1887

Chapter 20 : Virulence Plasmids of : Characteristics and Comparison

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Virulence Plasmids of : Characteristics and Comparison, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817732/9781555812652_Chap20-1.gif /docserver/preview/fulltext/10.1128/9781555817732/9781555812652_Chap20-2.gif

Abstract:

This chapter focuses on virulence plasmids of species with particular emphasis on their architecture, the virulence factors encoded by them, and comparisons between species and strains where possible. The involvement of plasmids in the virulence of has long been known and is well established. The best-characterized of these is the low calcium response (LCR) plasmid that is common to the three pathogenic species. The synthesis and regulation of effector Yop secretion by the type III system are extremely complex. The largest difference between the pLcr molecules that have been sequenced to date is in the position and orientation of some of the more important genes. The common mechanism of partitioning between the sequenced pLcr plasmids is interesting because the common partitioning system has been shown to be responsible for plasmid incompatibility between F and pYVe. The chapter addresses the putative virulence factors encoded by pFra as well as make postgenomic sequence comparisons where possible. The most prominent phage element that can be identified easily as a remnant on pFra is a portion of a lambda-like phage element. Recently, two independent self-transmissible antibiotic resistance plasmids (RTFs) have been identified in natural isolates of in Madagascar.

Citation: Lindler L. 2004. Virulence Plasmids of : Characteristics and Comparison, p 423-438. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch20

Key Concept Ranking

Mobile Genetic Elements
0.5825865
Bacterial Pathogenesis
0.519938
Tumor Necrosis Factor alpha
0.43347782
Type III Secretion System
0.42405108
0.5825865
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Map of the common 26-kb core region encoding the type III secretion system of the virulence plasmid. Genes and direction of transcription are indicated by arrows. Genes and alternate names used in the different species are labeled with each coding region. The and designations were originally used for three separate loci identified by study fusions in ( ). The designation is used in ( ). The loci divide the majority of the core region (excluding into three parts. The locus extends from to The region extends from to The locus includes the through in

Citation: Lindler L. 2004. Virulence Plasmids of : Characteristics and Comparison, p 423-438. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Comparative gene maps of the three sequenced pLcr plasmids. The sequences have been oriented such that the replication region is at the top of the map and the LCR core gene cluster is placed first proceeding clockwise around the circle. Only genes of interest are shown, with arrows indicating the direction of transcription. The closed dots indicate the position of the sequence GTATT. The locations of IS elements or remnants (designated with a “-r"” suffix) arc also shown and discussed in the text. Regions I, II, and III shown on the pCDl map are discussed in the text.

Citation: Lindler L. 2004. Virulence Plasmids of : Characteristics and Comparison, p 423-438. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Gene map of the replication region of pCD1/pYVe227 and pYVc8081. The nomenclature of the genes is in keeping with the reports describing these plasmids ( ). Although the locations of these genes are quite similar, the level of homology at the DNA and protein level is quite low (see text). Arrows indicate the direction of transcription. The numbers indicate base-pair positions in the DNA sequence for pCDl (GenBank accession no. AF074612) and pYVe8081 (GenBank accession no. AF336309). The region includes the putative DnaA box and short repeat sequences generally found in plasmid origins.

Citation: Lindler L. 2004. Virulence Plasmids of : Characteristics and Comparison, p 423-438. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Comparative architecture of the murine toxin plasmid pMTl/pFra derived from GenBank sequence AF074611 ( ). The black regions represent sequences in common with the cryptic serovar Typhi plasmid pHCM2 ( ). The light gray region represents DNA sequences that are absent in the CO92 plasmid pFra (GenBank accession no. AL117211). Genes and additional regions of interest are shown inside the circular map. The position of ORF123 is specifically shown because it shares 9 1% amino acid identity with ORFL7074 found on p0157 ( ). Only intact IS elements are shown. Restriction sites for Rland dIII are also shown.

Citation: Lindler L. 2004. Virulence Plasmids of : Characteristics and Comparison, p 423-438. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817732.chap20
1. Achtman, M.,, K. Zurth,, G. Morelli,, G. Torrea,, A. Guiyoule,, and E. Carniel. 1999. Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc. Natl. Acad. Sci. USA 96: 14043 14048.
2. Anderson, G. W. Jr.,, P. L. Worsham,, C. R. Bolt,, G. P. Andrews,, S. L. Welkos,, A. M. Friedlander,, and J. P. Burans. 1997. Protection of mice from fatal bubonic and pneumonic plague by passive immunization with monoclonal antibodies against the Fl protein of Yersinia pestis. Am. J. Trop. Med. Hyg. 56: 471 473.
3. Andrews, G. P.,, D. G. Heath,, G. W. Anderson Jr.,, S. L. Welkos,, and A. M. Friedlander. 1996. Fraction 1 capsular antigen (Fl) purification from Yersinia pestis CO92 and from an Escherichia coli recombinant strain and efficacy against lethal plague challenge. Infect. Immun. 64: 2180 2187.
4. Bakour, R.,, Y. Larochc,, and G. R. Cornelis. 1983. Study of the incompatibility and replication of the 70-kb virulence plasmid of Yersinia. Plasmid 10: 279 289.
5. Bick, D. P.,, and J. Shi. 1994. A single 43-bp sopC repeat of plasmid mini-F is sufficient to allow assembly of a functional nucleoprotein partition complex. Proc. Natl. Acad. Sci. USA 91: 8027 8031.
6. Biot, T.,, and G. R. Cornelis. 1988. The replication, partition and yop regulation of the pYV plasmids are highly conserved in Yersinia enterocolitica and Y. pseudotuberculosis. J. Gen. Microbiol. 134: 1525 1534.
7. Black, D. S.,, and J. B. Bliska. 2000. The RhoGAP activity of the Yersinia pseudotuberculosis cytotoxin YopE is required for antiphagocytic function and virulence. Mol. Microbiol. 37: 515 527.
8. Bolin, I.,, and H. Wolf-Watz. 1988. The plasmid-encoded Yop2b protein of Yersinia pseudotuberculosis is a virulence determinant regulated by calcium and temperature at the level of transcription. Mol. Microbiol. 2: 237 245.
9. Brubaker, R. R. 1991. Factors promoting acute and chronic diseases caused by yersiniae. Clin. Microbiol. Rev. 4: 309 324.
10. Brubaker, R. R. 1972. The genus Yersinia: biochemistry and genetics of virulence. Curr. Top. Microbiol. Immunol. 57: 111 158.
11. Brubaker, R. R. 1983. The Vwa + virulence factor of yersiniae: the molecular basis of the attendant nutritional requirement for Ca+ +. Rev. Infect. Dis. 5( Suppl. 4): S748 S758.
12. Butler, T. 1983. Plague and Other Yersinia Infections. Plenum Medical Book Co., New York, N.Y..
13. Comelis, G. R.,, A. Boland,, A. P. Boyd,, C. Geuijen,, M. Iriarte,, C. Neyt,, M. P. Sory,, and I. Stainier. 1998. The virulence plasmid of Yersinia, an antihost genome. Microbiol. Mol. Biol. Rev. 62: 1315 1352.
14. Cornelis, G. R.,, and F. Van Gijsegem. 2000. Assembly and function of type III secretory systems. Annu. Rev. Microbiol. 54: 735 774.
15. Cowan, S. T., 1974. In R. E. Buchanan, and N. E. Gibbons (ed.), Bergey's Manual of Determinitive Bacteriology, 8th ed. The Williams and Wilkins Co., Baltimore, Md..
16. DelSolar, G.,, R. Giraldo,, M. J. Ruiz-Echevarria,, M. Espinosa,, and R. Diaz-Orejas. 1998. Replication and control of circular bacterial plasmids. Microbiol. Mol. Biol. Rev. 62: 434 464.
17. Deng, W.,, V. Burland,, G. Plunkett,, A. Boutin,, G. F. Mayhcw,, P. Liss,, N. T. Perna,, D. J. Rose,, B. Mau,, D. C. Schwartz,, S. Zhou,, J. D. Fetherston,, L. E. Lindler,, R. R. Brubaker,, G. V. Piano,, S. C Straley,, K. A. McDonough,, M. L. Nilles,, J. S. Matson,, F. R. Blattner,, and R. D. Perry. 2002. Genome sequence of Yersinia pestis KIM. J. Bacteriol. 184: 4601 4611.
18. Dennis, D. T.,, and J. M. Hughes. 1997. Multidrug resistance in plague. New Engl. J. Med. 337: 702 704.
19. Dong, X. Q.,, L. E. Lindler,, and M. C. Chu. 2000. Complete DNA sequence and analysis of an emerging cryptic plasmid isolated from Yersinia pestis. Plasmid 43: 144 148.
20. Dong, X. Q.,, H. B. Pen,, F. Ye,, J. H. Huang,, and D. Z. Yu. 1994. A molecular epidemiological study of plasmid DNA of Yerseinia pestis strains from plague foci in Yunnan, China. Endem. Dis. Bull. China 9: 58 63.
21. Drozdov, I. G.,, A. P. Anisimov,, S. V. Samoilova,, I. N. Yezhov,, S. A. Yeremin,, A. V. Karlyshev,, V. M. Krasilnikova,, and V. I. Kravchenko. 1995. Virulent non-capsulate Yersinia pestis variants constructed by insertion mutagenesis. J. Med. Microbiol. 42: 264 268.
22. Du, Y.,, E. Galyov,, and A. Forsberg. 1995. Genetic analysis of virulence determinants unique to Yersinia pestis. Contrib. Microbiol. Immunol. 13: 321 324.
23. Du, Y.,, R. Rosqvist,, and A. Forsberg. 2002. Role of fraction 1 antigen of Yersinia pestis in inhibition of phagocytosis. Infect. Immun. 70: 1453 1460.
24. Filippov, A. A.,, N. S. Solodovnikov,, L. M. Kookleva,, and O. A. Protsenko. 1990. Plasmid content in Yersinia pestis strains of different origin. FEMS Microbiol. Lett. 55: 45 48.
25. Frean, J. A.,, A. T. Capper,, A. Bryskier,, and K. P. Klugman. 1996. In vitro activities of 14 antibiotics against 100 human isolates of Yersinia pestis from southern African plague focus. Antimicrob. Agents Chemother. 40: 2646 2647.
26. Friedlander, A. M.,, S. L. Welkos,, P. L. Worsham,, G. P. Andrews,, D. G. Heath,, G. W. Anderson Jr.,, M. L. Pitt,, J. Estep,, and K. Davis. 1995. Relationship between virulence and immunity as revealed in recent studies of the Fl capsule of Yersinia pestis. Clin. Infect. Dis. 21( Suppl. 2): S178 S181.
27. Galimand, M.,, A. Guiyoule,, G. Gerbaud,, B. Rasoamanana,, S. Chanteau,, E. Carniel,, and P. Courvalin. 1997. Multidrug resistance in Yersinia pestis mediated by a transferable plasmid. N. Engl. J. Med. 337: 677 680.
28. Galyov, E. E.,, S. Hakansson,, A. Forsberg,, and H. Wolf-Watz. 1993. A secreted protein kinase of Yersinia pseudotuberculosis is an indispensable virulence determinant. Nature 361: 730 732.
29. Galyov, E. E.,, S. Hakansson,, and H. Wolf-Watz. 1994. Characterization of the operon encoding the YpkA Ser/Thr protein kinase and the YopJ protein of Yersinia pseudotuberculosis. J. Bacteriol. 176: 4543 4548.
30. Galyov, E. E.,, A. V. Karlishev,, T. V. Chernovskaya,, D. A. Dolgikh,, O. Smirnov,, K. I. Volkovoy,, V. M. Abramov,, and V. P. Zav'yalov, 1991. Expression of the envelope antigen Fl of Yersinia pestis is mediated by the product of caflM gene having homology with the chaperone protein PapD of Escherichia coli. FEBS Lett. 286: 79 82.
31. Galyov, E. E.,, O. Smirnov,, A. V. Karlishev,, K. I. Volkovoy,, A. I. Denesyuk,, I. V. Nazimov,, K. S. Rubtsov,, V. M. Abramov,, S. M. Dalvadyanz,, and V. P. Zav'yalov. 1990. Nucleotide sequence of the Yersinia pestis gene encoding Fl antigen and the primary structure of the protein. Putative T and B cell epitopes. FEBS Lett. 277: 230 232.
32. Gerdes, K.,, J. Moller-Jensen,, and R. Bugge Jensen. 2000. Plasmid and chromosome partitioning: surprises from phylogeny. Mol. Microbiol. 37: 455 466.
33. Goguen, J. D.,, J. Yother,, and S. C. Straley. 1984. Genetic analysis of the low calcium response in Yersinia pestis mu dl(Ap lac) insertion mutants. J. Bacteriol. 160: 842 848.
34. Guiyoule, A.,, G. Gerbaud,, C. Buchrieser,, M. Galimand,, L. Rahalison,, S. Chanteau,, P. Courvalin,, and E. Carniel. 2001. Transferable plasmid-mediated resistance to streptomycin in a clinical isolate of Yersinia pestis. Emerg. Infect. Dis. 7: 43 48.
35. Hayes, F.,, and S. J. Austin. 1993. Specificity determinants of the PI and P7 plasmid centromere analogs. Proc. Natl. Acad. Sci. USA 90: 9228 9232.
36. Hinnebusch, B. J.,, M. L. Rosso,, T. G. Schwan,, and E. Carniel. 2002. High-frequency conjugative transfer of antibiotic resistance genes to Yersinia pestis in the flea midgut. Mol. Microbiol. 46: 349 354.
37. Hinnebusch, B. J.,, A. E. Rudolph,, P. Cherepanov,, J. E. Dixon,, T. G. Schwan,, and A. Forsberg. 2002. Role of Yersinia murine toxin in survival of Yersinia pestis in the midgut of the flea vector. Science 296: 733 735.
38. Hinnebusch, J.,, P. Cherepanov,, Y. Du,, A. Rudolph,, J. D. Dixon,, T. Schwan,, and A. Forsberg. 2000. Murine toxin of Yersinia pestis shows phospholipase D activity but is not required for virulence in mice. Int. J. Med. Microbiol. 290: 483 487.
39. Hu, P.,, J. Elliott,, P. McCready,, E. Skowronski,, J. Garnes,, A. Kobayashi,, R. R. Brubaker,, and E. Garcia. 1998. Structural organization of virulence-associated plasmids of Yersinia pestis. J. Bacteriol. 180: 5192 5202.
40. Iriarte, M.,, and G. R. Cornelis,. 1999. The 70-kilobase virulence plasmid of Yersinia, p. 91 126. In J. B. Kaper, and J. Hacker (ed.), Pathogenicity Islands and Other Mobile Virulence Elements. ASM Press, Washington, D.C..
41. Iriarte, M.,, and G. R. Cornelis. 1998. YopT, a new Yersinia Yop effector protein, affects the cytoskeleton of host cells. Mol. Microbiol. 29: 915 929.
42. Karlyshev, A. V.,, E. E. Galyov,, V. M. Abramov,, and V. P. Zav'yalov. 1992. CaflR gene and its role in the regulation of capsule formation of Y. pestis. FEBS Lett. 305: 37 40.
43. Karlyshev, A. V.,, E. E. Galyov,, O. Smirnov,, A. P. Guzayev,, V. M. Abramov,, and V. P. Zav'yalov. 1992. A new gene of the f1 operon of Y. pestis involved in the capsule biogenesis. FEBS Lett. 297: 77 80.
44. Lee, V. T.,, and O. Schneewind. 1999. Type III secretion machines and the pathogenesis of enteric infections caused by Yersinia and Salmonella spp. Immunol. Rev. 168: 241 255.
45. Leung, K. Y.,, B. S. Reisner,, and S. C. Straley. 1990. YopM inhibits platelet aggregation and is necessary for virulence of Yersinia pestis in mice. Infect. Immun. 58: 3262 3271.
46. Leung, K. Y.,, and S. C. Straley. 1989. The yopM gene of Yersinia pestis encodes a released protein having homology with the human platelet surface protein GPIb alpha. J. Bacteriol. 171: 4623 4632.
47. Lindler, L. E.,, G. V. Piano,, V. Burland,, G. F. Mayhew,, and F. R. Blattner. 1998. Complete DNA sequence and detailed analysis of the Yersinia pestis KIM5 plasmid encoding murine toxin and capsular antigen. Infect. Immun. 66: 5731 5742.
48. McDonough, K. A.,, A. M. Barnes,, T. J. Quan,, J. Montenieri,, and S. Falkow. 1993. Mutation in the pla gene of Yersinia pestis alters the course of the plague bacillus-flea (Siphonaptera: Ceratopbyllidae) interaction. J. Med. Entomol. 30: 772 780.
49. Montie, T. C. 1981. Properties and pharmacological action of plague murine toxin. Pharmacol. Ther. 12: 491 499.
50. Moore, R. L.,, and R. R. Brubaker. 1975. Hybridization and deoxyribonucleotide sequences of Yersinia enterocolitica and other selected members of Enterobacteriaceae. Int. J. Syst. Bacteriol. 25: 336 339.
51. Mulder, B.,, T. Michiels,, M. Simonet,, M. P. Sory,, and G. Cornelis. 1989. Identification of additional virulence determinants on the pYV plasmid of Yersinia enterocolitica W227. Infect. Immun. 57: 2534 2541.
52. Neyt, C.,, M. Iriarte,, V. H. Thi,, and G. R. Cornelis. 1997. Virulence and arsenic resistance in yersiniae. J. Bacteriol. 179: 612 619.
53. Osborn, M.,, S. Bron,, N. Firth,, S. Holsappcl,, A. Huddleston,, R. Kiewiet,, W. Meijer,, J. Seegers,, R. Skurry,, P. Terpstra,, C. M. Thomas,, P. Thorsted,, E. Tietze,, and S. L. Turner,. 2000. The evolution of bacterial plasmids, p. 301 350. In C. M. Thomas (ed.), The Horizontal Gene Pool. Harwood Academic Publishers, Amsterdam, The Netherlands.
54. Pai, C.,, and V. Mors. 1978. Production of enterotoxin by Yersinia enterocolitica. Infect. Immun. 19: 908 911.
55. Parkhill, J.,, B. W. Wren,, N. R. Thomson,, R. W. Titball,, M. T. Holden,, M. B. Prentice,, M. Sebaihia,, K. D. James,, C. Churcher,, K. L. Mungall,, S. Baker,, D. Basham,, S. D. Bentley,, K. Brooks,, A. M. Cerdeno-Tarraga,, T. Chillingworth,, A. Cronin,, R. M. Davies,, P. Davis,, G. Dougan,, T. Feltwell,, N. Hamlin,, S. Holroyd,, K. Jagels,, A. V. Karlyshev,, S. Leather,, S. Moule,, P. C. Oyston,, M. Quail,, K. Rutherford,, M. Simmonds,, J. Skelton,, K. Stevens,, S. Whitehead,, and B. G. Barrell. 2001. Genome sequence of Yersinia pestisy the causative agent of plague. Nature 413: 523 527.
56. Pepe, J. C.,, and V. L. Miller. 1993. Yersinia enterocolitica invasin: a primary role in the initiation of infection. Proc. Natl. Acad. Sci. USA 90: 6473 6477.
57. Perry, R. D.,, and J. D. Fetherston. 1997. Yersinia pestis— etiologic agent of plague. Clin. Microbiol. Rev. 10: 35 66.
58. Perry, R. D.,, S. C. Straley,, J. D. Fetherston,, D. J. Rose,, J. Gregor,, and F. R. Blattner. 1998. DNA sequencing and analysis of the low-Ca2+-response plasmid pCDl of Yersinia pestis KIM5. Infect. Immun. 66: 4611 4623.
59. Portnoy, D. A.,, and S. Falkow. 1981. Virulence-associated plasmids from Yersinia enterocolitica and Yersinia pestis. J. Bacteriol. 148: 877 883.
60. Portnoy, D. A.,, and R. J. Martinez. 1985. Role of a plasmid in the pathogenicity of Yersinia species. Curr. Top. Microbiol. Immunol. 118: 29 51.
61. Portnoy, D. A.,, H. Wolf-Watz,, I. Bolin,, A. B. Beeder,, and S. Falkow. 1984. Characterization of common virulence plasmids in Yersinia species and their role in the expression of outer membrane proteins. Infect. Immun. 43: 108 114.
62. Prentice, M. B.,, K. D. James,, J. Parkhill,, S. G. Baker,, K. Stevens,, M. N. Simmonds,, K. L. Mungall,, C. Churcher,, P. C. Oyston,, R. W. Titball,, B. W. Wren,, J. Wain,, D. Pickard,, T. T. Hien,, J. J. Farrar,, and G. Dougan. 2001. Yersinia pestis pFra shows biovar-specific differences and recent common ancestry with a Salmonella enterica serovar Typhi plasmid. J. Bacteriol. 183: 2586 2594.
63. Protsenko, O. A.,, P. I. Anisimov,, O. T. Mozharov,, N. P. Konnov,, and I. A. Popov, 1983. Detection and characterization of the plasmids of the plague microbe which determine the synthesis of pesticin I, fraction I antigen and "mouse" toxin exotoxin. Genetika 19: 1081 1090.
64. Rosqvist, R.,, A. Forsberg,, M. Rimpilainen,, T. Bergman,, and H. Wolf-Watz. 1990. The cytotoxic protein YopE of Yersinia obstructs the primary host defence. Mol. Microbiol. 4: 657 667.
65. Rosqvist, R.,, K. E. Magnusson,, and H. Wolf-Watz. 1994. Target cell contact triggers expression and polarized transfer of Yersinia YopE cytotoxin into mammalian cells. EMBO J. 13: 964 972.
66. Rudolph, A. E.,, J. A. Stuckey,, Y. Zhao,, H. R. Matthews,, W. A. Patton,, J. Moss,, and J. E. Dixon. 1999. Expression, characterization, and mutagenesis of the Yersinia pestis murine toxin, a phospholipase D superfamily member. J. Biol. Chem. 274: 11824 11831.
67. Samoilova, S. V.,, L. V. Samoilova,, I. N. Yezhov,, I. G. Drozdov,, and A. P. Anisimov. 1996. Virulence of pPst+ and pPst- strains of Yersinia pestis for guinea-pigs. J. Med. Microbiol. 45: 440 444.
68. Simpson, W. J.,, R. E. Thomas,, and T. G. Schvvan. 1990. Recombinant capsular antigen (fraction 1) from Yersinia pestis induces a protective antibody response in BALB/c mice. Am. J. Trap. Med. Hyg. 43: 389 396.
69. Smith, M. D.,, D. X. Vinh,, N. T. T. Hoa,, J. Wain,, D. Thung,, and N.J. White, 1995. In vitro antimicrobial susceptibilities of strain of Yersinia pestis. Antimicrob. Agents Chemother. 39: 2153 2154.
70. Snellings, N. J.,, M. Popek,, and L. E. Lindler. 2001. Complete DNA sequence of Yersinia enterocolitica serotype 0:8 low-calcium- response plasmid reveals a new virulence plasmid-associated replicon. Infect. Immun. 69: 4627 4638.
71. Sodeinde, O. A.,, Y. V. Subrahmanyam,, K. Stark,, T. Quan,, Y. Bao,, and J. D, Goguen. 1992. A surface protease and the invasive character of plague. Science 258: 1004 1007.
72. Straley, S. C.,, and W. S. Bowmer. 1986. Virulence genes regulated at the transcriptional level by Ca2+ in Yersinia pestis include structural genes for outer membrane proteins. Infect. Immun. 51: 445 454.
73. Straley, S. C.,, and M. L. Cibull. 1989. Differential clearance and host-pathogen interactions of YopE- and YopK- YopL- Yersinia pestis in BALB/c mice. Infect. Immun. 57: 1200 1210.
74. Titball, R. W.,, A. M. Howells,, P. C. Oyston,, and E. D. Williamson. 1997. Expression of the Yersinia pestis capsular antigen (Fl antigen) on the surface of an aroA mutant of Salmonella typhimurium induces high levels of protection against plague. Infect. Immun. 65: 1926 1930.
75. Vanooteghem, J. C.,, and G. R. Cornelis. 1990. Structural and functional similarities between the replication region of the Yersinia virulence plasmid and the RepFIIA replicons. Bacteriol. 172: 3600 3608.
76. Von Pawel-Rammingen, U.,, M. V. Tclepnev,, G. Schmidt,, K. Aktories,, H. Wolf-Watz,, and R. Rosqvist. 2000. GAP activity of the Yersinia YopE cytotoxin specifically targets the Rho pathway: a mechanism for disruption of actin microfilament structure. Mol. Microbiol. 36: 737 748.
77. Welkos, S. L.,, K. M. Davis,, L. M. Pitt,, P. L. Worsham,, and A. M. Freidlander. 1995. Studies on the contribution of the Fl capsule-associated plasmid pFra to the virulence of Yersinia pestis. Contrib. Microbiol. Immunol. 13: 299 305.
78. Welkos, S. L.,, A. M. Friedlander,, and K.J. Davis. 1997. Studies on the role of plasminogen activator in systemic infection by virulent Yersinia pestis strain C092. Microb. Pathog. 23: 211 223.
79. Worsham, P. L.,, M. P. Stein,, and S. L. Welkos. 1995. Construction of defined Fl negative mutants of virulent Yersinia pestis. Contrib. Microbiol. Immunol. 13: 325 328.
80. Youngren, B.,, L. Radnedge,, P. Hu,, E. Garcia,, and S. Austin. 2000. A plasmid partition system of the Pl-P7par family from the pMTl virulence plasmid of Yersinia pestis. J. Bacteriol. 182: 3924 3928.

Tables

Generic image for table
Table 1

Molecular properties of plasmids

Citation: Lindler L. 2004. Virulence Plasmids of : Characteristics and Comparison, p 423-438. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch20
Generic image for table
Table 2

List of pLcr-encodcd established effector proteins and virulence properties

Citation: Lindler L. 2004. Virulence Plasmids of : Characteristics and Comparison, p 423-438. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch20

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error