1887

Chapter 5 : Multiple Chromosomes

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Multiple Chromosomes, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817749/9781555812713_Chap05-1.gif /docserver/preview/fulltext/10.1128/9781555817749/9781555812713_Chap05-2.gif

Abstract:

Some species of bacteria have more than one chromosome. Scientific dogma can be challenged at any time by the acquisition of new data or the reinterpretation of old data, but dogma is not easy to change. The word "plasmid" has drifted considerably from its original meaning. Chromosomes and plasmids can be circular or linear and both vary widely in size. With hindsight and the acquisition of new data, initial definitions and hypotheses often appear naive. Plasmids encode nonessential functions and can be considered dispensable. Chromosomes encode essential functions. The functions encoded by a replicon may be the most useful method in defining it as a plasmid or a chromosome. Multiple chromosome-like replicons (MCLRs) are widespread among bacteria. Genome architecture varies widely even between closely related bacterial species and may influence lifestyle. It has been hypothesized that genome architecture may reflect lifestyle; however, there is still no clear correlation between genome architecture and lifestyle. A bacterium can acquire a second chromosome by chromosome disruption, gene insertions into preexisting plasmids, and chromosome capture from another bacterium. To date, evidence suggests that multiple chromosomes have arisen during the course of evolution by two of the three possible mechanisms. Multiple chromosomes may increase sequence diversity by facilitating intrachromosomal recombination and/or horizontal gene transfer. Gene duplication without deletion may occur between multiple chromosomes. Multiple chromosomes may be a way of varying gene dosage during replication.

Citation: Mackenzie C, Kaplan S, Choudhary M. 2004. Multiple Chromosomes, p 82-101. In Miller R, Day M (ed), Microbial Evolution. ASM Press, Washington, DC. doi: 10.1128/9781555817749.ch5

Key Concept Ranking

Type III Secretion System
0.40739423
0.40739423
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555817749.chap5
1. Choudhary, M.,, C. Mackenzie,, K. S. Nereng,, E. Sodergren,, G. M. Weinstock,, and S. Kaplan. 1994. Multiple chromosomes in bacteria: structure and function of chromosome II of Rhodohacter sphaeroides 2.4.1T. J. Bacteriol. 176: 76947702.
2. DelVecchio, V. G.,, V. Kapatral,, R. J. Redkar,, G. Patra,, C. Mujer,, T. Los,, N. Ivanova,, I. Anderson,, A. Bhattacharyya,, A. Lykidis,, G. Reznik,, L. Jablonski,, N. Larsen,, M. D'Souza,, A. Bernai,, M. Mazur,, E. Goltsman,, E. Seikov,, P. H. Elzer,, S. Hagius,, D. O'Callaghan,, J. J. Letesson,, R. Haselkorn,, N. Kyrpides,, and R. Overbeek. 2002. The genome sequence of the facultative intracellular pathogen Bmcella melitensis. Proc. Natl. Acad. Sci. USA 99:443448.
3. Dryden, S. C.,, and S. Kaplan. 1993. Identification of cis-acting regulatory regions upstream of the rRNA opérons of Rhodobacter sphaeroides. J. Bacteriol. 175:63926402.
4. Galibert, F., et al. 2001. The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293:668672.
5. Goodner, B.,, G. Hinkle,, S. Gattung,, N. Miller,, M. Blanchard,, B. Qurollo,, B. S. Goldman,, Y. Cao,, M. Askenazi,, C. Hailing,, L. Mullin,, K. Houmiel,, J. Gordon,, M. Vaudin,, O. Iartchouk,, A. Epp,, F. Liu,, C. Wollam,, M. Allinger,, D. Doughty,, C. Scott,, C. Lappas,, B. Markelz,, C. Flanagan,, C. Crowell,, J. Gurson,, C. Lomo,, C. Sear,, G. Strub,, C. Cielo,, and S. Slater. 2001. Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science 294:23232328.
6. Heidelberg, J. F.,, J. A. Eisen,, W. C. Nelson,, R. A. Clayton,, M. L. Gwinn,, R. J. Dodson,, D. H. Haft,, E. K. Hickey,, J. D. Peterson,, L. Umayam,, S. R. Gill,, K. E. Nelson,, T. D. Read,, H. Tettelin,, D. Richardson,, M. D. Ermolaeva,, J. Vamathevan,, S. Bass,, H. Qin,, I. Dragoi,, P. Sellers,, L. McDonald,, T. Utterback,, R. D. Fleishmann,, W. C. Nierman,, and O. White. 2000. DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406:477483.
7. Itaya, M.,, and T. Tanaka. 1997. Experimental surgery to create subgenomes of Bacillus subtilis 168. Proc. Natl. Acad. Sci. USA 94:53785382.
8. Jumas-Bilak, E.,, S. Michaux-Charachon,, G. Bourg,, M. Ramuz,, and A. Allardet-Servent. 1998. Unconventional genomic organization in the alpha subgroup of the proteobacteria. J. Bacteriol. 180:27492755.
9. Mackenzie, C.,, M. Choudhary,, F. W. Larimer,, P. F. Predki,, S. Stilwagen,, J. P. Armitage,, R. D. Barber,, T. J. Donohue,, J. P. Hosier,, J. E. Newman,, J. P. Shapleigh,, R. E. Sockett,, J. Zeilstra-Ryalls,, and S. Kaplan. 2001. The home stretch, a first analysis of the nearly completed genome of Rlwdobacter sphaeroides 2.4.1. Photosynth. Res. 70:1941.
10. Mackenzie, C.,, A. E. Simmons,, and S. Kaplan. 1999. Multiple chromosomes in bacteria. The yin and yang of trp gene localization in Rlwdobacter sphaeroides 2.4.1. Genetics 153:525538.
11. Purser, J. E.,, and S. J. Norris. 2000. Correlation between plasmid content and infectivity in Borrelia burgdorferi. Proc. Natl Acad. Sci. USA 97:1386513870.
12. Roeland, C. H.,, R. C. V. Ham,, F. Gonzalez-Candelas,, F. J. Silva,, B. Sabater,, A. Moya,, and A. Latorre. 2000. Postsymbiotic plasmid acquisition and evolution of the repA1-replicon in Buchnera aphidicola. Proc. Natl. Acad. Sci. USA 97:1085510860.
13. Salanoubat, M.,, S. Genin,, F. Artiguenave,, J. Gouzy,, S. Mangenot,, M. Arlat,, A. Billault,, P. Brottier,, J. C. Camus,, L. Cattolico,, M. Chandler,, N. Choisne,, C. Claudel-Renard,, S. Cunnac,, N. Démange,, C. Gaspin,, M. Lavie,, A. Moisan,, C. Robert,, W. Saurin,, T. Schiex,, P. Siguier,, P. Thebault,, M. Whalen,, P. Wincker,, M. Levy,, J. Weissenbach,, and C. A. Boucher. 2002. Genome sequence of the plant pathogen Ralstonia solanacearum. Nature 415: 497502.
14. Shigenobu, S.,, H. Watanabe,, M. Hattori,, Y. Sakaki,, and H. Ishikawa. 2000. Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature 407:8186.
15. Suwanto, A.,, and S. Kaplan. 1989a. Physical and genetic mapping of the Rhodobacter sphaeroides 2.4.1 genome: genome size, fragment identification, and gene localization. J. Bacteriol. 171:58405849.
16. Suwanto, A.,, and S. Kaplan. 1989b. Physical and genetic mapping of the Rhodobacter sphaeroides 2.4 A genome: presence of two unique circular chromosomes. J. Bacteriol. 171:58505859.
17. Wood, D. W., et al. 2001. The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science 294:23172323.
18. Yang, D.,, Y. Oyaizu,, H. Oyaizu,, G.J. Olsen,, and C. R. Woese. 1985. Mitochondrial origins. Proc. Natl. Acad. Sci. USA 82:44434447.
19. Casjens, S. 1998. The diverse and dynamic structures of bacterial genomes. Annu. Reu. Genet. 32:339377.
20. Krawiec, S.,, and M. Riley. 1990. Organization of the bacterial chromosome. Microbiol. Rev. 54:502539.
21. Lederberg, J. 1998. Personal perspective, plasmid (1952-1997). Plasmid 39:19.
22. Moreno, E. 1998. Genome evolution within the alpha Proteobacteria'. why do some bacteria not possess plas-mids and others exhibit more than one different chromosome? FEMS Microbiol. Rev. 22:255275.

Tables

Generic image for table
TABLE 1

Bacterial genomes containing multiple chromosome-like replicons

Citation: Mackenzie C, Kaplan S, Choudhary M. 2004. Multiple Chromosomes, p 82-101. In Miller R, Day M (ed), Microbial Evolution. ASM Press, Washington, DC. doi: 10.1128/9781555817749.ch5
Generic image for table
TABLE 2

Examples of the distribution of lethal and sick disruption genes in selected organisms with multiple chromosome-like replicons (MCLRs)

Citation: Mackenzie C, Kaplan S, Choudhary M. 2004. Multiple Chromosomes, p 82-101. In Miller R, Day M (ed), Microbial Evolution. ASM Press, Washington, DC. doi: 10.1128/9781555817749.ch5

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error