1887

Chapter 8 : Topological Behavior of Plasmid DNA

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Topological Behavior of Plasmid DNA, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817732/9781555812652_Chap08-1.gif /docserver/preview/fulltext/10.1128/9781555817732/9781555812652_Chap08-2.gif

Abstract:

Chromosome topology is a fundamental property relevant to a wide range of biological processes including DNA replication, RNA transcription, genetic recombination, transposition, and DNA repair. One aim of this chapter is to summarize the understanding of plasmid topological behavior, and also point out experimental situations in which plasmid topology can be misinterpreted. In enteric bacteria, four distinct topoisomerases are able to change the linking status of plasmid DNA molecules. The known enzymes that alter linking number include Topo I, DNA gyrase, Topo III, and Topo IV. DNA gyrase and Topo IV are related enzymes that break both strands of DNA simultaneously and are classified as type II enzymes. Tests of all four enzymes indicate that Topo III does not normally contribute to the in vivo topology of plasmid DNA. Topo IV can remove negative supercoils from plasmid DNA in vivo, and topological balance inside living cells involves at least DNA gyrase, Topo I, and Topo IV. Intramolecular triplex DNA (H-DNA) may form at sequences containing long stretches of polypurine-polypyrimidine. In the H-form, half of either the purine- or pyrimidine-rich strand becomes unpaired and its complement becomes triple-stranded by forming Hoogsteen base pairs with purines in the major groove of the Watson-Crick base-paired segment. The ability to distinguish between constrained and unconstrained supercoiling is often necessary to fully explain topological changes that can be measured in plasmid DNA.

Citation: Patrick Higgins N, Vologodskii A. 2004. Topological Behavior of Plasmid DNA, p 193-202. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch8

Key Concept Ranking

Chromosomal DNA
0.4872715
Simian virus 40
0.43121138
0.4872715
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

The simplest knots (a) and catenanes (b). DNA molecules are capable of adopting these and many more complex topological states.

Citation: Patrick Higgins N, Vologodskii A. 2004. Topological Behavior of Plasmid DNA, p 193-202. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Diagram of closed circular DNA. The linking number, , of the complementary strands is 20.

Citation: Patrick Higgins N, Vologodskii A. 2004. Topological Behavior of Plasmid DNA, p 193-202. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Typical simulated conformations of supercoiled DNA 4.4 kb in length. The conformations correspond to DNA superhelix density of −0.03 (a) and −0.06 (b). The simulations were performed for close to physiological ionic conditions.

Citation: Patrick Higgins N, Vologodskii A. 2004. Topological Behavior of Plasmid DNA, p 193-202. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Gel electrophoretic separations of topoisomers of pUC19 DNA. The mixture of topoisomers covering the range of Δfrom 0 to −8 was electrophoresed from a single well in 1% agarose from top to bottom. The topoisomer with Δ= 0 has the lowest mobility; it moves slightly more slowly than the opened (nicked) circular DNA (OC). The value of (−Δ) for each topoisomer is shown.

Citation: Patrick Higgins N, Vologodskii A. 2004. Topological Behavior of Plasmid DNA, p 193-202. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Separation of pUC19 DNA topoisomers by two-dimensional gel electrophoresis. Topoisomers 1 to −4 have positive supercoiling; the rest have negative supercoiling. After electrophoresis was performed in the first direction, from top down, the gel was saturated with ligand intercalating into the double helix. Upon electrophoresis in the second direction, from left to right, the 12th and 13th topoisomers turned out to be relaxed. The spot in the top left corner corresponds to the open circular form (OC); the spot in the middle of the gel corresponds to the linear DNA (L).

Citation: Patrick Higgins N, Vologodskii A. 2004. Topological Behavior of Plasmid DNA, p 193-202. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Resolution of knotted forms of plasmid DNA by high-resolution gel electrophoresis from top (left) to bottom (right). Knot types are described in Fig. 1 . Reprinted from reference , with permission from Elsevier.

Citation: Patrick Higgins N, Vologodskii A. 2004. Topological Behavior of Plasmid DNA, p 193-202. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Figure 7. Alternative DNA structures that are stabilized by negative superhelical energy.

Citation: Patrick Higgins N, Vologodskii A. 2004. Topological Behavior of Plasmid DNA, p 193-202. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8
Figure 8

Two-dimensional gel showing the transition from B- to Z-DNA in plasmid DNA. Reprinted with permission from D. S. Kang and R. D. Wells ( ).

Citation: Patrick Higgins N, Vologodskii A. 2004. Topological Behavior of Plasmid DNA, p 193-202. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9
Figure 9

Conversion of interwound negative supercoils into catenane links by site-specific recombination. EM reprinted from reference . © 2001 National Academy of Sciences, U.S.A

Citation: Patrick Higgins N, Vologodskii A. 2004. Topological Behavior of Plasmid DNA, p 193-202. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 10
Figure 10

Alternative RNA-DNA structures that could initiate formation of constrained supercoiling in a plasmid containing a fragment of the chicken IgA switch region during transcription with T-7 RNA polymerase (see reference ).

Citation: Patrick Higgins N, Vologodskii A. 2004. Topological Behavior of Plasmid DNA, p 193-202. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 11
Figure 11

Replication intermediates identified in plasmid replication systems. (A) Replication initiated at a unique position leads to dual forks that move toward a terminus of replication. (B) Introduction of positive supercoiling leads to replication fork reversal and formation of a four-way junction. (C) Negative supercoiling, which can be generated by gyrase ahead of the fork, can be converted first into precatenanes (D), which become catenanes (E) upon completion of DNA synthesis. Topoisomerase activity in the replicated region can lead to knotted structures (F).

Citation: Patrick Higgins N, Vologodskii A. 2004. Topological Behavior of Plasmid DNA, p 193-202. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 12
Figure 12

Replication fork reversal in vivo. Reprinted with permission from reference . Copyright 2003 AAAS.

Citation: Patrick Higgins N, Vologodskii A. 2004. Topological Behavior of Plasmid DNA, p 193-202. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 13
Figure 13

Resolution of catenane (CATS) and precatenane links (RI) in plasmid DNA (see Fig. 5 ). Reprinted from reference with permission from Elsevier.

Citation: Patrick Higgins N, Vologodskii A. 2004. Topological Behavior of Plasmid DNA, p 193-202. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 14
Figure 14

Knotting of replication bubbles in vivo. Reprinted from reference with permission from Blackwell.

Citation: Patrick Higgins N, Vologodskii A. 2004. Topological Behavior of Plasmid DNA, p 193-202. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817732.chap8
1. Adrian, M.,, W. Wahli,, A. Z. Stasiak,, A. Stasiak,, and J . Dubochet. 1990. Direct visualization of supercoiled DNA molecules in solution. EMBO J. 9:45514554.
2. Afflerbach, H.,, O. Schroder,, and R. Wagner. 1999. Conformational changes of the upstream DNA mediated by H-NS and Fis regulate E. coli rrnB P1 promoter activity. J. Mol. Biol. 286:339353.
3. Albert, A.-C, F. Spirito, N. Figueroa-Bossi, L. Bossi, and A. R. Rahmouni. 1996. Hyper-negative template DNA super-coiling during transcription of the tctracyclinc-resistance gene in topA mutants is largely constrained in vivo. Nucleic Acids Res. 24:30933099.
4.Alfano, C , and R. McMackcn. 1989. Ordered assembly of nucleoprotein structures at the bacteriophage λ replication origin during the initiation of DNA replication. J. Biol. Chem. 264:1069910708.
5. Ali, B . M.,, R. Amit,, I. Braslavsky,, B. A. Oppenheim,, O. Gileadi,, and J . Stavans. 2001. Compaction of single DNA molecules induced by binding of integration host factor (IHF). Proc. Natl. Acad. Sci. USA 98:1065810663.
6. Arfin, S. M.,, A. D. Long,, E. T. Ito,, L. Tolleri,, M. M. Riehle,, E. S. Paegle,, and G. W. Hatfield. 2000. Global gene expression profiling in Escherichia coli K12. The effects of integration host factor. J. Biol. Chem. 275:2967229684.
7. Atlung, T.,, and H. Ingmer. 1997. H-NS: a modulator of environmentally regulated gene expression. Mol. Microbiol. 24:717.
8. Azam, T. A.,, A. Iwata,, A. Nishimura,, S. Ueda,, and A. Ishihama. 1999. Growth phase-dependent variation in protein composition of the Escherichia coli nucleoid. J. Bacteriol. 181:63616370.
9.Ball, C , R. Osuna, K. Ferguson, and R. Johnson. 1992. Dramatic changes in Fis levels upon nutrient upshift in Escherichia coli. J. Bacteriol. 174:80438056.
10. Bauer, W. R.,, F. H. C. Crick,, and J . H. White. 1980. Supercoiled DNA. Sci. Am. 243:100113.
11. Bednar, J.,, P. Furrer,, A. Stasiak,, J . Dubochet,, E. H. Egelman,, and A. D. Bates. 1994. The twist, writhe and overall shape of supercoiled DNA change during counterion-induced transition from a loosely to a tightly interwound superhelix. J. Mol. Biol. 123:361370.
12. Bertin, P.,, P. Lejeune,, C. Laurent-Winter,, and A. Danchin. 1990. Mutations in bglY, the structural gene for the DNA-binding protein H1, affect expression of several Escherichia coli genes. Biochimie 72:889891.
13. Blattner, F. R.,, G. Plunkett,, C. A. Bloch,, N. T. Perna,, V. Burland,, M. Riley,, J. Collado-Vides,, J. D. Glasner,, C. K. Rode,, G. F. Mayhew,, J. Gregor,, N. W. Davis,, H. A. Kirkpatrick,, M. A. Goeden,, D. J . Rose,, B. Mau,, and Y. Shao. 1997. The complete genome sequence of Escherichia coli K-12. Science 277:14531474.
14. Bliska, J . B.,, and N. R. Cozzarelli. 1987. Use of site-specific recombination as a probe of DNA structure and metabolism in vivo. J. Mol. Biol. 194:205218.
15. Boubrik, F.,, and J. Rouviere-Yaniv. 1995. Increased sensitivity to gamma irradiation in bacterial lacking protein HU. Proc. Natl. Acad. Sci. USA 92:39583962.
16. Broccoli, S.,, P. Phoenix,, and M. Drolet. 2000. Isolation of the topB gene encoding DNA topoisomerase III as a multicopy suppressor of topA null mutations in Escherichia coli. Mol. Microbiol. 35:5868.
17. Brown, P. O.,, and N. R. Cozzarelli. 1979. A sign inversion mechanism for enzymatic supercoiling of DNA. Science 206:10811083.
18. Broyles, S. S.,, and D. E. Pettijohn. 1986. Interaction of the Escherichia coli HU protein with DNA: evidence for the formation of nucleosome-like structures with altered DNA helical pitch. J. Mol. Biol. 187:4760.
19. Calugareanu, G. 1961. Sur las classes d'isotopie des noeuds tridimensionals et leurs invariants. Czech. Math. J. 11:588625.
20. Chalker, A. F.,, D. R. Leach,, and R. G. Lloyd. 1988. Escherichia coli sbcC mutants permit stable propagation of DNA replicons containing a long palindrome. Gene 71:201205.
21. Claret, L.,, and J . Rouviere-Yaniv. 1996. Regulation of HU alpha and HU beta by CRP and Fis in Escherichia coli. J. Mol. Biol. 263:126139.
22. Claret, L.,, and J. Rouviere-Yaniv, 1997. Variation in HU composition during growth of Escherichia coli: the heterodimer is required for long term survival. J. Mol. Biol. 273:93104.
23. Connelly, J. C.,, and D. R. Leach. 1996. The sbcC and sbcD genes of Escherichia coli encode a nuclease involved in palindrome inviability and genetic recombination. Genes Cells 1:285291.
24. Cook, D. N.,, D. Ma,, N. G. Pon,, and J. E. Hearst. 1992. Dynamics of DNA supercoiling by transcription in E. coli. Proc. Natl. Acad. Sci. USA 89:1060310607.
25. Courcelle, J.,, J. R. Donaldson,, K.-H. Chow,, and C. T. Courcelle. 2003. Replication fork regression and processing in Escherichia coli. Science 299:10641067.
26. Cox, M. M. 2001. Historical overview: searching for replication help in all of the rec places. Proc. Natl. Acad. Sci. USA 98:81738180.
27. Cozzarelli, N. R. 1980. DNA gyrase and the supercoiling of DNA. Science 207:953960.
28. Crisona, N. J.,, T. R. Strick,, D. Bensimon,, V. Croquette,, and N. R. Cozzarelli. 2000. Preferential relaxation of positively supercoiled DNA by Escherichia coli topoisomerase IV in single-molecule and ensemble measurements. Genes Dev. 14:28812892.
29. Dayn, A.,, S. Malkhosyan,, D. Duzhy,, V. Lyamichev,, Y. Panchenko,, and S. Mirkin. 1991. Formation of (dA-dT)n cruciforms in Escherichia coli ceils under different environmental conditions. J. Bacteriol. 173:26582664.
30. Depew,, R. E.,, and J. C. Wang, 1975. Conformational fluctuations of DNA helix. Proc. Natl. Acad. Sci. USA 72:42754279.
31. DiNardo, S.,, K. A. Voelkel,, R. Sternglanz,, A. E. Reynolds,, and A. Wright. 1982. Escherichia coli DNA topoisomerase I mutants have compensatory mutations in DNA gyrase genes. Cell 31:4351.
32. Dorman, C. J.,, G. C. Barr,, N. N. Bhriain,, and C. F. Higgins. 1988. DNA supercoiling and the anaerobic growth phase regulation of tonB gene expression. J. Bacteriol. 170:28162826.
33. Dorman, C. J.,, N. N. Bhriain,, and C. F. Higgins. 1990. DNA supercoiling and environmental regulation of virulence gene expression in Shigella flexneri. Nature 344:789792.
34. Drlica, K.,, and J. Rouviere-Yaniv. 1987. Histonelike proteins of bacteria. Microbiol. Rev. 51:301319.
35. Falconi, M.,, M. T. Gualtieri,, A. La Teana,, M. A. Losso,, and C. L. Pon. 1988. Proteins from the prokaryotic nucleoid: primary and quaternary structure of the 15kD Escherichia coli DNA binding protein H-NS. Mol. Microbiol. 2:323329.
36. Falconi, M.,, N. P. Higgins,, R. Spurio,, C. L. Pon,, and C. O. Gualerzi. 1993. Expression of the gene encoding the major bacterial nucleoid protein H-NS is subject to transcriptional auto-repression. Mol. Microbiol. 10:273282.
37. Falconi, M.,, V. McGovem,, C. Gualerzi,, D. Hillyard,, and N. P. Higgins. 1991. Mutations altering chromosomal protein H-NS induce mini-Mu transposition. New Biol. 3:615625.
38. Frank-Kamenetskii, M. DM and S. M. Mirkin. 1995. Triplex DNA structures. Annu. Rev. Biochem. 64:6596.
39. Fuller, F. B. 1971. The writhing number of a space curve. Proc. Natl. Acad. Sci. USA 68:815819.
40. Gamper, H. B.,, and J . E. Hearst. 1982. A topological model for transcription based on unwinding angle analysis of E. coli RNA polymerase binary, initiation and ternary complexes. Cell 29:8190.
41. Gangloff, S.,, J. P. McDonald,, C. Bendixen,, L. Arthur,, and R. Rothstein. 1994. The yeast type I topoisomerase Top3 interacts with Sgs1, a DNA helicase homolog: a potential eukaryotic reverse gyrase. Mol. Cell. Biol. 14:83918398.
42. Goodrich, J.,, and W. McClure. 1992. Regulation of open complex formation at the Escherichia coli galactose operon promoters. Simultaneous interaction of RNA polymerase, gal repressor and CAP/cAMP. J. Mol. Biol. 224:1529.
43. Hatfield, G. W.,, and C. J. Benham. 2002. DNA topology-mediated control of global gene expression in Escherichia coli. Annu. Rev. Genet. 36:175203.
44. Hengge-Aronis, R. 1999. Interplay of global regulators and cell physiology in the general stress response of Escherichia coli. Curr. Opin. Microbiol. 2:148152.
45. Hiasa, H.,, and K. J. Marians. 1994. Topoisomerase III, but not topoisomerase I, can support nascent chain elongation during theta-type DNA replication. J. Biol. Chem. 269:3265532659.
46. Hiasa, H.,, D. O. Yousef,, and K. J. Marians. 1996. DNA strand cleavage is required for replication fork arrest by a frozen topoisomerase-quinolone-DNA ternary complex. J. Biol. Chem. 271:2642425429.
47.Higgins, C F., C. J. Dorman, D. A. Stirling, L. Waddell, I. R. Booth, G. May, and E. Bremer. 1988. A physiological role for DNA supercoiling in the osmotic regulation of gene expression in S. typhimurium and E. coli. Cell 52:569584.
48. Higgins, N. P., 1999. DNA supercoiling and its consequences for chromosome structure and function, p. 189202. In R. L. Charlebois (ed.), Organization of the Prokaryotic Genome, vol. 1. ASM Press, Washington, D.C..
49. Higgins, N. P.,, D. A. Collier,, M. W. Kilpatrick,, and H. M. Krause. 1989. Supercoiling and integration host factor change the DNA conformation and alter the flow of convergent transcription in phage Mu. J . Biol. Chem. 264:30353042.
50. Higgins, N. P.,, K. H. Kato,, and B. S. Strauss. 1976. A model for replication repair in mammalian cells. J. Mol. Biol. 101:417425.
51. Hill, T. M.,, M. L. Tecklenburg,, A. J. Pelletier,, and P. L. Kuempel. 1989. tus, the trans-acting gene required for termination of DNA replication in Escherichia coli, encodes a DNA-binding protein. Proc. Natl. Acad. Sci. USA 86:15931597.
52. Hillisch, A.,, M. Lorenz,, and S. Dickmann. 2001. Recent advances in FRET: distance determination in protein-DNA complexes. Curr. Opin. Struct. Biol. 11:201207.
53.Hillyard, D,, M. Edlund, K. Hughes, M. Marsh, and N. P. Higgins. 1990. Subunit-specific phenotypes of Salmonella typhimurium HU mutants. J. Bacteriol. 172:54025407.
54. Hirvonen, C. A.,, W. Ross,, C. E. Wozniak,, E. Marasco,, J. R. Anthony,, S. E. Aiyar,, V. H. Newburn,, and R. L. Gorse. 2001. Contributions of UP elements and the transcription factor FIS to expression from the seven rrn PI promoters in Escherichia coli. J. Bacteriol. 183:63056314.
55. Hodges-Garcia, Y.,, P. J . Hagerman,, and D. E. Pettijohn. 1989. DNA ring closure mediated by protein HU. J. Biol. Chem. 264:1462114623.
56. Hommais, F.,, E. Krin,, C. Laurent-Winter,, O. Soutourina,, A. Malpertuy,, J. P. LeCaer,, A. Danchin,, and P. Bertin. 2001. Large-scale monitoring of pleiotropic regulation of gene expression by the prokaryotic nucleoid-associated protein, H-NS. Mol. Microbiol. 40:2036.
57. Hsieh, L.-S.,, J. Rouviere-Yaniv,, and K. Drlica. 1991. Bacterial DNA supercoiling and [ATP]/[ADP] ratio: changes associated with salt shock, J. Bacteriol. 173:39143917.
58. Huisman, O.,, M. Faelen,, D. Girard, A, Jaffe, A. Toussaint, and J. Rouviere-Yaniv. 1989. Multiple defects in Escherichia coli mutants lacking HU protein. J. Bacteriol. 171:37043712.
59. Itoh, T.,, and J. Tomizawa. 1980. Formation of an RNA primer for initiation of replication of ColE1 DNA by ribonuclease H. Proc. Natl. Acad. Sci. USA 77:24502454.
60. Jaworski, A.,, N. P. Higgins,, R. D. Wells,, and W. Zacharias. 1991. Topoisomerase mutants and physiological conditions control supercoiling and Z-DNA formation in vivo. J. Biol. Chem. 266:25762581.
61. Jaworski, A.,, W.-T. Hsieh,, J. A. Blaho,, J . E. Larson,, and R. D. Wells. 1987. Left handed DNA in vivo. Science 238:773777.
62. Johnson, R. C.,, and M. F. Bruist. 1989. Intermediates in bio-mediated DNA inversion: a role for Fis and the recombinational enhancer in the strand exchange reaction. EMBO J. 8:15811590.
63. Johnson, R. C.,, L. M. Johnson,, J. W. Schmidt,, and J. F. Gardner,. The major nucleoid proteins in the structure and function of the E. coli chromosome. In N. P. Higgins (ed.), The Bacterial Chromosome, in press. ASM Press, Washington, D.C..
64. Kaguni, J. M.,, and A. Kornberg. 1984. Replication initiated at the origin (oriC) of the E. coli chromosome reconstituted with purified enzymes. Cell 38:183190.
65. Kampranis, S. C , and A. Maxwell 1998. The DNA gyrase-quinolone complex. ATP hydrolysis and the mechanism of DNA cleavage. J. Biol. Chem. 273:2261522626.
66. Kanaar, R.,, A. Klippel,, E. Shekhtman,, J. M. Dungan,, R. Kahmann,, and N. R. Cozzarelli. 1990. Processive recombination by the phage Mu Gin system: implications for the mechanisms of DNA strand exchange, DNA site alignment, and enhancer action. Cell 62:353366.
67. Rang, D. S.,, and R. D. Wells. 1985. B-Z DNA junctions contain few, if any, nonpaired bases at physiological superhelical densities. J. Biol. Chem. 260:77837790.
68. Kato, J.,, Y. Nishimura,, R. Imamura,, H. Niki,, S. Hiraga,, and H. Suzuki. 1990. New topoisomerase essential for chromosome segregation in E. coli. Cell 63:393404.
69. Keller, W. 1975. Determination of the number of superhelical turns in simian virus 40 DNA by gel electrophoresis. Proc. Natl. Acad. Sci. USA 72:48764880.
70. Khodursky, A. B.,, B. J. Peter,, M. B. Schmid,, J. DeRisi,, D. Botstein,, B. J. Peter,, M. B. Schmid,, J. DeRisi,, D. Botstein,, P. O. Brown,, and N. R. Cozzarelli. 2000. Analysis of topoisomerase function in bacterial replication fork movement: use of DNA microarrays. Proc. Natl. Acad. Sci. USA 97:94199424.
71. Khodursky, A. B.,, L. L. Zechiedrich,, and N. R. Cozzarelli. 1995. Topoisomerase IV is a target of quinolones in Escherichia coli. Proc. Natl. Acad. Sci. USA 92:1180111805.
72. Kim, R. A.,, P. R. Caron,, and J. C Wang. 1995. Effects of yeast DNA topoisomerase III on telomere structure. Proc. Natl. Acad. Sci. USA 92:26672671.
73. Klysik, J.,, S. M. Stirdivant,, and R. D. Wells. 1982. Left-handed DNA. Cloning, characterization, and instability of inserts containing different lengths of (dC-dG) in Escbrichia coli. J. Biol. Chem. 257:1015210158.
74. Krasnow, M. A.,, and N. R. Cozzarelli. 1983. Site-specific relaxation and recombination by the Tn3 resolvase: recognition of the DNA path between oriented res sites. Cell 32:13131324.
75. Laundon, C. H.,, and J. D. Griffith. 1988. Curved helix segments can uniquely orient the topology of supertwisted DNA. Cell 52:545549.
76. Leach, D.,, J. Lindsey,, and E. Okely. 1987. Genome interactions which influence DNA palindrome mediated instability and inviability in Escherichia coli. J. Cell Sci. 7:3340.
77. Leach, D. R.,, E. A. Okely,, and D. J. Pinder, 1997. Repair by recombination of DNA containing a palindromic sequence. Mol. Microbiol. 26:597606.
78. Lee, C.-H.,, H. Mizusawa,, and T. Kakefuda. 1981. Unwinding of double-stranded DNA helix by dehydration. Proc. Natl. Acad. Sci. USA 78:28382842.
79. Lemon, K. P.,, and A. D. Grossman. 1998. Localization of bacterial DNA polymerase: evidence for a factory model of replication. Science 282:15161519.
80. Li, T.,, Y. A. Panchenko,, M. Drolet,, and L. F. Liu. 1997. Incompatibility of the Escherichia coli rho mutants with plasmids is mediated by plasmid-specific transcription. J. Bacteriol. 179:57895794.
81. Lucht, J. M. P, Dersch, B. Kempf, and E. Bremer. 1994. Interactions of the nucleotide-associated DNA-binding protein H-NS with the regulatory region of the osmotically controled proU operon of Escherichia coli. J. Biol. Chem. 269:65786586.
81. Lucht,, J. M.,, P. Dersch,, B. Kempf,, and E. Bremer. 1994. Interactions of the nucleotide-associated DNA-binding protein H-NS with the regulatory region of the osmotically controled proU operon of Escherichia coli. J. Biol. Chem. 269:65786586.
82. Luger, K.,, A. W. Mader,, and R. K. Richmond. 1997. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389:251260.
83. Luttingcr, A. L.,, A. L. Springer,, and M. B. Schmid. 1991. A cluster of genes that affects nucleoid segregation in Salmonella typhimurium. New Biol. 3:687697.
84. Lyamichev, V. I.,, S. M. Mirkin, and M, D, Frank-Kamenetskii. 1986. Structures of homopurine-homopyrimidine tract in superhelical DNA. J. Biomol. Struct. Dynamics 3:667669.
85. Lynch, A. S.,, and J. C Wang. 1993. Anchoring of DNA to the bacterial cytoplasmic membrane through cotranscriptional synthesis of polypeptides encoding membrane proteins or proteins for export: a mechanism of plasmid hypernegativc supercoiling in mutants deficient in DNA topoisomerase I. J. Bacteriol. 175:16451655.
86. Lyubchenko, Y. L.,, and L. S. Shlyakhtenko. 1997. Visualization of supercoiled DNA with atomic force microscopy in situ. Proc. Natl. Acad. Sci. USA 94:496501.
87. Masse, E.,, and M. Drolet. 1999. Escherichia coli DNA topoisomerase I inhibits R-loop formation by relaxing transcription-induced negative supercoiling. J. Biol. Chem. 274:1665916664.
88. Masse, E.,, and M. Drolet. 1999. R-loop-dependent hypernegative supercoiling in Escherichia coli topA mutants preferentially occurs at low temperatures and correlates with growth inhibition. J. Mol. Biol. 294:321332.
89. Masukata, H.,, and J. Tomizawa. 1990. A mechanism for formation of a persistent hybrid between elongating RNA and template DNA. Cell 62:331228,
90. May, G.,, P. Dersch,, M. Haardt,, A. Middendorf,, and E. Bremer. 1990. The osmZ (bglY) gene encodes the DNA-binding protein H-NS, a component of the Escherichia coli K12 nucleoid. Mol. Gen. Genet. 224:8190.
91. McClellan, J.,, A., P. Boublikova, E. Palecek, and D. M. J. Lilley. 1990. Superhelical torsion in cellular DNA responds directly to environmental and genetic factors. Proc. Natl. Acad. Sci. USA 87:83738377.
92. McGovern, V.,, N. P. Higgins,, S. Chiz,, and A. Jaworski. 1994. H-NS over-expression induces an artificial stationary phase by silencing global transcription. Biochimie 76:10301040.
93. Menzel, R.,, and M. Gellert. 1983. Regulation of the genes for E. coli DNA gyrase: homeostatic control of DNA supercoiling. Cell 34:105113.
94. Mirkin, S. M.,, and M. D. Frank-Kamenetskii. 1994. H-DNA and related structures. Annu. Rev. Biophys. Biomol. Struct. 23:541576.
95. Mirkin, S. M. V. I. Lyamichev, V. P. Kumarev, V. F. Kobzev, V. V. Nosikov, and A. V. Vologodskii. 1987. The energetics of the B-Z transition in DNA. J. Biotnol. Struct. Dynamics 5:7988.
96. Mojica, F. J. M.,, and C. F. Higgins. 1997. In vivo supercoiling of plasmid and chromosomal DNA in an Escherichia coli hns mutant. J. Bacteriol. 179:35283533.
97. Murchie, A. I. H.,, and D. M. J. Lilley. 1987. The mechanism of cruciform formation in supercoiled DNA: initial opening of central basepairs in salt-dependent extrusion. Nucleic Acids Res. 15:96419654.
98. Nieto, J . M.,, M. Mourino,, C. Balsalobre,, C. Madrid,, A. Prenafeta,, F. J. Munoa,, and A. Juarez. 1997. Construction of a double hha hns mutant of Escherichia coli: effect on DNA supercoiling and alpha-haemolysin production. FEMS Microbiol. Lett. 155:3944.
99. Olavarrieta, L., M, L. Martinez-Robles, P. Hernández, D. B. Krimer, and J . B, Schvartzman. 2002. Knotting dynamics during DNA replication. Mol. Microbiol. 46:699707.
100. Ordnorff, P. E. and T. H. Kawula. 1991. Rapid site-specific DNA inversion in Escherichia coli mutants lacking the histonelike protein H-NS. J. Bacteriol. 173:41164123.
101. Pages, V.,, and R. P. Fuchs. 2003. Uncoupling of leading- and lagging-strand DNA replication during lesion bypass in vivo. Science 300:13001303.
102. Peck, L. J.,, A. Nordheim,, A. Rich,, and J. C. Wang, 1982. Flipping of cloned d(pCpG)n.d(pCpG)n DNA sequences from right- to left-handed helical structure by salt, Co(III), or negative supercoiling. Proc. Natl. Acad. Sci. USA 79:45604564.
103.Pcrals, K. H. Capiaux, J.-B . Vincourt, J.-M. Louarn, D. J. Sherratt, and F. Cornet. 2001. Interplay between recombination, cell division and chromosome structure during chromosome dimer resolution in Escherichia coli. Mol. Microbial. 39:904913.
104. Peter, B. J.,, C. Ullsperger,, H. Hiasa,, K. J. Marians,, and N. R. Cozzarclli. 1998. The structure of supercoiled intermediates in DNA replication. Cell 94:819827.
105. Pettijohn, D. E.,, and O. Pfenninger. 1980. Supercoils in prokaryotic DNA restrained in vivo. Proc. Natl. Acad. Sci. USA 77:13311335.
106. Podtelezhnikov, A. A.,, N. R. Cozzarelli,, and A. V. Vologodkii. 1999. Equilibrium distributions of topological states in circular DNA: interplay of supercoiling and knotting. Proc Natl. Acad. Sci. USA 96:1297412979.
107. Postow, L.,, N. J. Crisona,, B. J. Peter,, C. D. Hardy,, and N. R. Cozzarclli. 2001. Topological challenges to DNA replication: conformations at the fork. Proc. Natl. Acad. Sci. USA 98:82198226.
108. Postow, L.,, B. J . Peter, and N, R. Cozzarelli. 1999. Knot what we thought before: the twisted story of replication. BioEssays 21:805808.
109. Pruss, G.,, and K. Drlica. 1986. Topoisomerase I mutants: the gene on pBR322 that encodes resistance to tetracycline affects plasmid DNA supercoiling. Proc. Natl. Acad. Sci. USA 83:89528956.
110. Rajagopalan, M.,, A. R. Rahmouni,, and R. D. Wells, 1990. Flanking AT-rich tracts cause a structural distortion in Z-DNA in plasmids. J. Biol. Chem. 265:1729417299.
111. Rajkumari, K.,, S. Kusano,, A. Ishihama, T, Mizuno, and J. Gowrishankar. 1996. Effects of H-NS and potassium glutamate on ��3− and ��70− directed transcription in vitro from osmotically regulated P1 and P2 promoters of proU in Escherichia coli. J . Bacteriol. 178:41764181.
112. Reaban, M. E.,. J. Lebowitz,, and J. A. Griffin. 1994. Transcription induces the formation of a stable RNA.DNA hybrid in the immunoglobulin alpha switch region. J. Biol. Chem. 269:2185021857.
113. Rice, P. A.,, S. Yang,, K. Mizuuchi,, and H. A. Nash. 1996. Crystal structure of an IHF-DNA complex: a protein-induced DNA U-turn. Cell 87:12951306.
114. Rimsky, S.,, F. Zuber,, M. Buckle,, and H. Buc. 2001. A molecular mechanism for the repression of transcription by the H-NS protein. Mol. Microbial. 42:13111323.
115. Rybenkov, V. V.,, A. V. Vologodskii,, and N. R. Cozzarelli. 1997. The effect of ionic conditions on the conformations of supercoiled DNA. I. Sedimentation analysis. J. Mol. Biol. 267:299311.
116. Sawitzke, J.,, and S. Austin. 2001. An analysis of the factory model for chromosome replication and segregation in bacteria. Mol. Microbiol. 40:786794.
117. Schnetz, K. 1995. Silencing of Escherichia coli bgl promoter by flanking sequence elements. EMBO J. 14:25452550.
118. Schofield, M.,, R. Agbunag,, and J. Miller, 1992. DNA inversions between short inverted repeats in Escherichia coli. Genetics 132:295302.
119.Skarstad, K. H. B. Steen, and E. Boye. 1983. Cell cycle parameters of slowly growing Escherichia coli B/r studied by flow cytometry. J. Bacteriol. 154:656662.
120. Skarstad, K.,, H. B. Steen,, and E. Boye. 1985. Escherichia coli DNA distributions measured by flow cytometry and compared with theoretical computer simulations. J. Bacteriol. 163:661668.
121. Spassky, A.,, S. Rimsky,, H. Garreau,, and H. Buc. 1984. H1a, an E. coli DNA-binding protein which accumulates in stationary phase, strongly compacts DNA in vitro. Nucleic Acids Res. 12:53215340.
122. Spurio, R.,, M. Falconi,, A. Brandi,, C. L. Pon,, and C. O. Gualerzi. 1997. The oltgomeric structure of nucleoid protein H-NS is necessary for recognition of intrinsically curved DNA and for DNA bending. EMBO J.. 16:17951805.
123. Stewart, L.,, M. R. Redinbo,, X. Qiu,, W. G. J. Hol,, and J. J. Champoux. 1998. A model for the mechanism of human topoisomerase 1. Science 279:15341541.
124. Tahirov, T. H. D. Temiakov, M. Anikin, V. Patlan, W. T. McAllister, D. G. Vassylyev, and S. Yokoyama. 2002. Structure of a T7 RNA polymerase elongation complex at 2.9 Å resolution. Nature 420:4350.
125. Thompson,, R. J.,, J. P. Davies,, G. Lin,, and G. Mosig,. 1990. Modulation of transcription by altered torsional stress, upstream silencers, and DNA-binding proteins, p. 227240. In K. Drlica, and M. Riley (eds), The Bacterial Chromosome. American Society for Microbiology, Washington, D.C..
126. Thompson, R. J.,, and G. Mosig. 1988. Integration host factor (IHF) represses a Chlamydomonas chloroplast promoter in E. coli. Nucleic Acids Res. 16:33133326.
127.Tupper, A, E., T. A. Owen-Hughes, D. W, Ussery, D. S. Santos, D.J. P. Ferguson, J. M. Sidcbotham,J. C. D. Hinton, and C, F. Higgins. 1994. The chromatin-associated protein H-NS alters DNA topology in vitro. EMBO J. 13:258268.
128. Vasquez, K. M.,, and J. H. Wilson. 1998. Triplex-directed modification of genes and gene activity. Trends Biochem. Sci. 23:49.
129. Vinograd, J.,, and J. Lebowitz. 1966. Physical and topological properties of circular DNA. J. Gen. Phys. 49:103125.
130. Vinograd, J.,, J. Lebowitz,, R. Radloff,, R. Watson,, and P. Laipis. 1965. The twisted circular form of polyoma viral DNA. Proc. Natl. Acad. Sci. USA 53:11041111.
131. Vologodskii, A. V. 1998. Circular DNA. Mol. Biol. 35:130.
132. Vologodskii, A. V. 1992. Topology and Physics of Circular DNA. CRC Press, Boca Raton, Fla..
133. Vologodskii, A. V.,, and N. R. Cozzarelli. 1994. Conformational and thermodynamic properties of supercoiled DNA. Ann. Rev. Biophys. Biomol. Struct. 23:609643.
134. Vologodskii, A. V.,, and N. R. Cozzarelli. 1994. Supercoiling, knotting, looping, and other large-scale conformational properties of supercoiled DNA. Curr. Opin. Struct. Biol. 4:372375.
135. Vologodskii, A. V.,, N. J. Crisona,, B. Laurie,, P. Pieranski,, V. Katritch,, J . Dubochet,, and A. Stasiak. 1998. Sedimentation and electrophoretic migration of DNA knots and catenanes. J. Mol. Biol. 278:13.
136.Vologodskii, A, V., S. D. Levene, K. V. Klenin, M. Frank-Kamenetskii, and N. R. Cozzarelli. 1992. Conformational and thermodynamic properties of supercoiled DNA. J. Mol. Biol. 227:12241243.
137. Wang, J. C., 1986. Circular DNA, p. 225260. In J. A. Semlyen (ed.), Cyclic Polymers. Elsevier Applied Science Publishers Ltd., Essex, United Kingdom.
138. Wang, J. C. 1996. DNA topoisomerases. Annu. Rev. Biochem. 65:635692.
139. Wasscrman, S. A.,, and N. R. Cozzarelli. 1986. Biochemical topology: application to DNA recombination and replication. Science 232:951960.
140. White, J . H. 1969. Self-linking and the Gauss integral in higher dimensions. Am. J. Math. 91:693728.
141. Williams, R. M.,, and S. Rimsky. 1997. Molecular aspects of the E. coli nucleoid protein, H-NS: a central controller of gene regulatory networks, FEMS Microbiol. Lett. 156:175185.
142. Williams, R. M.,, S. Rimsky,, and H. Buc. 1996. Probing the structure, function, and interactions of Escherichia coli H-NS and StpA proteins by using dominant negative derivatives. J. Bacteriol. 178:43354343.
143. Wu, H.-Y.,, and L. F. Liu. 1991. DNA looping alters local DNA conformation during transcription. J. Mol. Biol. 219:615622.
144. Wu, H.-Y.,, S. Shyy,, J. C. Wang,, and L. F. Liu. 1988. Transcription generates positively and negatively supercoiled domains in the template. Cell 53:433440.
145. Yamamoto, N.,, and M. L. Droffner. 1985. Mechanisms determining aerobic or anaerobic growth in the facultative anaerobe Salmonella typhimurium. Proc. NatL Acad. Sci. USA 82:20772081.
146. Zacharias, W.,, A. Jaworski,, J. E. Larson,, and R. D. Wells. 1988. The B- to Z-DNA equilibrium in vivo is perturbed by biological processes. Proc. Natl. Acad. Sci. USA 85:70697073.
147. Zechiedrich, E. L.,, B. K. Arkady,, S. Bachellier,, D. Chen,, D. M. Lilley,, and N. R. Cozzarelli. 2000. Roles of topoisomerases in maintaining steady-state DNA supercoiling in Escherichia coli. J. Biol. Chem. 275:81038113.
148. Zhang, A.,, and M. Belfort. 1992. Nucleotide sequence of a newly-identified Escherichia coli gene, stpA, encoding an H-NS-like protein. Nucleic Acids Res. 20:6735.
149. Zhang, A.,, S. Rimsky,, M. E. Reaban,, H. Buc,, and M. Belfort. 1996. Escherichia coli protein analogs StpA and H-NS: regulatory loops, similar and disparate effects on nucleic acid dynamics. EMBO J. 15:13401349.

Tables

Generic image for table
Table 1

Constrained and unconstrained supercoiling in K12-derived plasmids

Citation: Patrick Higgins N, Vologodskii A. 2004. Topological Behavior of Plasmid DNA, p 193-202. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch8
Generic image for table
Table 2

Nucleoid structural proteins

Citation: Patrick Higgins N, Vologodskii A. 2004. Topological Behavior of Plasmid DNA, p 193-202. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch8

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error