Chapter 5 : Partition Systems of Bacterial Plasmids

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Partition Systems of Bacterial Plasmids, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817732/9781555812652_Chap05-1.gif /docserver/preview/fulltext/10.1128/9781555817732/9781555812652_Chap05-2.gif


Plasmids, as extrachromosomal elements, bear the burden of ensuring their own faithful segregation at cell division. This chapter reviews partition systems, which are, in general, systems that actively dictate the specific localization of plasmids inside the bacterial cell and coordinate this localization with the bacterial cell cycle. Partition systems also exert incompatibility, which is distinct from the replication-mediated incompatibility that has been used to classify plasmids. Growth of the membrane between attachment sites was proposed to push plasmids apart. It was subsequently shown that membrane growth is dispersive and thus cannot solely account for plasmid movement. An appealing candidate for the plasmid road sign is the bacterial replication apparatus. Experiments in and indicate that the replication machinery exists as localized factories in the cell. The intracellular localization patterns of the ParA from the virulence plasmid pB171 provide an intriguing clue as to the mechanism of ParA function. RepA and RepB are not essential for replication but are essential for plasmid stability. They have been shown to influence copy number, but this may be due to effects on the expression of . Recent cell biology, biochemical, and structural data show that R1 ParM looks and behaves like actin and suggest a partition model in which ParM acts as a cytoskeletal element to drive the movement of plasmids during the cell cycle.

Citation: Funnell B, Slavcev R. 2004. Partition Systems of Bacterial Plasmids, p 81-104. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch5

Key Concept Ranking

Bacterial Proteins
Genetic Elements
Integral Membrane Proteins
Bacterial Chromosome
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

General scheme depicting a plasmid partition reaction. Newly replicated plasmids at the cell center are separated and relocated to the quarter-cell positions prior to septum formation. These positions become the cell center in newly replicated daughter cells. The components of the apparatus tethering the plasmid to the cell (shown as dotted oval) are still unidentified.

Citation: Funnell B, Slavcev R. 2004. Partition Systems of Bacterial Plasmids, p 81-104. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Genetic organization of plasmid partition loci, representing the five groups of partition systems that are discussed in the text. Bach group is labeled by one or two representative members (see Table 1 ). Genes encoding partition proteins are shown as black bars, whereas gray bars and text denote nonpartition genes that are cotranscribed with partition genes. Checkered boxes denote -acting genetic elements, i.e., operators and centromeres. The O O operators, depicted for the RK2 plasmid partition locus, are specifically bound by KorA and KorB, respectively. Arrows indicate promoters and the direction of transcription.

Citation: Funnell B, Slavcev R. 2004. Partition Systems of Bacterial Plasmids, p 81-104. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Phylograms of partition ATPases (assembled using AlignX/Vector NT1 software; InforMax) ( ). Groups of similar sequences are labeled as in Table 1 . For plasmids encoding dual partition systems, the specific partition ATPase is listed after the plasmid. (A) Walker-type partitioning ATPases. Horizontal line lengths reflect relative evolutionary distances between 60 deviant Walker-type partitioning ATPases encoded on various plasmids (listed adjacent to phylogram), and branches are drawn proportional to the amount of inferred character change. (B) Actin-like partition ATPases. Horizontal lengths represent relative evolutionary distance between seven actin-like partition ATPases. The actin-like ATPases in (B) have no significant sequence similarity to the Walker-type ATPases listed in (A).

Citation: Funnell B, Slavcev R. 2004. Partition Systems of Bacterial Plasmids, p 81-104. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Arrangement of protein sequence motifs in (A) partition ATPases and (B) centromere-binding proteins of partition systems that contain Walker-type partition ATPases. The motifs are described in the text. In (A), the shaded lines below the motif diagram indicate the regions carried on different ATPases. In (B), the short ParB/ParG proteins of the pTAR/TP228 group of plasmids are not members of this ParB protein family and are not included.

Citation: Funnell B, Slavcev R. 2004. Partition Systems of Bacterial Plasmids, p 81-104. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Organization of the P1 and F partition sites. In (A) and (B), checkered boxes represent partition sites downstream of the partition genes (gray rectangles). Arrows denote the direction of repeated sequences. (A) P1 , identifying the Box A (white boxes labeled A1 to A4) and Box B (black boxes labeled B1 and B2) motifs that are recognized by ParB, and the IHF binding site. (B) a set of twelve 43-bp repeats (large arrows) that each contain a smaller inverted repeat (smaller colliding arrows). (C) Alignment of the sequences of three known sites (P1, P7, and pMT1) with four putative sites (pSLT, 50K virulence plasmid, Rtsl, and pWR501) (see Table 1 for ParA, ParB, and species information). The known or predicted (from alignment with P1 and P7 sequences) ParB Box A and Box B motifs and IHF-binding sites are illustrated as in (A). Note that Boxes B1, B2, A2, and A3 are the only ParB motifs that are essential for formation of the high-affinity ParB-IHF complex at P1 ( ). In addition, although the pWR501 sequence has a 21-bp insertion between the IHF site and the right side of ( ), such insertions are permitted in P1 if they represent an integral number of turns of the DNA helix ( ). The accession numbers for these sequences are: P1, K02380; P7, X17529; pMT1, AF074611; pSLT, AE006471; P50K, AB040415; Rtsl, AP004237; pWR50l, NC_002698.

Citation: Funnell B, Slavcev R. 2004. Partition Systems of Bacterial Plasmids, p 81-104. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Abeles, A. L.,, and S. J . Austin. 1991. Antiparallel plasmid plasmid pairing may control P1-plasmid replication. Proc. Natl. Acad. Sci USA 88:90119015.
2. Abeles, A. L. S. A. Friedman, and S. J. Austin. 1985. Partition of unit-copy miniplasmids to daughter cells. III. The DNA sequence and functional organization of the P1 partition region. J. Mol. Biol. 185:261272.
3. Austin, S.,, and A. Abeles. 1983. Partition of unit-copy miniplasmids to daughter cells. I. P1 and F miniplasmids contain discrete, interchangeable sequences sufficient to promote equipartition. J. Mol. Biol. 169:353372.
4. Austin, S., and A, Abeles. 1983. Partition of unit-copy miniplasmids to daughter cells. II. The partition region of miniplasmid P1 encodes an essential protein and a centromere-like site at which it acts. J. Mol. Biol. 169:373387.
5. Austin, S.,, and K. Nordstrom. 1990. Partition-mediated incompatibility of bacterial plasmids. Cell 60:351354,
6. Austin, S. J . 1984. Bacterial plasmids that carry two functional centromere analogs are stable and are partitioned faithfully. J. Bacteriol. 158:742745.
7. Autret, S.,, and J. Errington. 2003. A role for division-site-selection protein MinD in regulation of intcrnucleoid jumping of Soj (ParA) protein in Bacillus subtilis. Mol. Microbiol. 47:159169.
8. Bartosik, D.,, J . Baj,, E. Piechucka,, E. Waker,, and M. Wlodarczyk. 2002. Comparative characterization of repABC-type replicons of Paracoccus pantotrophus composite plasmids. Plasmid 48:130141.
9. Bartosik, D.,, J . Baj,, and M. Wlodarczyk. 1998. Molecular and functional analysis of pTAV320. a repABC-type replicon of the Paracoccus versutus composite plasmid pTAV1. Microbiology. 144:31493157.
10. Bartosik, D.,, M. Szymanik,, and E. Wysocka. 2001. Identification of the partitioning site within the repABC-type replicon of the composite Paracoccus versutus plasmid pTAV1. J. Bacteriol. 183:62346243.
11. Bick, D. P.,, and J . P. Shi. 1994. A single 43-bp sopC repeat of plasmid mini-F is sufficient to allow assembly of a functional nucleoprotein partition complex. Proc. Natl. Acad. Sci. USA 91:80278031.
12. Bick, D. P.,, and J . Strings. 1995. Partition functions of mini-F affect plasmid DNA topology in Escherichia coli. J . Mol. Biol. 246:388400.
13.Bignell, C , and C. M. Thomas. 2001. The bacterial ParA-ParB partitioning proteins. J . Biotechnol. 91:134.
14. Bignell, C. R.,, A. S. Haines,, D. Khare,, and C. M. Thomas. 1999. Effect of growth rate and incC mutation on symmetric plasmid distribution by the IncP-1 partitioning apparatus. Mol. Microbiol. 34:205216.
15. Bouct, J.-Y.,, and B. E. Funnell. 1999. PI ParA interacts with the PI partition complex at parS and an ATP-ADP switch controls ParA activities. EMBO J . 18:14151424.
16. Bouet, J.-Y.,, J. A. Surtees,, and B. E. Funnell. 2000. Stoichiometry of P1 plasmid partition complexes. J . Biol. Chem. 275:82138219.
17. Breuner, A.,, R. B. Jensen,, M. Dam,, S. Pedersen,, and K. Gerdes. 1996. The centromere-like parC locus of plasmid R1. Mol. Microbiol. 20:581592.
18. Casjens, S., N, Palmer, R. V. Vugt, W. M. Huang, B. Stevenson, P. Rosa, R. Lathigra, G. Sutton, J . Peterson, R. J. Dodson, D. Haft, E. Hickey, M. Gwinn, O. White, and C. M. Fraser. 2000. A bacterial genome in flux: the twelve linear and nine circular extrachromosomal DNAs in an infectious isolate of the Lyme disease spirochete Borrelia burgdorferi. Mol. Microbiol. 35:490516.
19.Cerin, H. and J . Hackett. 1993. The parVP region of the Satmonella-typhimurium virulence plasmid pSLT contains 4 loci required for incompatibility and partition. Plasmid 30:3038.
20. Cevallos, M. A.,, H. Porta,, J . Izquierdo, C Tun-Garrido, A. Garcia-de-los-Santos, G. Davila, and S. Brom. 2002. Rbizobium etli CFN42 contains at least three plasmids of the repABC family: a structural and evolutionary analysis. Plasmid 48:104116.
21. Conley, D. L.,, and S. N. Cohen. 1995. Isolation and characterization of plasmid mutations that enable partitioning of pSC101 replicons lacking the partition (par) locus .J. Bacteriol. 177:10861089.
22. Cordell, S. C , and J . Lowe. 2001. Crystal structure of the bacterial cell division regulator MinD. FEBS Lett. 492:160165.
23. Dam, M.,, and K. Gerdes. 1994. Partitioning of plasmid R1. Ten direct repeats flanking the parA promoter constitute a centromere-like partition site parC, that expresses incompatibility. J. Mol. Biol. 236:12891298.
24. Davey, M. J.,, and B. E. Funnell. 1994. The P1 plasmid partition protein ParA. A role for ATP in site-specific DNA binding. J. Biol. Chem. 269:2990829913.
25. Davey, M. J.,, and B . E . Funnell. 1997. Modulation of the P1 plasmid partition protein ParA by ATP, ADP and P1 ParB. J. Biol. Chem. 272:1528615292.
26. Davis, M. A.,, K. A. Martin,, and S. J. Austin. 1990. Specificity switching of the P1 plasmid centromere-like site. EMBO J. 9:991998.
27. Davis, M. A.,, K. A. Martin,, and S. J . Austin. 1992. Biochemical activities of the ParA partition protein of the P1 plasmid. Mol. Microbiol. 6:11411147.
28. Davis, M. A.,, L. Radnedge,, K. A. Martin,, F. Hayes,, B. Youngren,, and S. J. Austin. 1996. The P1 ParA protein and its ATPase activity play a direct role in the segregation of plasmid copies to daughter cells. Mol. Microbiol. 21:10291036.
29. deBoer, P. A. J.,, R. E. Crossley,, A. R. Hand,, and L. I. Rothfield. 1991. The MinD protein is a membrane ATPase required for the correct placement of the Escherichia coli division site. EMBO J. 10:43714380.
30. Delbruck, H.,, G. Zicgelin,, E. Lanka,, and U. Heinemann. 2002. An Src homology 3-like domain is responsible for dimerization of the repressor protein KorB encoded by the promiscuous IncP plasmid RP4. J. Biol. Chem. 277:41914198.
31. Dodd, I. B.,, and J. B. Egan. 1990. Improved detection of helix-turn-helix DNA-binding motifs in protein sequences. Nucleic Acids Res. 18:50195026.
32. Draper, G. C.,, and J. W. Gober. 2002. Bacterial chromosome segregation. Annu. Rev. Microbiol. 56:567597.
33. Ebersbach, G.,, and K. Gerdes. 2001. The double par locus of virulence factor pB171: DNA segregation is correlated with oscillation of ParA. Proc. Natl. Acad. Sci. USA 98:1507815083.
34. Edgar, R.,, D. K. Chattoraj,, and M. Yarmolinsky. 2001. Pairing of P1 plasmid partition sites by ParB. Mol. Microbiol. 42:13631370.
35. Erdmann, N.,, T. Pctroff,, and B. E. Funncll. 1999. Intracellular localization of P1 ParB protein depends on ParA and parS. Proc. Natl. Acad. Sci. USA 96:1490514910.
36. Ezaki, B.,, T. Ogura,, H. Niki,, and S. Hiraga. 1991. Partitioning of a mini-F plasmid into anucleate cells of the mukB null mutant. J. Bacteriol. 173:66436646.
37. Firth, N.,, S. Apisiridej,, T. Berg,, B. A. O'Rourke,, S. Curnock,, K. G. Dyke,, and R. A. Skurray. 2000. Replication of staphylococcal multiresistance plasmids. J. Bacteriol. 182: 21702178.
38.Freiberg, C , R. Fcllay, A. Bairoch, W. J , Broughton, A. Rosenthal, and X. Perret. 1997. Molecular basis of symbiosis between Rhizobium and legumes. Nature 387:394401.
39. Friedman, S. A.,, and S.J. Austin. 1988. The P1 plasmid-partition system synthesizes two essential proteins from an autoregulated operon. Plasmid 19:103112.
40. Fung, E.,, J.-Y. Bouet,, and B. E. Funnel!. 2001. Probing the ATP-binding site of P1 ParA: partition and repression have different requirements for ATP binding and hydrolysis. EMBO J. 20:49014911.
41. Funnell, B. E. 1988. Mini-Pi plasmid partitioning: excess ParB protein destabilizes plasmids containing the centromere parS. J. Bacteriol. 170:954960.
42. Funncll, B. E. 1988. Participation of Escherichia coli integration host factor in the P1 plasmid partition system. Proc. Natl. Acad. Sci. USA 85:66576661.
43. Funnell, B. E. 1991. The P1 partition complex at parS: the influence of Escherichia coli integration host factor and of substrate topology. J. BioL Chem. 266:1432814337.
44. Funnell, B. E.,, and L. Gagnier. 1993. The PI plasmid partition complex at parS: II. Analysis of ParB protein binding activity and specificity. J. Biol Chem. 268:36163624.
45. Funnell, B. E.,, and L. Gagnier. 1994. P1 plasmid partition: binding of P1 ParB protein and Escherichia coli integration host factor to altered parS sites. Biochimie 76:924932,
46. Funnell, B. E.,, and L. Gagnier. 1995. Partition of P1 plasmids in Escherichia coli mukB chromosomal partition mutants. J. Bacteriol. 177:23812386.
47. Gallie, D. R.,, and C. I. Kado. 1987. Agrobacterium tumefaciens pTAR parA promoter region involved in autoregulation, incompatibility, and plasmid partitioning. J. Mol. Biol. 193:465478.
48. Georgiadis, M. M.,, H. Komiya,, P. Chakrabarti,, D. Woo,, J . J . Kornuc,, and D. C. Rees, 1992. Crystallographic structure of the nitrogenase iron protein for Azotobacter vinelandii. Science 257:16531659.
49.Gerdes, K. J . Mollcr-Jensen, and R. B. Jensen. 2000. Plasmid and chromosome partitioning: surprises from phylogeny. Mol. Microbiol. 37:455466.
50. Godfrin-Estevenon, A. M.,, F. Pasta, and D, Lane. 2002. The parAB gene products of Pseudomonas putida exhibit partition activity in both P.putida and Escherichia coli. Mol. Microbiol. 43:3949.
51. Gordon, G. S.,, D. Sitnikov,, C. D. Webb,, A. Teleman,, A. Straight,, R. Losick,, A. W. Murray,, and A. Wright. 1997. Chromosome and low copy plasmid segregation in E. coli: visual evidence for distinct mechanisms. Cell 90:11131121.
52. Gordon, G. S.,, and A. Wright. 2000. DNA segregation in bacteria. Annu. Rev. Microbiol. 54:681708.
53. Green, E. W.,, and M. Schaechter. 1972. The mode of segregation of the bacterial cell membrane. Proc. Natl. Acad. Sci. USA 69:23122316.
54.Grigoricv, P, S., and M. B. Lobocka. 2001. Determinants of segregational stability of the linear plasmid-prophage N15 of Escherichia coli. Mol. Microbiol. 42:355368.
55. Hanai, R.,, R. P. Liu,, P. Bencdetti,, P. R. Caron,, A. S. Lynch,, and J . C. Wang. 1996. Molecular dissection of a protein SopB essential for Escherichia coli F plasmid partition. J. Biol. Chem. 271:1746917475.
56. Hao, J. J.,, and M. Yarmolinsky. 2002. Effects of the P1 plasmid centromere on expression of P1 partition genes. J. Bacteriol. 184:48574867.
57. Hayashi, I.,, T. Oyama, and K. Morikawa. 2001. Structural and functional studies of MinD ATPase: implications for the molecular recognition of the bacterial cell division apparatus. EMBO J. 20:18191828.
58. Hayes, F. 2000. The partition system of multidrug resistance plasmid TP228 includes a novel protein that epitomizes an evolutionarily distinct subgroup of the ParA superfamily. Mol. Microbiol. 37:528541.
59. Hayes, F.,, and S. Austin. 1994. Topological scanning of the P1 plasmid partition site. J. Mol. Biol. 243:190198.
60. Hayes, F.,, L. Radnedge,, M. A. Davis,, and S. J. Austin. 1994. The homologous operons for P1 and P7 plasmid partition are autoregulated from dissimilar operator sites. Mol. Microbiol. 11:249260.
61. Helsberg, M.,, and R. Eichenlaub. 1986. Twelve 43-base-pair repeats map in a cis-acting region essential for partition of plasmid mini-F. J. Bacteriol. 165:10431045.
62. Hiraga, S. 1992. Chromosome and plasmid partition in Escherichia coli. Annu. Rev. Biochem. 61:283306.
63. Hiraga, S. 2000. Dynamic localization of bacterial and plasmid chromosomes. Annu. Rev. Genet. 34:2159.
64. Hiraga, S.,, C. Ichinose,, H. Niki,, and M. Yamazoe. 1998. Cell cycle-dependent duplication and bidirectional migration of SeqA-associated DNA-protein complexes in E. coli. Mol. Cell 1:381387.
65. Hirano, M.,, H. Mori,, T. Onogi,, M. Yamazoc,, H. Niki,, T. Ogura,, and S. Hiraga. 1998. Autoregulation of the partition genes of the mini-F plasmid and the intracellular localization of their products in Escherichia coli. Mol. Gen. Genet. 257:392403.
66. Ho, T. Q.,, Z. Zhong,, S. Aung,, and J. Pogliano. 2002. Compatible bacterial plasmids are targeted to independent cellular locations in Escherichia coli. EMBO J. 21:18641872.
67. Hu, Z. L.,, and J . Lutkenhaus. 2001. Topological regulation of cell division in E. coli: spatiotemporal oscillation of MinD requires stimulation of its ATPase by MinE and phospholipid. Mol. Cell 7:13371343.
68.Ingmer, H. and S. N. Cohen. 1993. Excess intracellular concentration of the pSC101 RepA protein interferes with both plasmid DNA replication and partitioning. J. Bacteriol. 175:78347841.
69. Inui, M.,, J . H. Roh,, K. Zahn,, and H. Yukawa. 2000. Sequence analysis of the cryptic plasmid pMG101 from Rhodopseudo-monas palustris and construction of stable cloning vectors. Appl. Environ. Microbiol. 66:5463.
70. Ireton, K.,, N. W. Gunther,, and A. D. Grossman. 1994. spoOJ is required for normal chromosome segregation as well as the initiation of sporulation in Bacillus subtilis. J. Bacteriol. 176:53205329.
71. Jacob, F.,, S. Brenner,, and F. Cuzin. 1963. On the regulation of DNA replication in bacteria. Cold Spring Harbor Symp. Quant Biol. 228:329348.
72. JaguraBurdzy, G.,, K. Kostelidou,, J . Pole,, D. Khare,, A. Jones,, D. R. Williams, and C M. Thomas. 1999. IncC of broadhost- range plasmid RK2 modulates KorB transcriptional repressor activity in vivo and operator binding in vitro. J. Bacteriol. 181:28072815.
73. Jang, S. B. L. C. Seefeldt, and J . W. Peters. 2000. Insights into nucleotide signal transduction in nitrogenase: protein with MgADP bound. Biochemistry 39:1474514752.
74. Jensen, R. B.,, M. Dam,, and K. Gerdes. 1994. Partitioning of plasmid R1. The parA operon is autoregulated by ParR and its transcription is highly stimulated by a downstream activating element. J. MoL Biol. 236:12991309.
75. Jensen, R. B,, and K. Gerdes. 1997. Partitioning of plasmid R1. The ParM protein exhibits ATPase activity and interacts with the centromere-like ParR-parC complex. J. Mol. Biol. 269:505513.
76. Jensen, R. B.,, and K. Gerdes. 1999. Mechanism of DNA segregation in prokaryotes: ParM partitioning protein of plasmid R1 co-localizes with its replicon during the cell cycle. EMBO J. 18:40764084.
77. Jensen, R. B.,, R. Lurz,, and K. Gerdes. 1998. Mechanism of DNA segregation in prokaryotes: replicon pairing by parC of plasmid R1. Proc. Natl. Acad. Sci. USA 95:85508555.
78. Kalnin, K.,, S. Stegalkina,, and M. Yarmolinsky. 2000. pTAR-encoded proteins in plasmid partitioning. J. Bacteriol. 182:18891894.
79. Kearney,, K.,, G. F. Fitzgerald,, and J. F. M. L. Seegers. 2000. Identification and characterization of an active plasmid partition mechanism for the novel Lactococcus lactis plasmid pCI2000. J. Bacteriol. 182:3037.
80. Kim, H. J. , M. J. Calcutt, F. J . Schmidt, and K. F, Chater. 2000. Partitioning of the linear chromosome during sporulation of Streptomyces coeticolor A3(2) involves an oriCl-inked parAB locus. J. Bacteriol. 182:13131320.
81. Kim, S. K.,, and J . C. Wang. 1998. Localization of F plasmid SopB protein to positions near the poles of Escherichia coli cells. Proc. Natl. Acad. Sci. USA 95:15231527.
82. Kim, S.-K.,, and J . C. Wang, 1999. Gene silencing via protein-mediated subcellular localization of DNA. Proc. Natl. Acad. Sci. USA 96:85578561.
83. Koonin, E. V, 1993. A superfamily of ATPases with diverse functions containing either classical or deviant ATP-binding motif. J. Mol. Biol. 229:11651174. (Corrigendum 232:1013).
84. Kwong, S. M.,, C. C. Yeo,, and C. L. Poh. 2001. Molecular analysis of the pRA2 partitioning region: ParB autoregulates parAB transcription and forms a nucleoprotein complex with the plasmid partition site, parS. Mol. Microbiol. 40:621633.
85. Lawley, T. D.,, and D. E. Taylor. 2003. Characterization of the double-partitioning modules of R27: correlating plasmid stability with plasmid localization. J. Bacteriol. 185:30603067.
86.LeDantec, C , N. Winter, B. Gicquel, V. Vincent, and M. Picardeau. 2001. Genomic sequence and transcriptional analysis of a 23-kilobase mycobacterial linear plasmid: evidence for horizontal transfer and identification of plasmid maintenance systems. J. Bacteriol. 183:21572164.
87. Lemon, K. P.,, and A. D. Grossman. 1998. Localization of bacterial DNA polymerase: evidence for a factory model of replication. Science 282:15161519.
88. Lemon, K. P.,, and A. D. Grossman. 2001. The extrusion-capture model for chromosome partitioning in bacteria. Genes Dev. 15:20312041.
89. Lemonnier, M. J. Y. Bouet, V. Libante, and D. Lane. 2000. Disruption of the F plasmid partition complex in vivo by partition protein SopA. Mol. Microbiol. 38:493503.
90. Lewis, R. A.,, C. R. Bignell,, W. Zeng,, A. C. Jones,, and C. M. Thomas. 2002. Chromosome loss from par mutants of Pseudomonas putida depends on growth medium and phase of growth. Microbiology 148:537548.
91. Li, P.-L.,, and S. K. Farrand. 2000. The replicator of the nopaline-type Ti plasmid pTiC58 is a member of the repABC family and is influenced by the TraR-dependent quorumsensing regulatory system. J. Bacteriol. 182:179188.
92. Li, Y. F., and S, Austin. 2002. The P1 plasmid is segregated to daughter cells by a 'capture and ejection' mechanism coordinated with Escherichia coli cell division. Mol. Microbiol. 46:6374.
93. Libante, V.,, L. Thion,, and D. Lane. 2001. Role of the ATP-binding site of SopA protein in partition of the F plasmid. J. Mol. Biol. 314:387399.
94. Lin, Z. C , and L. P. Mallavia. 1994. Identification of a partition region carried by the plasmid QpH1 of Coxiella burnetii. Mol. Microbiol. 13:513523.
95. Lin, Z. C.,, and L. P. Mallavia. 1998. Membrane association of active plasmid partitioning protein A in Escherichia coli. J. Biol. Chem. 273:1130211312.
96. Lin, Z., C.,, and L. P. Mallavia. 1999. Functional analysis of the active partition region of the Coxiella brunetii plasmid QpH1. J. Bacteriol. 181:19471952.
97. Lobocka, M.,, and M. Yarmolinsky, 1996. P1 plasmid partition: a mutational analysis of ParB. J. Mol. Biol. 259:366382.
98. Ludtke, D. N.,, B. G. Eichorn,, and S. J . Austin. 1989. Plasmid-partition functions of the P7 prophage. J. Mol. Biol. 209:393406.
99. Lukaszewicz, M.,, K. Kostelidou,, A. A. Bartosik,, G. D. Cooke,, C. M. Thomas,, and G. JaguraBurdzy. 2002. Functional dissection of the ParB homologue (KorB) from IncP-1 plasmid RK2. Nucleic Acids Res. 30:10461055.
100. Lynch, A. S.,, and J. C. Wang. 1994. Use of an inducible site-specific recombinase to probe the structure of protein-DNA complexes involved in F plasmid partition in Escherichia coli. J. Mol. Biol. 236:679684.
101. Lynch, A. S.,, and J . C. Wang. 1995. SopB protein-meditated silencing of genes linked to the sopC locus of Escherichia coli F plasmid. Proc. Natl. Acad. Sci. USA 92:18961900.
102. Macartney, D. P.,, D. R. Williams,, T. Stafford,, and C. M. Thomas. 1997. Divergence and conservation of the partitioning and global regulation functions in the central control region of the IncP plasmids RK2 and R751. Microbiology 143:21672177.
103. Marston, A. L.,, and J. Errington. 1999. Dynamic movement of the ParA-like Soj protein of B. subtilis and its dual role in nucleoid organization and developmental regulation. Mol. Cell 4:673682.
104. Marston, A. L.,, H. B. Thomaides,, D. H. Edwards,, M. E. Sharpe,, and J . Errington. 1998. Polar localization of the MinD protein of Bacillus subtilis and its role in selection of the mid-cell division site. Genes Dev. 12:34193430.
105. Martin, K. A.,, M. A. Davis,, and S. Austin, 1991. Fine-structure analysis of the PI plasmid partition site. J. Bacteriol. 173:36303634.
106. Martin, K. A.,, S. A. Friedman,, and S. J. Austin. 1987. Partition site of the P1 plasmid. Proc. Natl. Acad. Sci. USA 84:85448547.
107. McEachern, M. J. , M. A. Bott, P. A. Tooker, and D. R. Helinski. 1989. Negative control of plasmid R6K replication: possible role of intermolecular coupling of replication origins. Proc. Natl. Acad. Sci. USA 86:79427946.
108. Meacock, P. A.,, and S. N. Cohen. 1980. Partitioning of bacterial plasmids during cell division: a cis-acting locus that accomplishes stable plasmid inheritance. Cell 20:529542.
109. Meinhardt, H.,, and P. A. J . deBoer. 2001. Pattern formation in Escherichia coli: a model for the pole-to-pole oscillations of Min proteins and the localization of the division site. Proc. Natl. Acad. Sci USA 98:1420214207.
110.Meyer. R., and M. Hinds. 1982. Multiple mechanisms for expression of incompatibility by broad-host-range plasmid RK2. J. Bacteriol 152:10781090.
111. Mileykovskaya, E.,, and W. Dowhan. 2000. Visualization of phospholipid domains in Escherichia coli by using the cardiolipin-specific fluorescent dye 10-N-nonyl acridine orange. J. Bacteriol. 182:11721175.
112. Miller, C.f and S. N. Cohen. 1999. Separate roles of Escherichia coli replication proteins in synthesis and partitioning of pSC101 plasmid DNA. J. Bacteriol. 181:75527557.
113. Miller, C. A.,, S. L. Beaucage,, and S. N. Cohen. 1990. Role of DNA superhelicity in partitioning of the pSC101 plasmid. Cell 62:127133.
114. Min, Y.,, A. Tabuchi,, Y. L. Fan,, D. D. Womble,, and R. H. Rownd. 1988. Complementation of mutants of the stability locus of IncFII plasmid NR1. Essential functions of the trans-acting stbA and stbB gene products. J. Mol. Biol. 204:345356.
115. Mohl, D. A.,, and J. W. Gober. 1997. Cell cycle-dependent polar localization of chromosome partitioning proteins in Caulobacter crescentus. Cell 88:675684.
116. Moller-Jensen, J.,, R. B. Jensen,, and K. Gerdes. 2000. Plasmid and chromosome segregation in prokaryotes. Trends Microbiol. 8:313320.
117. Moller-Jensen, J.,, R. B. Jensen,, J. Lowe,, and K. Gerdes. 2002. Prokaryotic DNA segregation by an actin-like filament. EMBO J. 21:31193127.
118. Mori, H.,, A. Kondo,, A. Ohshima. T. Ogura, and S. Hiraga. 1986. Structure and function of the F plasmid genes essential for partitioning. J. Mol. Biol. 192:115.
119. Mori, H.,, Y. Mori,, C. Ichinose,, H. Niki,, T. Ogura,, A. Kato, and S, Hiraga. 1989. Purification and characterization of SopA and SopB proteins essential for F plasmid partitioning. J. Biol. Chem. 264:1553515541.
120. Motallebi-Veshareh, M.,, D. A. Rouch,, and C. M. Thomas. 1990. A family of ATPases involved in active partitioning of diverse bacterial plasmids. Mol. Microbiol 4:14551463.
121. Niki, H.,, and S. Hiraga. 1997. Subcellular distribution of actively partitioning F plasmid during the cell division cycle in E. coli. Cell 90:951957.
122.Niki, H. and S. Hiraga. 1999. Subcellular localization of plasmids containing the oriC region of the Escherichia coli chromosome, with or without the sopABC partitioning system. Mol. Microbiol. 34:498503.
123. Nishiguchi, R.,, M. Takanami,, and A. Oka. 1987. Characterization and sequence determination of the replicator region of the hairy-root-inducing plasmid pRiA4b. Mol. 141. Gen. Genet. 206:18.
124. Ogura, T.,, and S. Hiraga. 1983. Partition mechanism of F plasmid: two plasmid gene-encoded products and a cis-acting region are involved in partition. Cell 32:351360.
125. Pabo, C. O.,, and R. T. Sauer. 1992. Transcription factors: structural families and principles of DNA recognition. Annu. Rev. Biochem. 61:10531095.
126. Pansegrau,, W.,, E. Lanka,, P. T. Barth,, D. H. Figurski,, D. G. Guiney,, D. Haas,, D. R. Helinski,, H. Schwab,, V. A. Stanisich,, and C. M. Thomas. 1994. Complete nucleotide sequence of Birmingham IncPα plasmids. Compilation and comparative analysis. J. Mol. Biol. 239:623663.
127. Pogliano, J.,, T. Q. Ho,, Z. P. Zhong,, and D. R. Helinski. 2001. Multicopy plasmids are clustered and localized in Escherichia coli. Proc. Natl. Acad. Sci. USA 98:44864491.
128. Quisel, J. D.,, D. C. H. Lin,, and A. D. Grossman. 1999. Control of development by altered localization of a transcription factor in B. subtilis. Mol. Cell 4:665672.
129. Radnedge, L.,, M. A. Davis,, and S. J. Austin. 1996. P1 and P7 plasmid partition: ParB protein bound to its partition site makes a separate discriminator contact with the DNA that determines species specificity. EMBO J. 15:11551162.
130. Radnedge, L.,, B. Youngren,, M. Davis, and S, Austin. 1998. Probing the structure of complex macromolecular interactions by homolog specificity scanning: the P1 and P7 plasmid partition systems. EMBO J. 17:60766085.
131. Ramirez-Romero, M. A.,, N. Soberon,, A. Perez-Oseguera,, J . Tellez-Sosa,, and M. A. Cevallos. 2000. Structural elements required for replication and incompatibility of the Rhizobium etli symbiotic plasmid. J. Bacteriol. 182:31173124.
132. Ramirez-Romero, M. A.,, J. Tellez-Sosa,, H. Barrios,, A. Perez-Oscguera,, V. Rosas,, and M. A. Cevallos. 2001. RepA negatively autoregulates the transcription of the repABC operon of the Rhizobium etli symbiotic plasmid basic replicon. Mol. Microbiol. 41:195204.
133. Raskin, D. M.,, and P. A. J. deBoer. 1999. Rapid pole-to-pole oscillation of a protein required for directing division to the middle of Escherichia coli. Proc. Natl. Acad. Sci. USA 96:49714976.
134. Ravin, N.,, and D. Lane. 1999. Partition of the linear plasmid N15: interactions of N15 partition functions with the sop locus of the F plasmid. J. Bacteriol. 181:68986906.
135. Rice, P. A.,, S. W, Yang, K. Mizuuchi, and H. A. Nash. 1996. Crystal structure of an IHF-DNA complex: a protein-induced DNA U-turn. Cell 87:12951306.
136. Rodionov, O.,, M. Lobocka,, and M. Yarmolinsky. 1999. Silencing of genes flanking the P1 plasmid centromere. Science 283:546549.
137. Rosche, T. M.,, A. Siddique,, M. H. Larsen,, and D. H. Figurski. 2000. Incompatibility protein IncC and global regulator KorB interact in active partition of promiscuous plasmid RK2. J. Bacteriol 182:60146026.
138. Saitou, N.,, and M. Nei. 1987. The neighbour-joining method: a new method for reconstructing phylogenctic trees. Mol. Biol. Evol. 4:406425.
139.Sakai, N. M. Yao, H. Itou, N. Watanabe, F. Yumoto, M. Tanokura, and I. Tanaka. 2001. The three-dimensional structure of septum site-determining protein MinD from Pyrococcus horikoshii OT3 in complex with Mg-ADP. Structure 9:817826.
140. Sia, E. A.,, R. C Roberts,, C. Easter,, D. R. Helinski,, and D. H. Figurski. 1995. Different relative importance of the par operons and the effect of conjugal transfer on the maintenance of intact promiscuous plasmid RK2. J. Bacteriol 177:27892797.
141. Siddique, A.,, and D. H. Figurski. 2002. The active partition gene incC of IncP Plasmids is required for stable maintenance in a broad range of hosts. J. Bacteriol. 184:17881793.
142. Simpson, A. E.,, R. A. Skurray,, and N. Firth. 2003. A single gene on the staphylococcal multiresistance plasmid pSK1 encodes a novel partitioning system. J. Bacteriol 185:21432152.
143. Surtees, J. A.,, and B. E. Funncll. 1999. P1 ParB domain structure includes two independent multimerization domains. J. Bacteriol 181:58985908.
144. Surtees, J . A.,, and B. E. Funnell. 2001. The DNA binding domains of P1 ParB and the architecture of the P1 plasmid partition complex. J. Biol. Chem. 276:1238512394.
145. Surtees, J. A.,, and B. E. Funnell. 2003. Plasmid and chromosome traffic control: how ParA and ParB drive partition. Curr. Topics Dev. Biol. 56:145180.
146. Tabata, S.,, P. J. J. Hooykaas,, and A. Oka. 1989. Sequence determination and characterization of the replicator region in the tumor-inducing plasmid pTiB6S3. J. Bacteriol. 171:16651672.
147. Tabuchi, A.,, Y. N. Min,, D. D. Womble,, and R. H. Rownd. 1992. Autoregulation of the stability operon of incFII plasmid-NR1. Bacteriol. 174:76297634.
148. Thomas, C. M. 1986. Evidence for the involvment of the incC locus of broad host range plasmid RK2 in plasmid maintenance. Plasmid 16:1529.
149. Treptow, N.,, R. Rosenfeld,, and M. Yarmolinsky. 1994. Partition of nonreplicating DNA by the par system of bacteriophage P1, J. Bacteriol. 176:17821786.
150. Turner, S. L.,, and P. W, Young. 1995. The replicator region of the Rbizobium tegnminosarum cryptic plasmid pRL8J1. PEMS Microbiol. Lett. 133:5358.
151. van den Ent, F.,, J . Moller-Jensen,, L. A. Amos,, K. Gerdes,, and J. Lowe. 2002. F-actin-like filaments formed by plasmid segregation protein ParM. EMBO J. 21:69356943.
152. Venkatesan, M. M.,, M. B. Goldberg,, D. J. Rose,, E. J. Grotbcck,, V. Burland,, and F. R. Blattner. 2001. Complete DNA sequence and analysis of the large virulence plasmid of Shigella flexneri. Infect. Immun. 69:32713285.
153. Walilc, E.,, and A. Romberg. 1988. The partition locus of plasmid pSC101 is a specific binding site for DNA gyrasc. EMBO J. 7:18891895.
154. Watanabe, E.,, M. Wachi,, M. Yamasaki,, and K. Nagai. 1992. ATPase activity of SopA, a protein essential for active partitioning of F-plasmid. Mol. Gen. Genet. 234:346352.
155. Weitao, T.,, S. Dasgupta,, and K. Nordstrom. 2000. Plasmid R1 is present as clusters in the cells of Escherichia coli. Plasmid 43:200204.
156. Williams, D. R.,, D. P. Macartney,, and C. M. Thomas. 1998. The partitioning activity of the RK2 central control region requires only incC, korB and KorB-binding site O(B)3 but other KorB-binding sites form destabilizing complexes in the absence of O(B)3. Microbiology 44:33693378.
157. Williams, D. R., and C M. Thomas. 1992. Active partitioning of bacterial plasmids. J. Gen. Microbiol. 138:116.
158. Yarmolinsky, M. 2000. Transcriptional silencing in bacteria. Curr. Opin. Microbiol. 3:138143.
159. Yates, P.,, D. Lane,, and D. P. Biek. 1999. The F plasmid centromere, sopC, is required for full repression of the sopAB operon. J. Mol. Biol. 290:627638.
160. Youngren, B.,, and S. Austin. 1997. Altered ParA partition proteins of plasmid P1 act via the partition site to block plasmid propagation. Mol. Microbiol. 25:10231030.
161. Youngren, B.,, L. Radnedge,, P. Hu,, E. Garcia,, and S. Austin. 2000. A plasmid partition system of the P1-P7 par family from the pMT1 virulence plasmid of Yersinia pestis. J. Bacteriol. 182:39243928.
162. Zhou, T. Q.,, S. Radaev,, B. P. Rosen,, and D. L. Gatti. 2000. Structure of the ArsA ATPase: the catalytic subunit of a heavy metal resistance pump. EMBO J. 19:48384845.


Generic image for table
Table 1

Partition ATPases and associated centromere-binding proteins

Citation: Funnell B, Slavcev R. 2004. Partition Systems of Bacterial Plasmids, p 81-104. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch5

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error