aragon-Alcaide,, and A. Strunnikov. 2000. The condensin complex governs chromosome condensation and mitotic transmission of rDNA. J. Cel. Biol. 149:811824.
28. Futcher, A. B. 1988. The 2 micron circle plasmid of Saccharomyces cerevisiae. Yeast 4:2740.
29. Futcher, A. B. 1986. Copy number amplification of the 2 micron circle plasmid of Saccharomyces cerevisiae. J. Theor. Biol 119:197204.
30. Futcher, A. B.,, and B. S. Cox. 1984. Copy number and the stability of 2-micron circle-based artificial plasmids of Saccharomyces cerevisiae. J. Bacteriol 157:283290.
31. Futcher, A. B.,, and B. S. Cox. 1983. Maintenance of the 2 microns circle plasmid in populations of Saccharomyces cerevisiae. J. Bacteriol. 154:612622.
32. Gates, C. A.,, and M. M. Cox. 1988. FLP recombinase is an enzyme. Proc. Natl Acad. Sci. USA 85:46281632.
33. Goh, P. Y.,, and J. V. Kilmartin. 1993. NDC1O: a gene involved in chromosome segregation in Saccharomyces cerevisiae. J. Cell Biol. 121:503512.
34. Golic, K. G.,, and M. M. Colic. 1996. Engineering the Drosophila genome: chromosome rearrangements by design. Genetics 144:16931711.
35. Golic, K. G.,, and S. Lindquist. 1989. The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell 59:499509.
36. Golic, M. M.,, Y. S. Rong,, R. B. Petersen,, S. L. Lindquist,, and K. G. Golic. 1997. FLP-mediated DNA mobilization to specific target sites in Drosophila chromosomes. Nucleic Acids Res. 25:36653671.
37. Gopaul, D. N.,, and G. D. Duyne. 1999. Structure and mechanism in site-specific recombination. Curr. Opin. Struct. Biol. 9:1420.
38. Gopaul, D. N.,, F. Guo,, and G. D. Van Duyne. 1998. Structure of the Holliday junction intermediate in Cre-loxP site-specific recombination. EMBO J. 17:4175187.
39. Grindley, N. D. 1997. Site-specific recombination: synapsis and strand exchange revealed. Curr. Biol 7:608612,
39.a. Grunwellcr, A.,, and A. E. Ehrenhofer-Murray. 2002. A novel yeast silencer: the 2��m origin of Saccharomyces cerevisiae has HST3-, M1G1- and SIR-dependent silencing activity. Genetics 162:5971.
40. Guo, F.,, D. N. Gopaul,, and G. D. Van Duyne. 1999. Assymetric DNA-bending in the Cre-loxP site-specific recombination synapse. Proc. Natl. Acad. Sci. USA 96: 71437148.
41. Guo, F.,, D. N. Gopaul,, and G. D. Van Duyne. 1997. Structure of Cre recombinase complexed with DNA in a site-specific recombinase synapse. Nature 389:4046.
42. Hadfield, C.,, R. C. Mount,, and A. M. Cashmore. 1995. Protein binding interactions at the STB locus of the yeast 2 micron plasmid. Nucleic Acids Res. 23:9951002.
43. Harford, M. N.,, and M. Peeters. 1987. Curing of endogenous 2 micron DNA in yeast by recombinant vectors. Curr. Genet. 11:315319.
44. Harris, A.,, B. D. Young,, and B. E. Griffin. 1985. Random association of Epstein-Barr virus genomes with host cell metaphase chromosomes in Burkitt's lymphoma-derived cell lines. J. Virol. 56:328332.
45. Hoang, T. T.,, R. R. Karkhoff-Schwcizcr,, A. J. Kutchma,, and H. P. Schwcizer. 1998. A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomaIly-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212:7786.
46. Hoang, T. T.,, A. J. Kutchma,, A. Becher,, and H. P. Schweizer. 2000. Integration-proficient plasmids for Pseudomonas aeruginosa: site-specific integration and use for engineering of reporter and expression strains. Plasmid 43:5972.
47. Holm, C. 1982. Clonal lethality caused by the yeast plasmid 2 ��m DNA. Cell 29:585594.
48. Hsu, J. Y.,, Z. W. Sun,, X. Li,, M. Reuben,, K. Tatchcll,, D. K. Bishop,, J. M. Grushcow,, C. J. Brame,, J. A. Caldwell,, D. F. Hunt,, R. Lin,, M. M. Smith,, and C. D. Allis. 2000. Mitotic phosphorylation of histone H3 is governed by Ipl1/aurora kinase and Glc7/PP1 phosphatase in budding yeast and nematodes. Cell 102:279291.
49. Huang, L. C.,, E. A. Wood,, and M. M. Cox. 1991. A bacterial model system for chromosomal targeting. Nucleic Acids Res. 19:443448.
50. Huang, L. C.,, E. A. Wood,, and M. M. Cox. 1997. Convenient and reversible site-specific targeting of exogenous DNA into a bacterial chromosome by use of the FLP recombinase: the FLIRT system. J. Bacteriol. 179:60766083.
51. Huberman, J. A.,, L. D. Spotila,, K. A. Nawotka,, S. M. el- Assouli,, and L. R. Davis. 1987. The in vivo replication origin of the yeast 2 micron plasmid. Cell 51:473481.
52. Ilves, I.,, S. Kivi,, and M. Ustav. 1999. Long-term episomal maintenance of bovine papillomavirus type 1 plasmids is determined by attachment to host chromosomes, which Is mediated by the viral E2 protein and its binding sites. J. Virol. 73:44044412.
53. Iyer, V. R.,, C. E. Horak,, C. S. Scafe,, D. Botstein,, M. Snyder,, and P. O. Brown. 2001. Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature 409:533538.
54. Jankc, C.,, J. Ortiz,, J. Lechner,, A. Shevchcnko,, M. M. Magiera,, C. Schramm,, and E. Schiebel. 2001. The budding yeast proteins Spc24p and Spc25p interact with Ndc80p and Nuf2p at the kinetochore and are important for kinetochore clustering and checkpoint control. EMBO J. 20:777791.
55. Jayaram, M. 1985. Two-micrometer circle site-specific recombination: the minimal substrate and the possible role of flanking sequences. Proc. Natl. Acad. Sci. USA 82:58755879.
56. Jayaram, M.,, Y. Y. Li,, and J . R. Broach. 1983. The yeast plasmid 2 mm circle encodes components required for its high copy propagation. Cell 34:95104.
57. Jayaram, M.,, A. Sutton,, and J. R. Broach. 1985. Properties of REP3: a cis-acting locus required for stable propagation of the Saccharomyces cerevisiae plasmid 2 micron circle. Mol. Cell Biol. 5:24662475.
58. Jayaram, M.,, G. Tribble,, and I. Graingc,. 2002. Site-specific recombination by the Flp protein of Saccharomyces cerevisiae, p. 192218. In N. L. Craig,, R. Craigie,, M. Gellert,, and A. M. Lambowitz (ed.), Mobile DNA II. ASM Press, Washington, D.C..
59. Jiang, W.,, and J. Carbon. 1993. Molecular analysis of the budding yeast centromere/kinetochore. Cold Spring Harbor Symp. Quant. Biol. 58:669676.
60. Jiang, W.,, J. Lechner,, and J. Carbon. 1993. Isolation and characterization of a gene (CBF2) specifying a protein component of the budding yeast kinetochore. J. Cell Biol. 121:513519.
61. Kado, C. I. 1998. Origin and evolution of plasmids. Antonic Leeuwenhoek 73:117126.
62. Kanda, T.,, M. Otter,, and G. M. Wahl. 2001. Coupling of mitotic chromosome tethering and replication competence in epstein-barr virus-based plasmids. Mol. Cell Biol. 21:35763588.
63. Kang, J.,, I. M. Cheeseman,, G. Kallstrom,, S. Velmurugan,, G. Barnes,, and C. S. Chan. 2001. Functional cooperation of Daml, Ipl1, and the inner centromere protein (INCENP)-related protein Sli l5 during chromosome segregation. J. Cell Biol. 155:763774.
64. Kapoor, P.,, K. Shire,, and L. Frappier. 2001. Reconstitution of Epstein-Barr virus-based plasmid partitioning in budding yeast. EMBO J. 20:222230.
65. Kikuchi, Y. 1983. Yeast plasmid requires a cis-acting locus and two plasmid proteins for its stable maintenance. Cell 35:487493.
66. Kim, J. H.,, J. S. Kang,, and C. S. Chan. 1999. Sli15 associates with the ipl1 protein kinase to promote proper chromosome segregation in Saccharomyces cerevisiae. J. Cell Biol. 145: 13811394.
66a.. Kimmerly, W. J.,, and J. Rinc. 1987. Replication and segregation of plasmids containing cis-acting regulatory sites of silent mating-type genes in Saccharomyces cerevisiae arc controlled by the SIR genes. Mol. Cell Biol. 7:42254237.
67. Lavoie, B. D.,, K. M. Tuffo,, S. Oh,, D. Koshland,, and C. Holm. 2000. Mitotic chromosome condensation requires Brn1p, the yeast homologue of Barren. Mol. Biol Cell 11:12931304.
68. Lee, J.,, M. Jayaram,, and L. Grainge. 1999. Wild-type Flp recombinase cleaves DNA in trans. EMBO J . 18:784791.
69. Lehman, C. W.,, and M. R. Botchan. 1998. Segregation of viral plasmids depends on tethering to chromosomes and is regulated by phosphorylation. Proc. Natl. Acad. Sci. USA 95:43384343.
70. Li, S. J.,, and M. Hochstrasser. 1999. A new protease required for cell-cycle progression in yeast. Nature 398:246251.
71. Lloyd, A. M.,, and R. W. Davis. 1994. Functional expression of the yeast FLP/FRT site-specific recombination system in Nicotiana tabacum. Mol. Gen. Genet. 242:653657.
72. Logic, C.,, and A. F. Stewart. 1995. Ligand-regulated site-specific recombination. Proc. Natl. Acad. Sci. USA 92:59405944.
72a. Longtine, M. S.,, S. Enomoto,, S. L. Finstad,, and J. Bcrinan. 1993. Telomere-mediated plasmid segregation in Saccharomyces cerevisiae involves gene products required for transcriptional repression at silencers and telomeres. Genetics 133:171182.
72b. Longtine, M. S.,, S. Enomoto,, S. L. Finstad,, and J. Berman. 1992. Yeast telomere repeat sequence (TRS) improves circular plasmid segregation, and TRS plasmid segregation involves the RAP1 gene product. Mol. Cell Biol. 12:19972009.
73. Lyznik, L. A.,, K. V. Rao,, and T. K. Hodges. 1996. FLP-mediated recombination of FRT sites in the maize genome. Nucleic Acids Res. 24:37843789.
74. Mead, D. J.,, D. C. Gardner,, and S. G. Oliver. 1986. The yeast 2 micron plasmid: strategies for the survival of a selfish DNA. Mol. Gen. Genet. 205:417421.
75. Mehta, S. V.,, X. M. Yang,, C. S, Chan, M. J. Dobson, M. Jayaram, and S. Velmurugan. 2002. The 2 micron plasmid purloins the yeast cohesin complex: a mechanism for coupling plasmid partitioning and chromosome segregation? J. Cell Biol. 158: 625637.
76. Murray, A. W.,, and J. W. Szostak. 1983. Pedigree analysis of plasmid segregation in yeast. Cell 34:961970.
77. Murray, J. A.,, and G. Ccsareni. 1986. Functional analysis of the yeast plasmid partitioning locus STB. EMBO J. 5:33913400.
78. Murray, J. A.,, G. Ccsareni,, and P. Argos. 1988. Unexpected divergence and molecular coevolution in yeast plasmids. J. Mol. Biol. 200:601607.
79. Nash, H. A., 1996. Site-specific recombination: integration, excision, resolution, and inversion of defined DNA segments, p. 23632376. In F. C. Neidhart (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed., vol. 2. ASM Press, Washington, D.C..
80. Nunes-Duby, S.,, R. S. Tirumalai,, L. Dorgai,, E. Yagil,, R. Wcisbcrg,, and A. Landy. 1994. Lambda integrase cleaves DNA in cis. EMBO J. 13:4421430.
81. Nunes-Duby, S. E.,, H. J. Kwon,, R. S. Tirumalai,, T. Ellenberger,, and A. Landy. 1998. Similarities and differences among 105 members of the Int family of site-specific recombinases. Nucleic Acids Res. 26:391406.
82. O'Gorman, S.,, D. T. Fox,, and G. M. Wahl. 1991. Recombinase-mediated gene activation and site-specific integration in mammalian cells. Science 251:13511355.
83. O'Gorman, S.,, and G. M. Wahl 1997. Mouse engineering. Science 277:1025.
84. Ouspenski, I. I.,, O. A. Cabello,, and B. R. Brinklcy. 2000. Chromosome condensation factor Brn1 p is required for chromatid separation in mitosis. Mol. Biol. Cell 11:13051313.
85. Ouspenski, I. I.,, S. J. Elledge,, and B. R. Brinklcy. 1999. New yeast genes important for chromosome integrity and segregation identified by dosage effects on genome stability. Nucleic Acids Res. 27:30013008.
86. Petes, T. D.,, and D. H. Williamson. 1994. A novel structural form of the 2 micron plasmid of the yeast Saccharomyces cerevisiae. Yeast 10:13411345.
87. Pingoud, A.,, and A. Jeltsch. 2001. Structure and function of type II restriction endonucleases. Nucleic Acids Res. 29: 37053727.
88. Rank, G. H.,, W. Xiao,, and G. M. Arndt. 1994. Evidence for Darwinian selection of the 2-micron plasmid STB locus in Saccharomyces cerevisiae. Genome 37:1218.
89. Rank, G. H.,, W. Xiao,, and L. E. Pelcher. 1994. Transpogenes: the transposition-like integration of short sequence DNA into the yeast 2 micron plasmid creates the STB locus and plasmid-size polymorphism. Gene 147:5561.
90. Reynolds, A., E. A. W. Murray,, and J. W. Szostak. 1987. Roles of the 2 micron gene products in stable maintenance of the 2 micron plasmid of Saccharomyces cerevisiae. Mol. Cell. Biol. 7:35663573.
91. Robinett, C. C.,, A. Straight,, G. Li,, C. Willhcltm,, G. Sudlow,, A. Murray,, and A. S. Belmont. 1996. In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J. Cell Biol. 135:16851700.
92. Russell, I. D.,, A. S. Grancell,, and P. K. Sorgcr. 1999. The unstable F-box protein p58-Ctf13 forms the structural core of the CBF3 kinetochore complex. J. Cell Biol. 145:933950.
93. Sadowski, P. D. 1993. Site-specific genetic recombination: hops, flips, and flops. FASEB J. 7:760767.
94. Santoro, S. W., and P. G. Schultz. 2002. Directed evolution of the site specificity of Cre recombinase. Proc. Natl. Acad. Sci. USA 99:41854190.
95. Schweizer, H. P. 1998. Intrinsic resistance to inhibitors of fatty acid biosynthesis in Pseudomonas aeruginosa is due to efflux: application of a novel technique for generation of unmarked chromosomal mutations for the study of efflux systems. Antimicrob. Agents Chemother. 42:394398.
96. Scott-Drew, S.,, and J. A. Murray. 1998. Localisation and interaction of the protein components of the yeast 2 ��m circle plasmid partitioning system suggest a mechanism for plasmid inheritance. J. Cell Sci. 111:17791789.
97. Sengupta, A.,, K. Blomqvist,, A. J. Pickett,, Y. Zhang,, J. S. Chew,, and M. J. Dobson. 2001. Functional domains of yeast plasmid-encoded Rep proteins. J. Bacteriol 183:23062315.
98. Sinclair, D. A.,, and L. Guarente. 1997. Extrachromosomal rDNA circles—a cause of aging in yeast. Cell 91:10331042.
99. Skiadopoulos, M. H.,, and A. A. McBridc. 1998. Bovine papillomavirus type 1 genomes and the E2 transactivator protein are closely associated with mitotic chromatin. J. Virol. 72:20792088.
100. Skibbens, R. V.,, L. B. Corson,, D. Koshland,, and P. Hieter. 1999. Ctf7p is essential for sister chromatid cohesion and links mitotic chromosome structure to the DNA replication machinery. Genes Dev. 13:307319.
101. Sleep, D.,, C. Finnis,, A. Turner, and L, Evans. 2001. Yeast 2 ��m plasmid copy number is elevated by a mutation in the nuclear gene UBC4. Yeast 18:403421.
102. Som, T.,, K. A. Armstrong,, F. C. Volkcrt,, and J. R. Broach. 1988. Autoregulation of 2 micron circle gene expression provides a model for maintenance of stable plasmid copy levels. Cell 52:2737.
103. Sonti, R. V.,, A. F. Tissier,, D. Wong,, J. F. Viret,, and E. R. Signer. 1995. Activity of the yeast FLP recombinase in Arabidopsis. Plant Mol. Biol. 28:11271132.
104. Straight, A. F.,, W. F. Marshall,, J. W. Sedat,, and A. W. Murray. 1997. Mitosis in living budding yeast: anaphase A but no metaphase plate. Science 277:574578.
105. Struhl, G.,, and K. Basler. 1993. Organizing activity of wingless protein in Drosophila. Cell 72:527540.
106. Strunnikov, A. V.,, L. Aravind,, and E. V. Koonin. 2001. Saccharomyces cerevisiae SMT4 encodes an evolutionarily conserved protease with a role in chromosome condensation regulation. Genetics 158:95107.
107. Subramanya, H. S.,, L. K. Arciszcwska,, R. A. Baker,, L. E. Bird,, D.J. Sherratt,, and D. B. Wiglcy. 1997. Crystal structure of the site-specific recombinase, XerD. EMBO J. 16:51785187.
108. Sun, J.,, and J. Tower. 1999. FLP recombinase-mediated induction of Cu/Zn-superoxide dismutase transgene expression can extend the life span of adult Drosophila melanogaster flies. Mol. Cell. Biol. 19:216228.
109. Tanaka, T.,, M. P. Cosma,, K. Wirth,, and K. Nasmyth. 1999. Identification of cohesin association sites at centromeres and along chromosome arms. Cell 98:847858.
110. Tanaka, T. U.,, N. Rachidi,, C. Jankc,, G. Pereira,, M. Galova,, E. Schicbcl,, M. J. Stark,, and K. Nasmyth. 2002. Evidence that the Ipl1 -Slil5 (aurora kinase-INCENP) complex promotes chromosome bi-orientation by altering kinetochore-spindlc pole connections. Cell 108:317329.
111. Thcodosiou, N. A.,, and T. Xu. 1998. Use of FLP/FRT system to study Drosophila development. Methods 14:355365.
112. Toh-c, A.,, H. Araki,, I. Utatsu,, and Y. Oshima. 1984. Plasmids resembling 2-��m DNA in the osmotolerant yeasts Saccharomyces bailii and Saccharomyces bisporus. J. Gen. Microbiol. 130:25272534.
113. Toh-c, A.,, S. Tada,, and Y. Oshima. 1982. 2 ��m DNA-likc plasmids in the osmophilic haploid yeast Saccharomyces rouxii. J. Bacteriol. 151:13801390.
114. Toh-c, A.,, and I. Utatsu. 1985. Physical and functional structure of a yeast plasmid, pSB3, isolated from Zygosaccharomyces bisporus. Nucleic Acids Res. 13:42674283.
115. Toh-c, A.,, and R. B. Wickner. 1981. Curing of the 2 ��m DNA plasmid from Saccbaromyces cerevisiae. J. BacterioL 145:14211424.
116. Toth, A.,, R. Ciosk,, F. Uhlmann,, M. Galova,, A. Schlciffer,, and K. Nasmyth. 1999. Yeast cohesin complex requires a conserved protein, Eco1p(Ctf7), to establish cohesion between sister chromatids during DNA replication. Genes Dev. 13:320333.
117. Tsalik, E. L.,, and M. R. Gartenberg. 1998. Curing Saccbaromyces cerevisiae of the 2 micron plasmid by targeted DNA damage. Yeast 14:847852.
118. Uhlmann, F.,, F. Lottspeich,, and K. Nasmyth. 1999. Sistcrchromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Sec1. Nature 400:3742.
119. Uhlmann, F.,, and K. Nasmyth. 1998. Cohesion between sister chromatids must be established during DNA replication. Curr. Biol. 8:10951101.
120. Uhlmann, F.,, D. Wcrnic,, M. A. Poupart,, E. V. Koonin,, and K. Nasmyth. 2000. Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell 103:375386.
121. Utatsu, I.,, T. Imura,, and A. Toh-c. 1988. Possible gene interchange between plasmid and chromosome in yeast. Yeast 4:179190.
122. Utatsu, I.,, S. Sakamoto,, T. Imura,, and A. Toh-c. 1987. Yeast plasmids resembling 2 micron DNA: regional similarities and diversities at the molecular level. J. Bacteriol. 169:55375545.
123. Van Duyne, G. D., 2002. A structural view of tyrosine recombinase site-specific recombination, p. 93117. In N. L. Craig,, R. Craigie,, M. Gellert,, and A. M. Lambowitz (ed.), Mobile DNA II. ASM Press, Washington, D.C..
124. Velmurugan, S.,, Y. T. Ahn,, X. M. Yang,, X. L. Wu,, and M. Jayaram. 1998. The 2 ��m plasmid stability system: analyses of the interactions among plasmid- and host-encoded components. Mol. Cell. Biol. 18:74667477.
125. Velmurugan, S.,, X. M. Yang,, C. S. Chan,, M. Dobson,, and M. Jayaram. 2000. Partitioning of the 2 ��m circle plasmid of Saccharomyces cerevisiae. Functional coordination with chromosome segregation and plasmid-encoded rep protein distribution. J. Cell Biol. 149:553566.
126. Volkert, F. C.,, and J. R. Broach. 1986. Site-specific recombination promotes plasmid amplification in yeast. Cell 46:541550.
127. Voziyanov, Y.,, A. F. Stewart,, and M. Jayaram. 2002. A dual reporter screening system identifies the amino acid at position 82 in Flp site-specific recombinase as a determinant for target specificity. Nucleic Acids Res. 30:16561663.
128. Waite, L. L.,, and M. M. Cox. 1995. A protein dissociation step limits turnover in FLP recombinase-mediated site-specific recombination. J. Biol. Chem. 270:2340923414.
129. Wang, Z.,, I. B. Castano,, A. DeLasPenas,, C. Adams,, and M. F. Christman. 2000. Pol kappa: a DNA polymerase required for sister chromatid cohesion. Science 289:774779.
130. Wigge, P. A.,, O. N. Jensen,, S. Holmes,, S. Soues,, M. Mann,, and J. V. Kilmartin. 1998. Analysis of the Saccharomyces spindle pole by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. J. Cell Biol 141:967977.
131. Wigge, P. A.,, and J. V. Kilmartin. 2001. The Ndc80p complex from Saccharomyces cerevisiae contains conserved centromere components and has a function in chromosome segregation. J. Cell Biol. 152:349360.
131a. Wong, M. C.,, S. R. Scott-Drew,, M. J. Hayes,, P. J. Howard,, and J. A. Murray. 2002. RSC2, encoding a component of the RSC nucleosome remodeling complex, is essential for 2 micron plasmid maintenance in Saccharomyces cerevisiae. Mol. Cell Biol. 22:42184229.
132. Wu, L. C.,, P. A. Fisher,, and J. R. Broach. 1987. A yeast plasmid partitioning protein is a karyoskeletal component. J. Biol. Chem. 262:883891.
133. Xiao, W.,, L. E. Pelcher,, and G. H. Rank. 1991. Evidence for as- and trans-acting element coevolution of the 2-micron circle genome in Saccharomyces cerevisiae. J . Mol. Evol. 32:145152.
134. Xiao, W.,, and G. H. Rank. 1990. An improved method for yeast 2 micron plasmid curing. Gene 88:241245.
135. Xie, Y.,, L. E. Pelcher,, and G. H. Rank. 1994. Chimeric evolution of the 2-micron genome in Saccharomyces cerevisiae. J. Mol. Evol. 38:363368.
136. Xu, C. J.,, Y. T. Ahn,, S. Pathania,, and M. Jayaram. 1998. Flp ribonuclease activities. Mechanistic similarities and contrasts to site-specific DNA recombination. J. Biol. Chem. 273:3059130598.
137. Xu, C. J.,, I. Grainge,, J. Lee,, R. M. Harshey,, and M. Jayaram. 1998. Unveiling two distinct ribonuclease activities and a topoisomerase activity in a site-specific DNA recombinase. Mol. Cell 1:729739.
138. Xu, T.,, and S. D. Harrison. 1994. Mosaic analysis using FLP recombinase. Methods Cell Biol. 44:655681.
139. Xu, Z.,, K. Mitsui,, M. Motizuki,, S. I. Yaguchi,, and K. Tsurugi. 1999. The DLPI mutant of the yeast Saccharomyces cerevisiae with an increased copy number of the 2 micron plasmid shows a shortened lifespan. Mech. Aging Dev. 110:119129.
140. Yang, S. H.,, and M. Jayaram. 1994. Generality of the shared active site among yeast family site-specific recombinases. The R site-specific recombinase follows the Flp paradigm. J. Biol. Chem. 269:1278912796.
141. Zakian, V. A.,, B. J. Brewer,, and W. L. Fangman. 1979. Replication of each copy of the yeast 2 micron DNA plasmid occurs during the S phase. Cell 17:923934.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error