1887

Chapter 19 : Virulence Plasmids of Spore-Forming Bacteria

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Virulence Plasmids of Spore-Forming Bacteria, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817732/9781555812652_Chap19-1.gif /docserver/preview/fulltext/10.1128/9781555817732/9781555812652_Chap19-2.gif

Abstract:

Spore-forming bacteria are the causative agents of some of the most dramatic life-threatening human and animal infections and toxemias, including diseases such as tetanus, botulism, gas gangrene, pseudomembranous colitis, and anthrax. This chapter reviews the current state of knowledge of virulence plasmids of the Clostridia and the bacilli. Although other pathogens are mentioned, the focus is on the major human pathogens, and , primarily because most is known about virulence plasmids in these species. The major toxins involved in type A-mediated gas gangrene, the α-toxin and perfringolysin O, together with other extracellular toxins such as collagenase and hyaluronidase, are chromosomally encoded. Along with tetanus, botulism, and gas gangrene, anthrax is one of the four classical diseases that are caused by spore-forming bacteria. Expression of the plasmid-determined toxin genes in is coordinately regulated with the sporulation process and therefore clearly involves chromosomal regulatory genes. Toxin-producing strains often carry multiple genes and large amounts of the δ-endotoxins are produced in stationary phase, to the extent that the crystalline inclusion may account for more than 20% of the cell's dry weight.

Citation: Rood J. 2004. Virulence Plasmids of Spore-Forming Bacteria, p 413-422. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch19

Key Concept Ranking

Mobile Genetic Elements
0.44574088
Two-Component Signal Transduction Systems
0.42134458
0.44574088
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Genetic organization of the botulinum toxin region. Based on Fig. 1 of reference .

Citation: Rood J. 2004. Virulence Plasmids of Spore-Forming Bacteria, p 413-422. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Regulation of anthrax toxin production and capsule biosynthesis in . Only relevant genes on pXO1 and pXO2 are shown. Neither the plasmids nor the genes are drawn to scale. The arrows indicate transcriptional activation, the bars indicate transcriptional repression.

Citation: Rood J. 2004. Virulence Plasmids of Spore-Forming Bacteria, p 413-422. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817732.chap19
1. Andrup, L.,, L. Smidt,, K. Andersen,, and L. Boc. 1998. Kinetics of conjugative transfer: a study of the plasmid pXO16 from Bacillus thuringiensis subsp. israelensis. Plasmid 40: 30 43.
2. Ariel, N.,, A. Zvi,, H. Grosfeld,, O. Gat,, Y. Inbar,, B. Velan,, S. Cohen,, and A. Shafferman. 2002. Search for potential vaccine candidate open reading frames in the Bacillus anthracis virulence plasmid pXO1: in silico and in vitro screening. Infect. Immun. 70: 6817 6827.
3. Aronson, A. 2002. Sporulation and delta-endotoxin synthesis by Bacillus thuringiensis. Cell Mol. Life Sci. 59: 417 425.
4. Ben-Dov, E.,, G. Nissan,, N. Pelleg,, R. Manasherob,, S. Boussiba,, and A. Zaritsky. 1999. Refined, circular restriction map of the Bacillus thuringiensis subsp. israelensis plasmid carrying the mosquito larvicidal genes. Plasmid 42: 186 191.
5. Bentancor, A. B.,, M. R. Fermepi'n,, L. D. Bentancor,, and R. A. de Torres. 1999. Detection of the etx gene (ϵ-toxin inducer) in plasmids of high molecular weight in Clostridium perfringens type D. FEMS Immunol. Med. Microbiol. 24: 373 377.
6. Berry, C.,, S. O'Neil,, E. Ben-Dov,, A. F. Jones,, L. Murphy,, M. A. Quail,, M. T. Holden,, D. Harris,, A. Zaritsky,, and J. Parkhill. 2002. Complete sequence and organization of pBtoxis, the toxin-coding plasmid of Bacillus thuringiensis subsp. israelensis. Appl. Environ. Microbiol. 68: 5082 5095.
7. Billington, S. J.,, E. U. Wieckowski,, M. R. Sarker,, D. Bueschel,, J. G. Songer,, and B. A. McClane. 1998. Clostridium perfringens type E animal enteritis isolates with highly conserved, silent enterotoxin gene sequences. Infect. Immun. 66: 4531 4536.
8. Brüggemann, H.,, S. Bäumer,, W. F. Fricke,, A. Wiezer,, H. Liesegang,, I. Decker,, C. Herzberg,, R. Martinez-Arias,, R. Merkl,, A. Henne,, and G. Gottschalk. 2003. The genome sequence of Clostridium tetani, the causative agent of tetanus disease. Proc. Natl. Acad. Sci. USA 100: 1316 1321.
9. Brynestad, S.,, and P. E. Granum. 1999. Evidence that Tn 5565, which includes the enterotoxin gene in Clostridium perfringens, can have a circular form which may be a transposition intermediate. FEMS Microbiol. Lett. 170: 281 286.
10. Brynestad, S.,, M. R. Sarker,, B. A. McClane,, P. E. Granum,, and J. I. Rood. 2001. Enterotoxin plasmid from Clostridium perfringens is conjugative. Infect. Immun. 69: 3483 3487.
11. Brynestad, S.,, B. Synstad,, and P. E. Granum. 1997. The Clostridium perfringens enterotoxin gene is on a transposable genetic element in type A human food poisoning strains. Microbiology 143: 2109 2115.
12. Canard, B.,, B. Saint-Joanis,, and S. T. Cole. 1992. Genomic diversity and organization of virulence genes in the pathogenic anaerobe Clostridium perfringens. Mol. Microbiol. 6: 1421 1429.
13. Collie, R. E.,, and B. A. McClane. 1998. Evidence that the enterotoxin gene can be episomal in Clostridium perfringens isolates associated with nonfoodborne human gastrointestinal disease. J. Clin. Microbiol. 36: 30 36.
14. Cornillot, E.,, B. Saint-Joanis,, G. Daube,, S.-I. Katayama,, P. E. Granum,, B. Canard,, and S. T. Cole. 1995. The enterotoxin gene ( cpe) of Clostridium perfringens can be chromosomal or plasmid-borne. Mol. Microbiol. 15: 639 647.
15. Dai, Z.,, J. C. Sirard,, M. Mock,, and T. M. Koehler. 1995. The atxA gene product activates transcription of the anthrax toxin genes and is essential for virulence. Mol. Microbiol. 16: 1171 1181.
16. Daube, G.,, P. Simon,, and A. Kaeckenbeeck. 1993. IS 1151, an IS-like element of Clostridium perfringens. Nucleic Acids Res. 21: 352.
17. Dupuy, B.,, G. Daube,, M. R. Popoff,, and S. T. Cole. 1997. Clostridium perfringens urease genes are plasmid borne. Infect. Immun. 65: 2313 2320.
18. Dupuy, B.,, and A. Sonenshein. 1999. Regulated transcription of Clostridium difficile toxin genes. Mol. Microbiol. 27: 107 120.
19. Eisel, U.,, W. Jarausch,, K. Goretzki,, A. Henschen,, J. Engels,, U. Weller,, M. Hudel,, E. Habermann,, and H. Niemann. 1986. Tetanus toxin: primary structure, expression in E. coli. EMBO J. 5: 2495 2502.
20. Eklund, M. W.,, F. T. Poysky,, L. M. Mseitif,, and M. S. Strom. 1988. Evidence for plasmid-mediated toxin and bacteriocin production in Clostridium botulinum type G. Appl. Environ. Microbiol. 54: 1405 1408.
21. Finn, Jr.,, C.,, R. Silver,, W. Habig,, M. Hardegrec,, G. Zon,, and C. Garon. 1984. The structural gene for tetanus neurotoxin is on a plasmid. Science 224: 881 884.
22. Fischetti, V. A.,, R. P. Novick,, J. J. Ferretti,, D. A. Portnoy,, and J. I. Rood (ed.). 2000. Gram-Positive Pathogens. ASM Press, Washington, D.C..
23. Garmory, H. S.,, N. Chanter,, N. P. French,, D. Bueschel,, J. G. Songer,, and R. W. Titball. 2000. Occurrence of Clostridium perfringens beta2-toxin amongst animals, determined using genotyping and subtyping PCR assays. Epidemiol. Infect. 124: 61 67.
24. Gibert, M.,, C. Jolivet-Renaud,, and M. R. Popoff, 1997. Beta2 toxin, a novel toxin produced by Clostridium perfringens. Gene 203: 65 73.
25. Gibert, M.,, S. Perelle,, G. Daube,, and M. Popoff. 1997. Clostridium spiroforme toxin genes are related to C. perfringens iota toxin genes but have a different genomic localization. Syst. Appl. Microbiol. 20: 337 347.
26. Green, B. D.,, L. Battisti,, and C. B. Thorne. 1989. Involvement of Tn 4430 in transfer of Bacillus anthracis plasmids mediated by Bacillus thuringiensis plasmid pXO12. J. Bacteriol. 171: 104 113.
27. Guidi-Rontani, C.,, Y. Pereira,, S. Ruffie,, J. C. Sirard,, M. Weber-Levy,, and M. Mock. 1999. Identification and characterization of a germination operon on the virulence plasmid pXO1 of Bacillus anthracis. Mol. Microbiol. 33: 407 414.
28. Guidi-Rontani, C.,, M. Weber-Levy,, E. Labruyere,, and M. Mock. 1999. Germination of Bacillus anthracis spores with alveolar macrophages. Mol. Microbiol. 31: 9 17.
29. Guignot, J.,, M. Mock,, and A. Fouet. 1997. AtxA activates the transcription of genes harbored by both Bacillus anthracis virulence plasmids. FEMS Microbiol. Lett. 147: 203 7.
30. Han, S.,, J. A. Craig,, C. D. Putnam,, N. B. Carozzi,, and J. A. Tainer. 1999. Evolution and mechanism from structures of an ADP-ribosylating toxin and NAD complex. Nature Struct. Biol. 6: 932 936.
31. Hauser, D.,, M. Gibert,, P. Boquet,, and M. R. Popoff. 1992. Plasmid localization of a type E botulinal neurotoxin gene homologue in toxigenic Clostridium butyricum strains, and absence of this gene in non-toxigenic C. butyricum strains. FEMS Microbiol. Lett. 99: 251 256.
32. Helgason, E.,, O. A. Okstad,, D. A. Caugant,, H. A. Johansen,, A. Fouet,, M. Mock,, I. Hegna,, and A.-B. Kolsto. 2000. Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis—one species on the basis of genetic evidence. Appl. Environ. Microbiol. 66: 2627 2630.
33. Herholz, C.,, R. Miserez,, J. Nicolet,, J. Frey,, M. Popoff,, M. Gibert,, H. Gerber,, and R. Straub. 1999. Prevalence of β-toxigenic Clostridium perfringens in horses with intestinal disorders. J. Clin. Microbiol. 37: 358 361.
34. Hoffmaster, A. R.,, and T. M. Koehler. 1999. Autogenous regulation of the Bacillus anthracis pag operon. J. Bacteriol. 181: 4485 4492.
35. Hoffmaster, A. R.,, and T. M. Koehler. 1999. Control of virulence gene expression in Bacillus anthracis. J. Appl. Bacteriol. 87: 279 281.
36. Johnson, E. A.,, and M. Bradshaw, 2001. Clostridium botulinum and its neurotoxins: a metabolic and cellular perspective. Toxicon 39: 1703 1722.
37. Katayama, S.,, B. Dupuy,, G. Daube,, B. China,, and S. T. Cole. 1996. Genome mapping of Clostridium perfringens strains with I- Ceul shows many virulence genes to be plasmid-borne. Mol. Gen. Genet. 251: 720 726.
38. Klaasen, H. L.,, M. J. Molkenboer,, J. Bakker,, R. Miserez,, H. Hani,, J. Frey,, M. R. Popoff,, and J. F. van den Bosch. 1999. Detection of the beta2 toxin gene of Clostridium perfringens in diarrhoeic piglets in The Netherlands and Switzerland. FEMS Immunol. Med. Microbiol. 24: 325 332.
39. Koehler, T. M., 2000. Bacillus anthracis, p. 519 528. In V. A. Fischetti,, J. J. Ferretti,, D. A. Portnoy,, R. P. Novick,, and J. I. Rood (ed.), Gram-Positive Pathogens. ASM Press, Washington, D.C..
40. Laird, W.,, W. Aaronson,, R. Silver,, W. Habig,, and M. Hardegree. 1980. Plasmid-associated toxigenicity in Clostridium tetani. J. Infect. Dis. 142: 623.
41. Mani, N.,, and B. Dupuy. 2001. Regulation of toxin synthesis in Clostridium difficile by an alternative RNA polymerase sigma factor. Proc. Natl. Acad. Sci. USA 98: 5844 5849.
42. Manteca, C.,, G. Daube,, T. Jauniaux,, A. Linden,, V. Pirson,, J. Detilleux,, A. Ginter,, P. Coppe,, A. Kaeckenbeeck,, and J. G. Mainil. 2002. A role for the Clostridium perfringens beta2 toxin in bovine entcrotoxaemia? Vet. Microbiol. 86: 191 202.
43. Marvaud, J.,, M. Gibert,, K. Inoue,, Y. Fujinaga,, K. Oguma,, and M, Popoff. 1998. botR/A is a positive regulator of botulinum neurotoxin and associated non-toxin protein genes in Clostridium botulinum A. Mol. Microbiol. 29: 1009 1018.
44. Marvaud, J.- C.,, U. Eisel,, T. Binz,, H. Niemann,, and M. R. Popoff. 1998. TetR is a positive regulator of the tetanus toxin gene in Clostridium tetani and is homologous to BotR. Infect. Immun. 66: 5698 5702.
45. Marvaud, J. C.,, S. Raffestin,, M. Gibert,, and M. R. Popoff. 2000. Regulation of the toxinogenesis in Clostridium botulinum and Clostridium tetani. Biol. Cell. 92: 455 457.
46. Marvaud, J. C.,, T. Smith,, M. L. Hale,, M. R. Popoff,, L. A. Smith,, and B. G. Stiles. 2001. Clostridium perfringens iota-toxin: mapping of receptor binding and Ia docking domains on Ib. Infect. Immun. 69: 2435 2441.
47. Menestrina, G.,, M. D. Serra,, and G. Prevost. 2001. Mode of action of beta-barrel pore-forming toxins of the staphylococcal alpha-hemolysin family. Toxicon 39: 1661 1672.
48. Mesnage, S.,, and A. Fouet. 2002. Plasmid-encoded autolysin in Bacillus anthracis: modular structure and catalytic properties. J. Bacteriol. 184: 331 334.
49. Mignot, T.,, M. Mock,, and A. Fouet. 2003. A plasmid-encoded regulator couples the synthesis of toxins and surface structures in Bacillus anthracis. Mol. Microbiol. 47: 917 927.
50. Minami, J.,, S. Katayama,, O. Matsushita,, C. Matsushita,, and A. Okabe. 1997. Lambda-toxin of Clostridium perfringens activates the precursor of epsilon-toxin by releasing its N- and C-terminal peptides. Microbiol. Immunol. 41: 527 535.
51. Miyamoto, K.,, G. Chakrabarti,, Y. Morino,, and B. A. McClane. 2002. Organization of the plasmid cpe locus in Clostridium perfringens type A isolates. Infect. Immun. 70: 4261 4272.
52. Miyata, S.,, O. Matsushita,, J. Minami,, S. Katayama,, S. Shimamoto,, and A. Okabe. 2001. Cleavage of a C-terminal peptide is essential for heptamerization of Clostridium perfringens e-toxin in the synaptosomal membrane. J. Biol. Chem. 276: 13778 13783.
53. Mock, M.,, and A. Fouet. 2001. Anthrax. Annu. Rev. Microbiol. 55: 647 671.
54. Okinaka, R.,, K. Cloud,, O. Hampton,, A. Hoffmastcr,, K. Hill,, P. Keim,, T. Koehler,, G. Lamke,, S. Kumano,, D. Manter,, Y. Martinez,, D. Ricke,, R. Svensson,, and P. Jackson. 1999. Sequence, assembly and analysis of pX01 and pX02. J. Appl. Bacteriol. 87: 261 262.
55. Okinaka, R. T.,, K. Cloud,, O. Hampton,, A. R. Hoffmaster,, K. K. Hill,, P. Keim,, T. M. Koehler,, G. Lamke,, S. Kumano,, J. Mahillon,, D. Manter,, Y. Martinez,, D. Ricke,, R. Svensson,, and P. J. Jackson. 1999. Sequence and organization of pXO1, the large Bacillus anthracis plasmid harboring the anthrax toxin genes. J. Bacteriol. 181: 6509 6515.
56. Pannucci, J.,, R. T. Okinaka,, R. Sabin,, and C. R. Kuske. 2002. Bacillus anthracis pXO1 plasmid sequence conservation among closely related bacterial species. J. Bacteriol. 184: 134 141.
57. Pannucci, J.,, R. T. Okinaka,, E. Williams,, R. Sabin,, L. O. Ticknor, and C R. Kuske. 2002. DNA sequence conservation between the Bacillus anthracis pXO2 plasmid and closely related bacteria. BMC Genomics 3: 34.
58. Payne, D.,, and P. Oyston,. 1997. The Clostridium perfringens ϵ-toxin, p. 439 447. In J. I. Rood,, B. A. McClane,, J. G. Songer,, and R. W. Titball (ed.), The Clostridia: Molecular Biology and Pathogenesis. Academic Press, London, United Kingdom.
59. Perelle, S.,, S. Sealzo,, S. Kochi,, M. Mock,, and M. R. Popoff. 1997. Immunological and functional comparison between Clostridium perfringens iota toxin, C. spiroforme toxin, and anthrax toxins. FEMS Microbiol. Lett. 146: 117 121.
60. Petit, L.,, M. Gibert,, and M. R. Popoff. 1999. Clostridium perfringens: toxinotype and genotype. Trends Microbiol. 7: 104 110.
61. Petit, L.,, E. Maier,, M. Gibert,, M. R. Popoff,, and R. Benz. 2001. Clostridium perfringens epsilon toxin induces a rapid change of cell membrane permeability to ions and forms channels in artificial lipid bilayers. J. Biol. Chem. 276: 15736 15740.
62. Reddy, A.,, L. Battisti,, and C. B. Thorne, 1987. Identification of self-transmissible plasmids in four Bacillus thuringiensis subspecies. J. Bacteriol. 169: 5263 5270.
63. Rood, J. I.,, and B. A. McClane,. 2002. Clostridium perfringens: gastrointestinal infections, p. 1117 1139. In M. Sussman (ed.), Molecular Medical Microbiology. Academic Press, London, United Kingdom.
64. Rood, J. I.,, B. A. McClane,, J. G. Songer,, and R. W. Titball (ed.). 1997. The Clostridia: Molecular Biology and Pathogenesis. Academic Press, London, United Kingdom.
65. Saile, E.,, and T. M. Koehler. 2002. Control of anthrax toxin gene expression by the transition state regulator abrB. J. Bacteriol. 184: 370 380.
66. Sarker, M. R.,, R. J. Carman,, and B. A. McClane. 1999. Inactivation of the gene ( cpe) encoding Clostridium perfringens enterotoxin eliminates the ability of two cpe-positive C. perfringens type A human gastrointestinal disease isolates to affect rabbit ileal loops. Mol. Microbiol. 33: 946 958.
67. Schiavo, G.,, and C. Montccucco,. 1997. The structure and mode of action of botulinum and tetanus toxins, p. 295 322. In J. I. Rood,, B. A. McClane,, J. G. Songer,, and R. W. Titball (ed.), The Clostridia: Molecular Biology and Pathogenesis. Academic Press, London, United Kingdom.
68. Schnepf, E.,, N. Crickmore,, J. Van Rie,, D. Lereclus,, J. Baum,, J. Feitelson,, D. R, Zeigler,, and D. H, Dean. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62: 775 806.
69. Shao, Z.,, Z. Liu,, and Z. Yu. 2001. Effects of the 20-kilodalton helper protein on Cry1Ac production and spore formation in Bacillus thuringiensis. Appl. Environ. Microbiol. 67: 5362 5369.
70. Shatursky, O.,, R, Bayles,, M. Rogers,, B. H. Jost,, J. G. Songer,, and R. K. Tweten. 2000. Clostridium perfringens beta-toxin forms potential-dependent, cation-selective channels in lipid bilayers. Infect. Immun. 68: 5546 5551.
71. Shimizu, T., K. Ohtani,, H. Hirakawa,, K. Ohshima,, A. Yamashita,, T. Shiba,, N. Ogasawara,, M. Hattori,, S. Kuhara,, and H. Hayashi. 2002. Complete genome sequence of Clostridium perfringens, an anaerobic flesh-eater. Proc. Natl. Acad. Sci. USA 99: 996 1001.
72. Sonenshein, A. L.,, J. A. Hoch,, and R. Losick. 2001. Bacillus subtilis and Its Closest Relatives: From Genes to Cells. ASM Press, Washington, D.C..
73. Songer, J. G., 1997. Clostridial diseases of animals, p. 153 182. In J. I. Rood,, B. A. McClane,, J. G. Songer,, and R. W. Titball (ed.), The Clostridia: Molecular Biology and Pathogenesis. Academic Press, London, United Kingdom.
74. Sparks, S.,, R. Carman,, M. Sarker,, and B. A. McClanc. 2001. Genotyping of enterotoxigenic Clostridium perfringens fecal isolates associated with antibiotic-associated diarrhea and food poisoning in North America. J. Clin. Microbiol. 39: 883 888.
75. Steinthórsdóttir, V.,, H. Halldórsson,, and O. S. Andrésson. 2000. Clostridium perfringens beta-toxin forms multimeric transmembrane pores in human endothelial cells. Microbial Pathogen 28: 45 50.
76. Thomas, D. J.,, J. A. Morgan,, J. M. Whipps,, and J. R. Saunders. 2001. Plasmid transfer between Bacillus thuringiensis subsp. israelensis strains in laboratory culture, river water, and dipteran larvae. Appl. Environ. Microbiol. 67: 330 338.
77. Titball, R. W.,, and J. I. Rood,. 2002. Clostridium perfringens: wound infections, p. 1875 1903. In M. Sussman (ed.), Molecular Medical Microbiology. Academic Press, London, United Kingdom.
78. Tweten, R, K. 2001. Clostridium perfringens beta toxin and Clostridium septicum alpha toxin: their mechanisms and possible role in pathogenesis. Vet. Microbiol. 82: 1 9.
79. Uchida, I.,, S. Makino,, T. Sekizaki,, and N. Terakado. 1997. Cross-talk to the genes for Bacillus anthracis capsule synthesis by atxA, the gene encoding the trans-activator of anthrax toxin synthesis. Mol. Microbiol. 23: 1229 1240.
80. Vitale, G.,, L. Bernardi,, G. Napolitani,, M. Mock,, and C. Montecucco. 2000. Susceptibility of mitogen-activatcd protein kinase kinase family members to proteolysis by anthrax lethal factor. Biochem. J. 352: 739 745.
81. Wang, X.,, T. Maegawa,, T. Karasawa,, S. Kozaki,, K. Tsukamoto,, Y. Gyobu,, K. Yamakawa,, K. Oguma,, Y. Sakaguchi,, and S. Nakamura. 2000. Genetic analysis of type E botulinum toxin-producing Clostridium butyricum strains. Appl. Environ. Microbiol. 66: 4992 4997.
82. Wilcks, A.,, N. Jayaswal,, D. Lereclus,, and L. Andrup. 1998. Characterization of plasmid pAW63, a second self-transmissible plasmid in Bacillus thuringiensis subsp. kurstaki HD73. Microbiology 144: 1263 1270.
83. Wilcks, A.,, L. Smidt,, O. A. Okstad,, A. B. Kolsto,, J. Mahillon,, and L. Andrup. 1999. Replication mechanism and sequence analysis of the replicon of pAW63, a conjugative plasmid from Bacillus thuringiensis. J. Bacteriol. 181: 3193 3200.
84. Zhou, Y.,, H. Sugiyama,, and E. A. Johnson. 1993. Transfer of neurotoxigeniciry from Clostridium butyricum to a nontoxigenic Clostridium botulinum type E-like strain. Appl. Environ. Microbiol. 59: 3825 3831.
85. Zhou, Y.,, H. Sugiyama,, H. Nakano,, and E. A. Johnson. 1995. The genes for the Clostridium botulinum type G toxin complex are on a plasmid. Infect. Immun. 63: 2087 2091.

Tables

Generic image for table
Table 1

Genetic location of toxins and extracellular enzymes of

Citation: Rood J. 2004. Virulence Plasmids of Spore-Forming Bacteria, p 413-422. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch19

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error