1887

Chapter 15 : Viral Plasmids in Mammalian Cells

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Viral Plasmids in Mammalian Cells, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817732/9781555812652_Chap15-1.gif /docserver/preview/fulltext/10.1128/9781555817732/9781555812652_Chap15-2.gif

Abstract:

Like bacteria and yeast, mammalian cells can harbor plasmids. These double-stranded circular DNA plasmids or episomes are the genomes of DNA viruses. The genomes of Epstein-Barr virus, the related Kaposi's sarcoma-associated (virus human herpesvirus 8), and papillomavirus can persist indefinitely in latently infected cells due to their ability to replicate and stably segregate during cell division, and this chapter focuses on these viruses. Efficient replication from the dyad symmetry (DS) element requires all four Epstein-Barr nuclear antigen (EBNA)1-binding sites as well as the nonamer repeats that flank the EBNA1 sites. EBNA1 is the only viral protein required to replicate and maintain plasmids and EBV episomes and does so through interactions with the 18-bp palindromic sequences present in the family of repeats (FR) and DS elements of . Replication from requires EBNA1 binding to the DS element, but this interaction alone does not activate the origin, as EBNA1 is bound to the DS throughout most of the cell cycle. The transient replication of bovine papillomavirus (BPV) genomes is dependent on the viral E1 and E2 proteins, and no other viral proteins are required. On the basis of this finding, a mouse cell line was developed that stably expressed E1 and E2 and was used to map the -acting requirements for BPV plasmid replication. The latent genomes of several different DNA viruses are stably maintained in mammalian cells as low-copy-number plasmids.

Citation: Frappier L. 2004. Viral Plasmids in Mammalian Cells, p 325-340. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch15

Key Concept Ranking

DNA Synthesis
0.69607574
Human herpesvirus 8
0.4872788
DNA Replication
0.48436514
Memory B Cell
0.48188668
Human herpesvirus 1
0.45551676
0.69607574
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Organization of EBV The positioning of the FR and DS elements in the EBV nucleotide sequence is shown at the top. Below is the nucleotide sequence of the DS clement showing the EBNA1-binding sites 1 to 4 (rectangles), the nonamer repeats (solid arrows), and the 65-bp dyad symmetry sequence (dashed arrows).

Citation: Frappier L. 2004. Viral Plasmids in Mammalian Cells, p 325-340. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Functional regions of the EBV KBNA1 protein. The regions of EBNA1 that are important for the DNA replication, segregation, and transcriptional activation functions are indicated by the shaded boxes; black shaded regions are essential, and lightly shaded regions contribute to but arc not required for the indicated function. DNA linking refers to the ability of EBNA1 dimers bound to the FR and DS elements to interact with each other, thereby linking the elements together. For DNA linking, the region responsible for the most stable KBNAI-FBNA1 interactions is marked by the black shading and the region that mediates less stable interactions is indicated by the light shading.

Citation: Frappier L. 2004. Viral Plasmids in Mammalian Cells, p 325-340. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Model of the segregation of viral episomes by chromosome attachment. EBNA1, LANA, and E2 bind the EBV, KSHV, and BPV viral episomes, respectively, and tether them to the cellular mitotic chromosomes by binding to a cellular protein(s) on the chromosomes. For EBV, the cellular protein EBP2 can serve to attach EBNA1 to mitotic chromosomes. During cell division, the chromosome-bound viral episomes and viral proteins are delivered to the daughter cells along with the cellular chromosomes.

Citation: Frappier L. 2004. Viral Plasmids in Mammalian Cells, p 325-340. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

The BPV origin of replication and its activation. (A) Organization of the BPV origin showing binding sites for El (E1BS) and E2 (E2BS). (B) Schematic representation of El and E2 loading on the BPV minimal origin according to Sanders and Stenlund (110). Arrows indicate the 18-bp palindromic El-binding sequence.

Citation: Frappier L. 2004. Viral Plasmids in Mammalian Cells, p 325-340. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817732.chap15
1. Adams, A. 1987. Replication of latent Epstein-Barr virus genomes. J. Virol. 61: 1743 1746.
2. Ambinder, R. F.,, M. Mullen,. Y. Chang,, G. S. Hayward,, and S. D. Hayward. 1991. Functional domains of Epstein-Barr nuclear antigen EBNA-1 J. Virol. 65: 1466 1478.
3. Ambinder, R. F.,, W. A. Shah,, D. R. Rawlins,, G. S. Hayward,, and S. D. Hayward. 1990. Definition of the sequence requirements for binding of the EBNA-1 protein to its palindromic target sites in Epstein-Barr virus DNA. J. Virol. 64: 2369 2379.
4. Avolio-Hunter, T. M., and L. Frappier. 1998, Mechanistic studies on the DNA linking activity of the Epstein-Barr nuclear antigen 1. Nucleic Acids Res. 26: 4462-– 4470.
5. Avolio-Hunter, T. M.,, P. N. Lewis,, and L. Frappier. 2001. Epstein-Barr nuclear antigen 1 binds and destabilizes nucleosomes at the viral origin of latent DNA replication. Nucleic Acids Res. 29: 3520 3528.
6. Babcock, G. J.,, D. Hochberg,, and 1). A. Thorley-Lawson. 2000. The expression pattern of Epstein-Barr virus latent genes in vivo is dependent upon the differentiation stage of the infected B cell. Immunity 13: 497 506.
7. Ballestas, M. E.,, P. A. Chads,, and K. M. Kaye. 1999. Efficient persistence of extrachromosomal KSHV DNA mediated by latency-associated nuclear antigen. Science 284: 641 644.
8. Ballestas, M. E.,, and K. M. Kaye. 2001. Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen 1 mediates episome persistence through W.s-acting terminal repeat (TR) sequence and specifically binds TR DNA. J. Virol 75: 3250 3258.
9. Bashaw, J. M.,, and J. L. Yates. 2001. Replication from oriP of Epstein-Barr virus requires exact spacing of two bound dimers of EBNA1 which bend DNA. J. Virol. 75: 10603 10611.
10. Batien, N.,, and A. A. McBride. 2000. Interaction of the papillomavirus E2 protein with mitotic chromosomes. Virology 270: 124 134.
11. Berg, M.,, and A. Stenlund. 1997. Functional interactions between papiloomavirus E1 and E2 proteins. J. Virol. 71: 3853 3863.
12. Blitz, I. L.,, and L. A. Laimins. 1991. The 68-kilodalton E1 protein of bovine papillomavirus is a DNA-binding phosphoprotein which associates with the E2 transcriptional activator in vitro. J. Virol. 65: 649 656.
13. Bochkarev, A.,, J. Barwell,. R. Pfuetzner,, E. Bochkareva,, L. Frappier,, and A. M. Edwards. 1996. Crystal structure of the DNA-binding domain of the Epstein-Barr virus origin binding protein, EBNA1, bound to DNA. Cell 84: 791 800.
14. Bochkarev, A.,, J. Barwell,, R. Pfuetzner,, W. Furey,, A. Edwards,, and L. Frappier. 1995. Crystal structure of the DNA-binding domain of the Epstein-Barr virus origin binding protein EBNA1. Cell 83: 39 46.
15. Bochkarev, A.,, E. Bochkareva,, L. Frappier,, and A. M. Edwards. 1998. 2.2A structure of a permanganate-sensitive DNA site bound by the Epstein-Barr virus origin binding protein, EBNA I, J. Mol. Biol. 284: 1273 1278.
16. Bonne-Andrea, C.,, S. Santucci,, and P. Clerant. 1995. Bovine papillomavirus E1 protein can, by itself, efficiently drive multiple rounds of DNA synthesis in vitro. J. Virol. 69: 3201 3205.
17. Ceccarelli, D. F. J.,, and L. Frappier. 2000. Functional analyses of the EBNA1 origin DNA-binding protein of Epstein- Barr virus. J Virol. 74: 4939 4948.
18. Chaudhuri, B.,, H. Xu,, I. Todorov,, A. Dutta,, and J. L. Yates. 2001. Human DNA replication initiation factors, ORC and MCM, associate with oriP of Epstein-Barr virus. Proc. Natl Acad. Sci. USA 98: 10085 10089.
19. Chen, G.,, and A. Stenlund. 1998. Characterization of the DNA-binding domain of the bovine papillomavirus replication initiator E1. J. Virol. 72: 2567 2576.
20. Chen, G.,, and A. Stenlund. 2001. The E1 initiator recognizes multiple overlapping sites in the papillomavirus origin of DNA replication. J. Virol. 75: 292 302.
21. Chen, G.,, and A. Stenlund. 2000. Two patches of amino acids on the E2 DNA-binding domain define the surface for interaction with E1. J. Virol. 74: 1506 1512.
22. Chen, M.-R.,, J. M. Middeldorp,, and S. D. Hayward, 1993, Separation of the complex DNA-binding domain of EBNA-1 into DNA recognition and dimerization subdomains of novel structure. J. Virol. 67: 4875 4885.
23. Chittenden, T.,, S. Lupton,, and A. J. Levine. 1989. Functional limits of oriP, the Epstein-Barr virus plasmid origin of replication. J. Virol. 63: 3016 3025.
24. Cole, C. N.,, and S. D. Conzen,. 2001. Polyomaviridae: The viruses and their replicarion, p. 2141 2174. In D. M. Knipe, and P. M. Howley (ed.), Fields Virology, vol. 2, Lippincott Williams and Wilkins, Philadelphia, Pa..
25. Collins, C. M.,, and P. G. Medveczky. 2002. Genetic requirements for the episomal maintenance of oncogenic herpesvirus genomes. Adv. Cancer Res. 84: 155 174.
26. Cotter, M. A.,, and E. S. Robertson. 1999, The latency-associated nuclear antigen tethers the Kaposi's sarcoma-associated herpesvirus genome to host genomes to host chromosomes in body cavity-based lymphoma cells. Virology. 264: 254 264.
27. Cruickshank, J.,, A. Davidson,, A. M. Edwards,, and L. Frappier. 2000. Two domains of the Epstein-Barr virus origin DNA-binding protein, EBNA1, orchestrate sequence-specific DNA-binding. J. Biol. Chem. 275: 22273 22277.
28. Delecluse, H.-J.,, S. Bartnizke,, W. Hammerschmidt,, J . Bullerdick,, and G. W. Bornkamm. 1993. Episomal and integrated copies of Epstein-Barr virus coexist in Burkitt's lymphoma cell lines. J. Virol. 67: 1292 1299.
29. Deng, Z.,, L. Lezina,, C.-J. Chen,, S. Shtivelband,, W. So,, and P. M. Lieberman. 2002. Telomeric proteins regulate episomal maintenance of Epstein-Barr virus origin of plasmid replication. Mol. Cell 9: 493 503.
30. DePamphilis, M. L. 1993. Eukaryotic DNA replication: anatomy of an origin. Annu. Rev. Biochem. 62: 29 63.
31. Dhar, S. K.,, K. Yoshida,, Y. Machida,, P. Khaira,, B. Chaudhuri,, J. A. Wohlschlegel,, M. Leffak,, J. Yates,, and A. Dutta. 2001. Replication from oriP of Epstein-Barr virus requires human ORC and is inhibited by geminin. Cell 106: 287 296.
32. Dhar, V.,, and C. L. Schildkraut. 1991. Role of EBNA-1 in arresting replication forks at the Epstein-Barr virus oriP family of tandem repeats. Mol. Cell. Biol. 11: 6268 6278.
33. Dostatni, N.,, F. Thierry,, and M. Yaniv. 1988. A dimer of BPV-1 E2 containing a protease resistant core interacts with its DNA target. EMBO J. 7: 3807 3816.
34. Edwards, A. M.,, A. Bochkarev,, and L. Frappier. 1998. Origin DNA-binding proteins. Curr. Opin. Struct. Biol. 8: 49 53.
35. Enemark, E. J.,, G. Chen,, D. E. Vaughn,, A. Stenlund,, and L. Joshua-Tor, 2000. Crystal structure of the DNA-binding domain of the replication initiation protein E1 from papillomavirus. Mol. Cell 6: 149 158.
36. Enemark, E. J.,, A. Stenlund,, and L. Joshua-Tor, 2002. Crystal structure of two intermediates in the assembly of the papillomavirus replication initiation complex. EMBO J. 21: 1487 1496.
37. Ermakova, O.,, L. Frappier,, and C. L. Schildkraut. 1996. Role of the EBNA-1 protein in pausing of replication forks in the Epstein-Barr virus genome. J. Biol. Chem. 271: 33009 33017.
38. Frappier, L.,, K. Goldsmith,, and L. Bendell. 1994. Stabilization of the EBNA1 protein on the Epstein-Barr virus latent origin of DNA replication by a DNA looping mechanism. J. Biol. Chem. 269: 1057 1062.
39. Frappier, L.,, and M. O'Donnell. 1992. EBNA I distorts oriP, the Epstein-Barr virus latent replication origin. J. Virol. 66: 1786 1790.
40. Frappier, L.,, and M. O'Donnell 1991. Epstein-Barr nuclear antigen 1 mediates a DNA loop within the latent replication origin of Epstein-Barr virus. Proc. Natl. Acad. Sci. USA 88: 10875 10879.
41. Frappier, L.,, and M. O'Donnell. 1991. Overproduction, purification and characterization of EBNA1, the origin binding protein of Epstein-Barr virus. J. Biol. Chem. 266: 7819 7826.
42. Gahn, T. A.,, and C. L. Schildkraut. 1989. The Epstein-Barr virus origin of plasmid replication, oriP, contains both the initiation and termination sites of DNA replication. Cell 58: 527 535.
43. Garber, A. C.,, J. Hu,, and R. Renne. 2002. Latency-associated nuclear antigen (LANA) cooperatively binds to two sites within the terminal repeat, and both sites contribute to the ability of LANA to suppress transcription and to facilitate DNA replication. J. Biol. Chem. 277: 27401 27411.
44. Garber, A. C.,, M. A. Shu,, J. Hu,, and R. Renne. 2001. DNA-binding and modulation of gene expression by the latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus. J. Virol. 75: 7882 7892.
45. Gilbert, D. M.,, and S. N. Cohen. 1987. Bovine papilloma virus plasmids replicate randomly in mouse fibroblasts throughout S phase of the cell cycle. Cell 50: 59 68.
46. Gillette, T. G.,, and J. A. Borowiec, 1998. Distinct roles of two binding sites for the bovine papillomavirus (BPV) E2 transactivator on BPV DNA replication. J. Virol. 72: 5735 5744.
47. Gillette, T. G.,, M. Lusky,, and J. A. Boroweic. 1994. Induction of structural changes in the bovine papillomavirus type 1 origin of DNA replication by the viral E1 and E2 proteins. Proc. Natl. Acad. Sci. USA 91: 8846 8850.
48. Gillitzer, E.,, G. Chen,, and A. Stenlund. 2000. Separate domains in E1 and E2 proteins serve architectural and productive roles for cooperative DNA-binding. EMBO J. 19: 3069 3079.
49. Goldsmith, K.,, L. Bendell,, and L. Frappier. 1993. Identification of EBNA1 amino acid sequences required for the interaction of the functional elements of the Epstein-Barr vims latent origin of DNA replication. J. Virol. 67: 3418 3426.
50. Grogan, E. A.,, W. P. Summers,, S. Dowling,, D. Shedd,, L. Gradoville,, and G. Miller. 1983. Two Epstein-Barr viral nuclear neoantigens distinguished by gene transfer, serology and chromosome binding. Proc. Natl. Acad. Sci. USA 80: 7650 7653.
51. Hammerschmidt, W.,, and B. Sugden. 1988. Identification and characterization of oriLyt, a lytc origin of DNA replication of Epstein-Barr virus. Cell 55: 427 433.
52. Han, Y.,, Y.-M. Loo,, K. T. Militello,, and T. Melendy. 1999 , Interactions of the papovavirus DNA replication initiator proteins, bovine papillomavirus type 1 E1 and simian virus 40 large T antigen with human replication protein A. J. Virol. 73: 4899 4907.
53. Harris, A.,, B. D. Young,, and B. E. Griffin. 1985. Random association of Epstein-Barr virus genomes with host cell metaphase chromosomes in Burkitt's lymphoma-derived cell lines. J. Virol. 56: 328 332.
54. Harrison, S.,, K. Fisenne,, and J. Hearing. 1994. Sequence requirements of the Epstein-Barr virus latent origin of DNA replication. J. Virol 68: 1913 1925.
55. Hassell, J. A.,, and B. T. Brinton,. 1996. SV40 and polyoma DNA replication, p. 639 678. In M. L. DePamphilis (ed.), DNA Replication in Eukaryotic Cells. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y..
56. Hearing, J.,, Y. Mulhaupt,, and S. Harper. 1992, Interaction of Epstein-Barr virus nuclear antigen 1 with the viral latent origin of replication. J. Virol. 66: 694 705.
57. Hegde, R. S.,, S. R. Grossman,, L. A. Laimins,, and P. B. Sigler. 1992. Crystal structure at 1.7A of the bovine papillomavirus-! E2 DNA-binding protein bound to its DNA target. Nature 359: 505 512.
58. Hieter, P.,, C. Mann,, M. Snyder,, and R. W. Davis. 1985, Mitotic stability of yeast chromosomes: a colony color assay that measures nondisjunction and chromosome loss. Cell 40: 381 392.
59. Holt, S. E.,, G. Schuller,, and V. G. Wilson. 1994. DNA-binding specificity of the bovine papillomavirus E1 protein is determined by sequence contained within an 18-base-pair inverted repeat element at the origin of replication. J. Virol 68: 1094 1102.
60. Howley, P. M., and D. R. Lowy,. 2001. Papillomaviruses and their replication, p. 2197 2230. In D. M. Knipe, and P. M. Howley (ed.), Fields Virology, vol. 2. Lippincott Williams and Wilkins, Philadelphia, Pa..
61. Hsieh, D.-J.,, S. M. Camiolo,, and J. L. Yates. 1993. Constitutive binding of EBNA1 protein to the Epstein-Barr virus replication origin, oriP, with distortion of DNA structure during latent infection. EMBO J. 12: 4933 4944.
62. Hu, J.,, A. C. Garber,, and R. Renne. 2002. The latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus supports latent DNA replication in dividing cells. J. Virol. 76: 111677 11687.
63. Hung, S. C.,, M.-S. Kang,, and E. Kieff. 2001. Maintenance of Epstein-Barr virus (EBV) oriP-bascd episomes requires EBV-encoded nuclear antigen-1 chromosome-binding domains, which can be replaced by high-mobility group-I or histone H1. Proc. Natl. Acad. Sci. USA 98: 1865 1870.
64. Ilves, L.,, S. Kivi,, and M. Ustav. 1999. Long-term episomal maintenance of bovine papillomavirus type 1 plasmids is determined by attachment to host chromosomes, which is mediated by the viral E2 protein and its binding sites. J. Virol. 73: 4404 4412.
65. Ishimi, Y. 1997. A DNA helicase activity is associated with an MCM4,-6,-7 protein complex. J. Biol. Chem. 272: 24508 24513.
66.. Jankelevich, S.,, J. L. Kolman,, J. W. Bodnar,, and G. Miller. 1992. A nuclear matrix attachment region organizes the Epstein-Barr viral plasmid in Raji cells into a single DNA domain. EMBO J. 11: 1165 1176.
67. Joseph, A. M.,, G. J. Babcock,, and D. A. Thorley-Lawson. 2000. Cells expressing the Epstein-Barr virus growth program are present in and restricted to the naive B-cell subset of healthy tonsils. J. Virol. 74: 9964 9971.
68. Kanda, T.,, M. Otter,, and G. M. Wahl. 2001. Coupling of mitotic chromosome tethering and replication competence in Epstein- Barr virus-based plasmids. Mol. Cell. Biol. 21: 3576 3588.
68.a. Kapoor, P.,, and L. Frappier. 2003. EBNA1 partitions Epstein-Barr virus plasmids in yeast cells by attaching to human EBNA1-binding protein 2 on mitotic chromosomes. J. Virol. 77: 6946 6956.
69. Kapoor, P.,, K. Shire,, and L. Frappier. 2001. Reconstitution of Epstein-Barr virus-based plasmid partitioning in budding yeast. EMBO J. 20: 222 230.
70. Kim, A, L.,, M, Maher,, J. B. Hayman,. J. Ozer,, D. Zerby,, J. L. Yates,, and P. M. Lieberman. 1997. An imperfect correlation between DNA replication activity of Epstein- Barr virus nuclear antigen 1 (EBNA1) and binding to the nuclear import receptor, Rch1/importin α. Virology 239: 340 351.
71. Kirchmaier, A. L.,, and B. Sugden. 1997, Dominant-negative inhibitors of EBNA1 of Epstein-Barr virus. J. Virol. 71: 1766 1775.
72. Kirchmaier, A. L.,, and B. Sugden. 1995. Plasmid maintenance of derivatives of oriP of Epstein-Barr virus. J. Virol. 69: 1280 1283.
73. Kirchmaier, A. L.,, and B. Sugden. 1998. Rep*: a viral element that can partially replace the origin of plasmid DNA synthesis of Epstein-Barr virus. J. Virol. 72: 4657 4666.
74. Klein, G. 1989. Viral latency and transformation: the strategy of Epstein-Barr virus. Cell 58: 5 8.
75. Koons, M. D.,, S. Van Scoy,, and J. Hearing. 2001. The replicator of the Epstein-Barr virus latent cycle origin of DNA replication, oriP is composed of multiple functional elements. J. Virol. 75: 10582 10592.
76. Krithivas, A.,, M. Fujimuro,, M. Weidner,, D. B. Young,, and S. D. Hayward. 2002. Protein interactions targeting the latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus to cell chromosomes. J. Virol. 76: 11596 11604.
77. Krysan, P. J.,, S. B. Haase,, and M. P. Calos. 1989. Isolation of human sequences that replicate autonomously in human cells. Mol. Cell. Biol. 9: 1026 1033.
78. Laine, A.,, and L. Frappier. 1995. Identification of Epstein- Barr nuclear antigen 1 protein domains that direct interactions at a distance between DNA-bound proteins. J. Biol Chem. 270: 30914 30918.
79. Langle-Rouault, F.,, V. Patzel,, A. Benavente,, M. Taillez,, N. Silvestre,, A. Bompard,, G. Sczakiel,, E. Jacobs,, and K. Rittner. 1998. Up to 100-fold increase of apparent gene expression in the presence of Epstein-Barr virus oriP sequences and EBNA1: implications of the nuclear import of plasmids. J. Virol. 72: 6181 6185.
80. Lehman, C. W.,, and M. R. Botchan. 1998. Segregation of viral plasmids depends on tethering to chromosomes and is regulated by phosphorylation. Proc. Natl. Acad. Sci. USA 95: 4338 1343.
81. Leight, E. R.,, and B. Sugden. 2001. The cis-acting family of repeats can inhibit as well as stimulate establishment of an oriP replicon. J. Virol. 75: 10709 10720.
82. Li, R.,, and M. R. Botchan. 1994. Acidic transcription factors alleviate nucleosome-mediated repression of DNA replication of bovine papillomavirus type 1. Proc. Natl. Acad. Sci. USA 91: 7051 7055.
83. Li, R.,, and M. R. Botchan. 1993. The acidic transcriptional activation domains of VP 16 and p53 bind the cellular replication protein A and stimulate in vitro BPV-1 DNA replication. Ce1l 73: 1207 1221.
84. Little, R. D.,, and C. L. Schildkraut. 1995. Initiation of latent DNA replication in the Epstein-Barr virus genome can occur at sites other than the genetically defined origin. Mol. Cell. Biol. 15: 2893 2903.
85. Lupton, S.,, and A. J. Levine. 1985. Mapping of genetic elements of Epstein-Barr virus that facilitate extrachromosomal persistence of Epstein-Barr virus-derived plasmids in human cells. Mol. Cell. Biol. 5: 2533 2542.
86. Mackey, D.,, T. Middleton,, and B. Sugden. 1995. Multiple regions within EBNA 1 can link DNAs. J. Virol. 69: 6199 6208.
87. Mackey, D.,, and B. Sugden. 1999. The linking regions of EBNA1 are essential for its support of replication and transcription. Mol. Cell. Biol. 19: 3349 3359.
88. Marechal, V.,, A. Dehee,, R. Chikhi-Brachet,, T. Piolot,, M. Coppey-Moisan,, and J. Nicolas. 1999, Mapping EBNA1 domains involved in binding to metaphase chromosomes. J. Virol. 73: 4385 4392.
89. McBride, A. A.,, R. Schlegel,, and P. M. Howley. 1988. The carboxy-terminal domain shared by the bovine papillomavirus E2 transactivator and repressor proteins contains a specific DNA-binding activity. EMBO J. 7: 533 539.
90. Melendy, T.,, J. Sedman,, and A. Stenlund. 1995. Cellular factors required for papillomavirus DNA replication. J. Virol. 69: 7857 7867.
91. Mendez, J.,, and B. Stillman. 2000. Chromatin association of human origin recognition coplex, cdc6, and minichromosome maintenance proteins during the cell cycle: assembly of prereplication complexes in late mitosis. Mol. Cell. Biol. 20: 8602 8612.
92. Mendoza, R.,, L. Ganhhi,, and M. R. Botchan. 1995. E1 recognition sequences in the bovine papillomavirus type 1 origin of DNA replication: interaction between half sites of the inverted repeats. J. Virol. 69: 3789 3798.
93. Middleton, T.,, and B. Sugden. 1992. EBNA1 can link the enhancer element to the initiator element of the Epstein-Barr virus plasmid origin of DNA replication. J. Virol. 66: 489 495.
94. Miyashita, E., M. B. Yang,, G. J. Babcock,, and D. A. Thorley- Lawson. 1997. Identification of the site of Epstein-Barr virus persistence in vivo as a resting B cell. J. Virol. 71: 4882 4891.
95. Mohr, I.,, R. Clark,, S. Sun,, E. J. Androphy,, P. MacPherson,, and M. R. Botchan. 1990. Targeting the E1 replication protein to the papillomavirus origin of replication by complex formation with the E2 transactivator. Science 250: 1694 1699.
96. Niller, H. H., G. Glaser,, R. Knuchel,, and H. Wolf. 1995. Nucleoprotein complexes and DNA 5'-ends at oriP of Epstein- Barr virus. J. Biol. Chem. 270: 12864 12868.
97. Norio, P., and C. L. Schildkraut. 2001. Visualization of DNA replication on individual Epstein-Barr virus episomes. Science 294: 2361 2364.
98. Norio, P.,, C. L. Schildkraut,, and J. L. Yates. 2000. Initiation of DNA replication within oriP is dispensable for stable replication of the latent Epstein-Barr virus chromosome after infection of established cell lines. J. Virol. 74: 8563 8574.
99. Park, P.,, W. Copeland,, L. Yang,, T. Wang,, M. R. Botchan,, and I. J. Mohr. 1994. The cellular DNA polymerase α-primase is required for papillomavirus DNA replication and associates with the viral E1 helicase. Proc. Natl. Acad. Sci. USA 91: 8700 8704.
100. Pepinsky, R. B.,, S. S. Prakash,, K. Corina,, M. J. Grossel,, J. Barsoum,, and E. J. Androphy. 1997. Sequences flanking the core DNA-binding domain of bovine papillomavirus type 1 E2 contribute to DNA-binding function. J. Virol. 71: 828 831.
101. Petti, L.,, C. Sample,, and E. Kieff. 1990. Subnuclear localization and phosphorylation of Epstein-Barr virus latent infection nuclear proteins. Virology 176: 563 574.
102. Piirsoo, M.,, E. Ustav,, T. Mandel,, A. Stenlund,, and M. Ustav. 1996. Cis and trans requirements for stable episomal maintenance of the BPV-1 replicator. EMBO J. 15: 1 11.
103. Piolot, T.,, M. Tramier,, M. Coppey,, J.-C. Nicolas,, and V. Marechal. 2001. Close but distinct regions of human herpesvirus 8 latency-associated nuclear antigen 1 are responsible for nuclear targeting and binding to human mitotic chromosomes. J. Virol. 75: 3948 3959.
104. Polvino-Bodnar, M.,, and P. A. Schaffer. 1992. DNA-binding activity is required for EBNA1 -dependent transcriptional activation and DNA replication. Virology 187: 591 603.
105. Rawlins, D. R.,, G. Milman,, S. D. Hayward,, and G. S. Hayward. 1985. Sequence-specific DNA-binding of the Epstein-Barr virus nuclear antigen (EBNA1) to clustered sites in the plasmid maintenance region. Cell 42: 859 868.
106. Reisman, D.,, and B. Sugden. 1986. trans Activation of an Epstein-Barr viral transcripitonal enhancer by the Epstein- Barr viral nuclear antigen 1. Mol. Cell. Biol. 6: 3838 3846.
107. Reisman, D.,, J. Yates,, and B. Sugden. 1985. A putative origin of replication of plasmids derived from Epstein-Barr virus is composed of two as-acting components. Mol. Cell. Biol. 5: 1822 1832.
108. Rialland, M.,, F. Sola,, and C. Santocanale. 2002. Essential role of human CDT1 in DNA replication and chromatin licensing. J. Cell Sci. 115: 1435 1440.
109. Rozenberg, H.,, D. Rabinovich,, F. Frolow,, R. S. Hegde,, and Z. Shakked. 1998. Structural code for DNA recognition revealed in crystal structures of papillomavirus E2-DNA targets. Proc. Natl. Acad. Sci. USA 95: 15194 15199.
110. Sanders, C. M.,, and A. Stenlund. 1998. Recruitment and loading of the E1 initiator protein: an ATP-dependent process catalysed by a transcription factor. EMBO J. 17: 7044 7055.
111. Schepers, A.,, M. Ritzi,, K. Bousset,, E. Kremmer,, J. L. Yates,, J. Harwood,, J. F. X. Diffley,, and W. Hammerschmidt. 2001. Human origin recognition complex binds to the region of the latent origin of DNA replication of Epstein-Barr virus. EMBO J. 20: 4588 4602.
112. Schwam, D. R.,, R. L. Luciano,, S. S. Mahajan,, L. Wong,, and A. C. Wilson. 2000. Carboxy terminus of human herpesvirus 8 latency-associated nuclear antigen mediates dimerization, transcriptional repression, and targeting to nuclear bodies. J. Virol. 74: 8532 8540.
113. Sedman, J.,, and A. Stenlund. 1995. Co-operative interaction between the initiator E1 and the transcriptional activator E2 is required for replicator specific DNA replication of bovine papillomavirus in vivo and in vitro. EMBO J. 14: 6218 6228.
114. Sco, Y.-S.,, F. Muller,, M. Lusky,, E. Gibbs,, H.-Y. Kim,, B. Phillips,, and J. Hurwitz. 1993. Bovine papilloma virus (BPV)-encoded E2 protein enhances binding of E1 protein to the BPV replication origin, Proc. Nat. Acad. Sci. USA 90: 2865 2869.
115. Seo, Y.-S.,, F. Muller,, M. Lusky,, and J. Hurwitz. 1993. Bovine papilloma virus (BPV)-encoded E1 protein contains multiple activities required for BPV replication. Proc. Natl. Acad. Sci. USA 90: 702 706.
116. Shaw, J.,, L. Levinger,, and C. Carter. 1979. Nucleosomal structure of Epstein-Barr virus DNA in transformed cell lines, J. Virol. 29: 657 665.
117. Shirakata, M.,, K.-I. Imadome,, and K. Hirai. 1999. Requirement of replication licensing for the dyad symmetry element- dependent replication of the Epstein-Barr virus oriP minichromosome. Virology 263: 42 54.
118. Shirakata, M.,, K. -L Imadome,, K. Okazaki,, and K. Hirai. 2001. Activation of TRAF5 and TRAF6 signal cascades negatively regulates the latent replication origin of Epstein-Barr virus through p38 mitogen-activated protein kinase. J. Virol. 75: 5059 5068.
119. Shire, K.,, D. F. J . Ceccarelli,, T. M. Avolio-Hunter,, and L. Frappier. 1999. EBP2, a human protein that interacts with sequences of the Epstein-Barr nuclear antigen 1 important for plasmid maintenance. J. Virol. 73: 2587 2595.
120. Simpson, K.,, A. McGuigan, and C Huxley. 1996. Stable episomal maintenance of yeast artificial chromosomes in human cells. Mol. Cell. Biol. 16: 5117 5126.
121. Skiadopoulos, M. H.,, and A. A. McBride. 1998. Bovine papillomavirus type 1 genomes and the E2 transactivator protein are closely associated with mitotic chromatin. J. Virol 72: 2079 2088.
122. Sternas, L.,, T. Middleton,, and B. Sugden. 1990. The average number of molecules of Epstein-Barr nuclear antigen 1 per cell does not correlate with the average number of Epstein- Barr virus (EBV) DNA molecules per cell among different clones of EBV-immortalized cells. J. Virol. 64: 2407 2410.
123. Su, W.,, T. Middleton,, B. Sugden,, and H. Echols. 1991. DNA looping between the origin of replication of Epstein-Barr virus and its enhancer site: stabilization of an origin complex with Epstein-Barr nuclear antigen I. Proc. Natl. Acad Sci. USA 88: 10870 10874.
124. Summers. H.,, J. A. Barwell,, R. A. Pfuetzner,, A. M. Edwards,, and L. Frappier. 1996. Cooperative assembly of EBNA1 on the Epstein-Barr virus latent origin of replication. J. Virol. 70: 1228 1231.
125. Summers, H.,, A. Fleming,, and L. Frappier. 1997. Requirements for EBNA I-induced permanganate sensitivity of the Epstein-Barr virus latent origin of DNA replication. J. Biol Chem. 272: 26434 26440.
126. Szekely, L.,, C. Kiss,, K. Mattson,, E. Kashuba,, K. Pokrovskaja,, A. Juhasz,, P. Holmvall,, and G. Klein. 1999. Human herpesvirus- 8-encoded LNA-I accumulates in heterchromatin-associated nuclear bodies. J. Gen. Virol. 80: 2889 2900.
127. Thorley-Lawson, D. A.,, E. M. Miyashita,, and G. Khan. 1996. Epstein-Barr virus and the B cell: that's all it takes. Trends Microbiol. 4: 204 208.
128. Thorner, L. K.,, D. A. Lim,, and M. R. Botchan. 1993. DNA-binding domain of bovine papillomavirus type 1 E1 helicase: structural and functional aspects. J. Virol. 67: 6000 6014.
129. Tierney, R. J.,, N. Steven,, L. S. Young,, and A. B. Rickinson. 1994. Epstein-Barr virus latency in blood mononuclear cells: analysis of viral gene transcription during primary infection and in the carrier state. J. Virol. 68: 7374 7385.
130. Ustav, E.,, M. Ustav,, P. Szymanski,, and A. Stenlund. 1993. The bovine papillomavirus origin of replication requires a binding site for the E2 transcriptional activator. Proc. Natl. Acad. Sci. USA 90: 898 902.
131. Ustav, M.,, and A. Stenlund. 1991. Transient replication of BPV-1 requires two viral polypeptides encoded by the E1 and E2 open reading frames. EMBO J. 10: 449 457.
132. Ustav, M.,, E. Ustav,, P. Szymanski,, and A. Stenlund. 1991. Identification of the origin of replication of the bovine papillomavirus and characterization of the viral origin recognition factor E1 . EMBO J. 10: 4321 4329.
133. Van Scoy, S.,, I. Watakabe,, A. R, Krainer, and J. Hearing. 2000. Human p32: a coactivator for Epstein-Barr virus nuclear antigen-1-mediated transcriptional activation and possible role in viral latent cycle DNA replication. Virology 275: 145 157.
134. Vogel, M.,, K. Wittmann,, E. Endl,, G. Glaser,, R. Knuchel, H, Wolf, and H. H. Niller. 1998. Plasmid maintenance assay based on green fluorescent protein and FACS of mammalian cells. BioTechniques 24: 540 544.
135.. Voitenleitner, C.,, and M. Botchan. 2002. E1 protein of bovine papiloomavirus type 1 interferes with E2 protein-mediated tethering of the viral DNA to mitotic chromosomes. J. Virol. 76: 3440 3451.
136. Wendelburg, B.,, and J.-M. Vos. 1998. An enhanced EBNA1 variant with reduced IR3 domain for long-term episomal maintenance and transgene expression of or/P-based plasmids in human cells. Gene Ther. 5: 1389 1399.
137. White, R. E.,, R. Wade-Martin,, and M. R. James. 2001. Sequences adjacent to oriP improve the persistence of Epstein- Barr virus-based episomes in B cells. J. Virol. 75: 11249 11252.
138. Wu, H.,, D. F. J. Ceccarelli,, and L. Frappier. 2000. The DNA segregation mechanism of the Epstein-Barr virus EBNA I protein. EMBO Rep. 1: 140 144.
139. Wu, H.,, P. Kapoor,, and L. Frappier. 2002. Separation of the DNA replication, segregation and transcriptional activation functions of Epstein-Barr nuclear antigen 1. J. Virol. 76: 2480 2490.
140. Wysokenski, D. A.,, and J. L. Yates. 1989. Multiple EBNA1-binding sites arc required to form an EBNA 1-dependent enhancer and to activate a minimal replicative origin within oriP of Epstein-Barr virus. J. Virol. 63: 2657 2666.
141. Yang, L.,, and M. Botchan. 1990. Replication of bovine papillomavirus type 1 DNA initiates within an E2-responsive enhancer element. J. Virol 64: 5903 5911.
142. Yang, L.,, E. Fouts,, D. A., Lim,, M., Nohaile,, and M. Botchan. 1993. The E1 protein of bovine papilloma virus 1 is an ATP-dependent DNA helicase. Proc. Natl. Acad. Sci. USA 90: 5086 5090.
143. Yates, J. L.,, and S. M. Camiolo. 1988. Dissection of DNA replication and enhancer activation functions of Epstein-Barr virus nuclear antigen 1. Cancer Cells 6: 197 205.
144. Yates, J. L.,, S. M. Camiolo,, and J. M. Bashaw. 2000. The minimal replicator of Epstein-Barr virus oriP. J. Virol. 74: 4512 4522.
145. Yates, J. L.,, and N. Guan. 1991. Epstein-Barr virus-derived plasmids replicate only once per cell cycle and arc not amplified after entry into cells. J. Virol. 65: 483 488.
146. Yates, J. L.,, N. Warren,, D. Reisman,, and B. Sugden. 1984. A cis-acting element from the Epstein-Barr viral genome that permits stable replication of recombinant plasmids in latently infected cells. Proc. Natl. Acad. Sci. USA 81: 3806 3810.
147. Yates, J. L.,, N. Warren,, and B. Sugden. 1985. Stable replication of plasmids derived from Epstein-Barr virus in various mammalian cells. Nature 313: 812 815.
148. Zhang, D.,, L. Frappier,, E. Gibbs,, J. Hurwitz,, and M. O'Donnell. 1998. Human RPA (hSSB) interacts with EBNA1, the latent origin binding protein of Epstein-Barr virus. Nucleic Acids Res. 26: 631 637.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error